-
Notifications
You must be signed in to change notification settings - Fork 0
/
chords.c
511 lines (447 loc) · 16.6 KB
/
chords.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include "chords.h"
#include "pico/stdlib.h"
#include "hardware/gpio.h"
#include "bsp/board.h"
#include "tusb.h"
/*
do di re me mi fa fi so si la te ti do
0 1 2 3 4 5 6 7 8 9 10 11 12
*/
static const int major_scale[7] = {0, 2, 4, 5, 7, 9, 11}; // whoa whoa hey whoa whoa whoa (hey)
static const int harmonic_minor_scale[7] = {0, 2, 3, 5, 7, 8, 11};
// Lookup table for note names
static const int frustrated_leading_tone_penalty = 10;
static const int jumpy_alto_or_tenor_penalty_multiplier = 2;
bool genChord(int key, bool major, int numeral, int inversion, struct Chord prev, volatile struct Chord *tobechanged)
{
static struct Chord best;
// putting 69s so I know if best is not assigned... which would mean no combinations work
best.notes[0].pitch = -69;
best.score = 99; // lower is better
static struct Note masterAvailable[4];
bool isSeventhChord = false;
int bassNote = 0;
// identify seventh chords and inversion positions
switch (inversion)
{
case 0:
bassNote = 0;
break;
case 6:
bassNote = 1;
break;
case 64:
bassNote = 2;
break;
case 7:
bassNote = 0;
isSeventhChord = true;
break;
case 65:
bassNote = 1;
isSeventhChord = true;
break;
case 43:
bassNote = 2;
isSeventhChord = true;
break;
case 42:
bassNote = 3;
isSeventhChord = true;
break;
}
// Making sure all boolean leadingTone and isSevenths are false
for (int i = 0; i < 4; i++){
masterAvailable[i].isLeadingTone = false;
masterAvailable[i].isSeventh = false;
}
if (major)
{
masterAvailable[0].pitch = key + major_scale[numeral - 1]; // root
masterAvailable[1].pitch = key + major_scale[(numeral + 1) % 7]; // third
masterAvailable[2].pitch = key + major_scale[(numeral + 3) % 7]; // fifth
if (isSeventhChord)
{
masterAvailable[3].pitch = key + major_scale[(numeral + 5) % 7]; // seventh
masterAvailable[3].isSeventh = true;
}
else
{
masterAvailable[3].pitch = -1; // so I know its an error
}
} else // minor
{
masterAvailable[0].pitch = key + harmonic_minor_scale[numeral - 1]; // root
masterAvailable[1].pitch = key + harmonic_minor_scale[(numeral + 1) % 7]; // third
masterAvailable[2].pitch = key + harmonic_minor_scale[(numeral + 3) % 7]; // fifth
if (isSeventhChord)
{
masterAvailable[3].pitch = key + harmonic_minor_scale[(numeral + 5) % 7]; // seventh
masterAvailable[3].isSeventh = true;
}
}
// Check for leading tones
for (int i = 0; i < 4; i++)
{
if ((masterAvailable[i].pitch - key) % 12 == 11)
masterAvailable[i].isLeadingTone = true;
}
// Double notes
for (int i = 0; i < 4; i++)
{
// making a temp copy of available
struct Note available[4];
for (int lcv = 0; lcv < 4; lcv++)
available[lcv] = masterAvailable[lcv];
// double a triad note
if (i < 3)
{
if (numeral == 6){
available[3] = available[1]; // double third on deceptive cadence
} else if (inversion == 64){
available[3] = available[2]; // double fifth on 64 triads
} else if (!isSeventhChord && !available[i].isLeadingTone){
available[3] = available[i];
} else if (available[i].isLeadingTone)
continue;
} else if (best.notes[0].pitch == -69 && !available[0].isLeadingTone && inversion == 0){
available[2] = available[0]; // in worst scenario, replace fifth with root and triple root
available[3] = available[0];
} else {
break;
}
// Set bass note at the first spot in available (makes manual permutations easier)
struct Note temp = available[0];
available[0] = available[bassNote];
available[bassNote] = temp;
// permutations here
static struct Chord guess;
guess.score = 999;
//doing it manually 6 times because I don't understand the recusive algorithm to do it
for (int j = 0; j < 3; j++)
{
int bassDownShift = 0;
if (j == 0)
bassDownShift = 12; // sometimes helps with preventing voice crossing
