Skip to content

Latest commit

 

History

History
44 lines (36 loc) · 1.08 KB

README.md

File metadata and controls

44 lines (36 loc) · 1.08 KB

MERIT

A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning.

Dependencies

  • Python (>=3.6)
  • PyTorch (>=1.7.1)
  • NumPy (>=1.19.2)
  • Scikit-Learn (>=0.24.1)
  • Scipy (>=1.6.1)
  • Networkx (>=2.5)

To install all dependencies:

pip install -r requirements.txt

Usage

Here we provide the implementation of MERIT along with Cora and Citeseer dataset.

  • To train and evaluate on Cora:
python run_cora.py
  • To train and evaluate on Citeseer:
python run_citeseer.py

Citation

If you use our code in your research, please cite the following article:

@inproceedings{Jin2021MultiScaleCS,
  title={Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning},
  author={Ming Jin and Yizhen Zheng and Yuan-Fang Li and Chen Gong and Chuan Zhou and Shirui Pan},
  booktitle={The 30th International Joint Conference on Artificial Intelligence (IJCAI)},
  year={2021}
}