Skip to content

Latest commit

 

History

History
184 lines (134 loc) · 7.82 KB

README.md

File metadata and controls

184 lines (134 loc) · 7.82 KB

FQ-GAN

Recent Update

  • May 22, 2020 Releasing the pre-trained FQ-BigGAN/BigGAN at resolution 64x64 and their training logs at the link (10.34G):

  • May 22, 2020 Selfie2Anime Demo is released. Try it out.

  • Colab file for training and testing. Put it intoFQ-GAN/FQ-U-GAT-IT and follow the training/testing instruction.

  • Selfie2Anime pretrained models are available now!! Halfway checkpoint and Final checkpoint.

  • Photo2Portrait pretrained model is released!


This repository contains source code to reproduce the results presented in the paper:

Feature Quantization Improves GAN Training, ICML 2020
Yang Zhao*, Chunyuan Li*, Ping Yu, Jianfeng Gao, Changyou Chen

Contents

  1. FQ-BigGAN
  2. FQ-U-GAT-IT
  3. FQ-StyleGAN

FQ-BigGAN

This code is based on PyTorchGAN. Here we will give more details of the code usage. You will need python 3.x, pytorch 1.x, tqdm ,h5py

Prepare datasets

  1. CIFAR-10 or CIFAR-100 (change C10 to C100 to prepare CIFAR-100)
python make_hdf5.py --dataset C10 --batch_size 256 --data_root data
python calculate_inception_moments.py --dataset C10 --data_root data --batch_size 128
  1. ImageNet, first you need to manually download ImageNet and put all image class folders into ./data/ImageNet, then execute the following command to prepare ImageNet (128×128)
python make_hdf5.py --dataset I128 --batch_size 256 --data_root data
python calculate_inception_moments.py --dataset I128_hdf5 --data_root data --batch_size 128

Training

We have four bash scripts in FQ-BigGAN/scripts to train CIFAR-10, CIFAR-100, ImageNet (64×64) and ImageNet (128×128), respectively. For example, to train CIFAR-100, you may simply run

sh scripts/launch_C100.sh

To modify the FQ hyper-parameters, we provide the following options in each script as arguments:

  1. --discrete_layer: it specifies which layers you want quantization to be added, i.e. 0123
  2. --commitment : it is the quantization loss coefficient, default=1.0
  3. --dict_size: the size of the EMA dictionary, default=8, meaning there are 2^8 keys in the dictionary.
  4. --dict_decay: the momentum when learning the dictionary, default=0.8.

Experiment results

Learning curves on CIFAR-100.

FID score comparison with BigGAN on ImageNet

Model 64×64 128×128
BigGAN 10.55 14.88
FQ-BigGAN 9.67 13.77

FQ-U-GAT-IT

This experiment is based on the official codebase U-GAT-IT. Here we plan to give more details of the dataset preparation and code usage. You will need python 3.6.x, tensorflow-gpu-1.14.0, opencv-python, tensorboardX

Prepare datasets

We use selfie2anime, cat2dog, horse2zebra, photo2portrait, vangogh2photo.

  1. selfie2anime: go to U-GAT-IT to download the dataset and unzip it to ./dataset.
  2. cat2dog and photo2portrait: here we provide a bash script adapted from DRIT to download the two datasets.
cd FQ-U-GAT-IT/dataset && sh download_dataset_1.sh [cat2dog, portrait]
  1. horse2zebra and vangogh2photo: here we provide a bash script adapted from CycleGAN to download the two datasets.
cd FQ-U-GAT-IT && bash download_dataset_2.sh [horse2zebra, vangogh2photo]

Training

python main.py --phase train --dataset [type=str, selfie2anime/portrait/cat2dog/horse2zebra/vangogh2photo] --quant [type=bool, True/False] --commitment_cost [type=float, default=2.0] --quantization_layer [type=str, i.e. 123] --decay [type=float, default=0.85]

By default, the training procedure will output checkpoints and intermediate translations from (testA, testB) to checkpoints (checkpoints_quant) and results (results_quant) respectively.

Testing

python main.py --phase test --test_train False --dataset [type=str, selfie2anime/portrait/cat2dog/horse2zebra/vangogh2photo] --quant [type=bool, True/False] --commitment_cost [type=float, default=2.0] --quantization_layer [type=str, i.e. 123] --decay [type=float, default=0.85]

If the model is freshly loaded from what I have shared, remember to put them into checkpoint_quant/UGATIT_q_selfie2anime_lsgan_4resblock_6dis_1_1_10_10_1000_sn_smoothing_123_2.0_0.85 by default and modify the file checkpoint accordingly. This structure is inherited from the official U-GAT-IT. Please feel free to modify it for convinience.

Usage

├── FQ-GAN
   └── FQ-U-GAT-IT
       ├── dataset
           ├── selfie2anime
           ├── portrait
	   ├── vangogh2photo
	   ├── horse2zebra
           └── cat2dog
       ├── checkpoint_quant
           ├── UGATIT_q_selfie2anime_lsgan_4resblock_6dis_1_1_10_10_1000_sn_smoothing_123_2.0_0.85
	       ├── checkpoint
	       ├── UGATIT.model-480000.data-00000-of-00001
	       ├── UGATIT.model-480000.index
	       ├── UGATIT.model-480000.meta
           ├── UGATIT_q_portrait_lsgan_4resblock_6dis_1_1_10_10_1000_sn_smoothing_123_2.0_0.85
           └── ...

If you choose the halfway pretrained model, contents in checkpoint should be

model_checkpoint_path: "UGATIT.model-480000"
all_model_checkpoint_paths: "UGATIT.model-480000"

FQ-StyleGAN

This experiment is based on the official codebase StyleGAN2. The original Flicker-Faces dataset includes multi-resolution data. You will need python 3.6.x, tensorflow-gpu 1.14.0, numpy

Prepare datasets

To obtain the FFHQ dataset, please refer to FFHQ repository and download the tfrecords dataset FFHQ-tfrecords into datasets/ffhq.

Training

python run_training.py --num-gpus=8 --data-dir=datasets --config=config-e --dataset=ffhq --mirror-augment=true --total-kimg 25000 --gamma=100 --D_type=1 --discrete_layer [type=string, default=45] --commitment_cost [type=float, default=0.25] --decay [type=float, default=0.8]
Model 32×32 64×64 128×128 1024×1024
StyleGAN 3.28 4.82 6.33 5.24
FQ-StyleGAN 3.01 4.36 5.98 4.89

Acknowledgements

We thank official open-source implementations of BigGAN, StyleGAN, StyleGAN2 and U-GAT-IT.