// On the third round, lower the tenor before adjusting spacing IF THE PREVIOUS TWO ROUNDS HAVE NOT WORKED
int tenorTweak = 0;
if (j == 2 && best.notes[0].pitch == -69)
{
tenorTweak = 12;
}
else if (j == 2)
{
break;
}
guess.notes[0] = available[0];
guess.notes[1] = available[1];
guess.notes[2] = available[2];
guess.notes[3] = available[3];
guess.notes[0].pitch -= tenorTweak;
guess.notes[1].pitch -= tenorTweak;
adjustSpacing(&guess);
guess.notes[0].pitch -= bassDownShift;
guess.score = evalChord(key, prev, guess);
if (guess.score != -1 && guess.score < best.score)
best = guess;
guess.notes[0] = available[0];
guess.notes[1] = available[1];
guess.notes[2] = available[3];
guess.notes[3] = available[2];
guess.notes[0].pitch -= tenorTweak;
guess.notes[1].pitch -= tenorTweak;
adjustSpacing(&guess);
guess.notes[0].pitch -= bassDownShift;
guess.score = evalChord(key, prev, guess);
if (guess.score != -1 && guess.score < best.score)
best = guess;
guess.notes[0] = available[0];
guess.notes[1] = available[2];
guess.notes[2] = available[1];
guess.notes[3] = available[3];
guess.notes[0].pitch -= tenorTweak;
guess.notes[1].pitch -= tenorTweak;
adjustSpacing(&guess);
guess.notes[0].pitch -= bassDownShift;
guess.score = evalChord(key, prev, guess);
if (guess.score != -1 && guess.score < best.score)
best = guess;
guess.notes[0] = available[0];
guess.notes[1] = available[2];
guess.notes[2] = available[3];
guess.notes[3] = available[1];
guess.notes[0].pitch -= tenorTweak;
guess.notes[1].pitch -= tenorTweak;
adjustSpacing(&guess);
guess.notes[0].pitch -= bassDownShift;
guess.score = evalChord(key, prev, guess);
if (guess.score != -1 && guess.score < best.score)
best = guess;
guess.notes[0] = available[0];
guess.notes[1] = available[3];
guess.notes[2] = available[1];
guess.notes[3] = available[2];
guess.notes[0].pitch -= tenorTweak;
guess.notes[1].pitch -= tenorTweak;
adjustSpacing(&guess);
guess.notes[0].pitch -= bassDownShift;
guess.score = evalChord(key, prev, guess);
if (guess.score != -1 && guess.score < best.score)
best = guess;
guess.notes[0] = available[0];
guess.notes[1] = available[3];
guess.notes[2] = available[2];
guess.notes[3] = available[1];
guess.notes[0].pitch -= tenorTweak;
guess.notes[1].pitch -= tenorTweak;
adjustSpacing(&guess);
guess.notes[0].pitch -= bassDownShift;
guess.score = evalChord(key, prev, guess);
if (guess.score != -1 && guess.score < best.score)
best = guess;
}
}
// Check if best has been assigned anything. Look for -69
if (best.notes[0].pitch == -69)
{
// if none work, make a generic chord with doubled root and return false
best.notes[0] = masterAvailable[0];
best.notes[1] = masterAvailable[1];
best.notes[2] = masterAvailable[2];
if (isSeventhChord)
best.notes[3] = masterAvailable[3];
else
best.notes[3] = masterAvailable[0];
struct Note tmp = best.notes[0];
best.notes[0] = best.notes[bassNote];
best.notes[bassNote] = tmp;
adjustSpacing(&best);
*tobechanged = best;
return false;
}
*tobechanged = best;
return true;
}
int evalChord(int key, struct Chord previous, struct Chord next)
{
int score = 0;
// check spacing
if (!(next.notes[3].pitch >= next.notes[2].pitch && next.notes[2].pitch >= next.notes[1].pitch && next.notes[1].pitch >= next.notes[0].pitch))
{
return -1; // voice crossing
}
if (next.notes[3].pitch - next.notes[2].pitch > 12 || next.notes[2].pitch - next.notes[1].pitch > 12)
{
return -1; // upper notes more than octave apart
}
// Incentivize spacing out the chord, to prevent future voice overlaps
score += 24 - (next.notes[3].pitch - next.notes[1].pitch);
// Penalize bass moving out of G2-C4 range
if (next.notes[0].pitch < 43 || next.notes[0].pitch > 60)
score += 5; // TODO: make penalty constant for this
// Penalize soprano moving above G5
if (next.notes[3].pitch > 79)
score += 5;
// the following criteria depend on previous chord. If no previous chord, return score now.
if (previous.notes[0].pitch == 0)
{
return score;
}
// check voice overlaps
if (next.notes[0].pitch >= previous.notes[1].pitch ||
next.notes[1].pitch <= previous.notes[0].pitch || next.notes[1].pitch >= previous.notes[2].pitch ||
next.notes[2].pitch <= previous.notes[1].pitch || next.notes[2].pitch >= previous.notes[3].pitch ||
next.notes[3].pitch <= previous.notes[2].pitch)
{
return -1;
}
// check leading tone resolutions
int leadingToneIndex = -1; // s a t or b
bool foundLeadingTone = false;
for (int i = 0; i < 4; i++)
{
if (previous.notes[i].isLeadingTone)
{
if (foundLeadingTone){
// Two leading tones
return -1;
}
leadingToneIndex = i;
foundLeadingTone = true;
}
}
if (next.notes[leadingToneIndex].isLeadingTone) // if ti goes to ti
score += 0;
else if ((next.notes[leadingToneIndex].pitch - key) % 12 == 0) // if ti goes to do
score += 0;
else if ((next.notes[leadingToneIndex].pitch - key) % 12 == 7) // if ti goes to so (frustrated leading tone)
score += frustrated_leading_tone_penalty; // slightly punished
else
{
// Leading tone didn't resolve
return -1;
}
// check seventh resolutions
int seventhIndex = -1; // s a t or b
for (int i = 0; i < 4; i++)
{
if (previous.notes[i].isSeventh)
seventhIndex = i;
}
if (seventhIndex != -1)
{
int seventhDifference = previous.notes[seventhIndex].pitch - next.notes[seventhIndex].pitch;
if (!(seventhDifference <= 2 && seventhDifference > 0)) // diff of zero means holding... TODO add a seventh holding bool variable
{
// Seventh didn't resolve
return -1;
}
}
// check for parallel fifths and octaves
for (int i = 0; i < 4; i++)
{
for (int j = i; j < 4; j++)
{
int difference = previous.notes[j].pitch - previous.notes[i].pitch;
if (difference == 0)
continue;
// check that same interval on the next chord
int nextDiff = next.notes[j].pitch - next.notes[i].pitch;
// oblique motion is fine
if (previous.notes[j].pitch == next.notes[j].pitch || previous.notes[i].pitch == next.notes[i].pitch)
continue;
nextDiff %= 12;
difference %= 12;
if (nextDiff < 0)
nextDiff += 12;
if (difference < 0)
difference += 12;
if (difference == 7 && difference == nextDiff)
{
// Found P5
return -1;
}
if (difference == 0 && difference == nextDiff)
{
// Found P8
return -1;
}
}
}
// evaluate alto and tenor smoothness. Rougher lines mean higher points, which is less desirable
// unacceptable if jumping more than a fifth
int tenorChange = abs(next.notes[1].pitch - previous.notes[1].pitch);
int altoChange = abs(next.notes[2].pitch - previous.notes[2].pitch);
if (tenorChange > 7 || altoChange > 7)
{
// too much tenor or alto change
return -1;
}
if (tenorChange > 2)
score += tenorChange * jumpy_alto_or_tenor_penalty_multiplier;
if (altoChange > 2)
score += altoChange * jumpy_alto_or_tenor_penalty_multiplier;
// TODO: soprano over-jerkiness prevention?
return score;
}
// recursively adjusts until spaced correctly
void adjustSpacing(struct Chord *c)
{
bool adjusted = false;
if (c->notes[0].pitch > c->notes[1].pitch)
{
c->notes[1].pitch += 12;
adjusted = true;
}
if (c->notes[1].pitch > c->notes[2].pitch)
{
c->notes[2].pitch += 12;
adjusted = true;
}
if (c->notes[2].pitch > c->notes[3].pitch)
{
c->notes[3].pitch += 12;
adjusted = true;
}
// catch errors
if (abs(c->notes[0].pitch) > 127 || abs(c->notes[1].pitch) > 127 || abs(c->notes[2].pitch) > 127 || abs(c->notes[3].pitch) > 127)
{
return;
}
if (adjusted)
adjustSpacing(c);
}
// Converts sensor level to 0, 664-765-4342
int inversionConversion(int level)
{
switch (level)
{
case 0:
return 0;
case 1:
return 6;
case 2:
return 64;
case 3:
return 7;
case 4:
return 65;
case 5:
return 43;
case 6:
return 42;
default:
return -1;
}
}
int figBassToNumeral(int key, bool major, int bass, int inversion)
{
int numeral;
int bassNote;
switch (inversion)
{
case 0:
bassNote = 0;
break;
case 6:
bassNote = 1;
break;
case 64:
bassNote = 2;
break;
case 7:
bassNote = 0;
break;
case 65:
bassNote = 1;
break;
case 43:
bassNote = 2;
break;
case 42:
bassNote = 3;
break;
}
int pitch_relative_to_key = (bass - key) % 12;
if (pitch_relative_to_key < 0)
pitch_relative_to_key += 12;
if (major)
{
for (int i = 0; i < 7; i++)
{
if (pitch_relative_to_key == major_scale[i])
numeral = i;
}
} else
{
for (int i = 0; i < 7; i++)
{
if (pitch_relative_to_key == harmonic_minor_scale[i])
numeral = i;
}
}
return (numeral - 2 * bassNote + 7) % 7 + 1;
}