forked from google/youtube-8m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
220 lines (183 loc) · 7.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains a collection of util functions for training and evaluating."""
import numpy
import tensorflow as tf
from tensorflow import logging
try:
xrange # Python 2
except NameError:
xrange = range # Python 3
def Dequantize(feat_vector, max_quantized_value=2, min_quantized_value=-2):
"""Dequantize the feature from the byte format to the float format.
Args:
feat_vector: the input 1-d vector.
max_quantized_value: the maximum of the quantized value.
min_quantized_value: the minimum of the quantized value.
Returns:
A float vector which has the same shape as feat_vector.
"""
assert max_quantized_value > min_quantized_value
quantized_range = max_quantized_value - min_quantized_value
scalar = quantized_range / 255.0
bias = (quantized_range / 512.0) + min_quantized_value
return feat_vector * scalar + bias
def MakeSummary(name, value):
"""Creates a tf.Summary proto with the given name and value."""
summary = tf.Summary()
val = summary.value.add()
val.tag = str(name)
val.simple_value = float(value)
return summary
def AddGlobalStepSummary(summary_writer,
global_step_val,
global_step_info_dict,
summary_scope="Eval"):
"""Add the global_step summary to the Tensorboard.
Args:
summary_writer: Tensorflow summary_writer.
global_step_val: a int value of the global step.
global_step_info_dict: a dictionary of the evaluation metrics calculated for
a mini-batch.
summary_scope: Train or Eval.
Returns:
A string of this global_step summary
"""
this_hit_at_one = global_step_info_dict["hit_at_one"]
this_perr = global_step_info_dict["perr"]
this_loss = global_step_info_dict["loss"]
examples_per_second = global_step_info_dict.get("examples_per_second", -1)
summary_writer.add_summary(
MakeSummary("GlobalStep/" + summary_scope + "_Hit@1", this_hit_at_one),
global_step_val)
summary_writer.add_summary(
MakeSummary("GlobalStep/" + summary_scope + "_Perr", this_perr),
global_step_val)
summary_writer.add_summary(
MakeSummary("GlobalStep/" + summary_scope + "_Loss", this_loss),
global_step_val)
if examples_per_second != -1:
summary_writer.add_summary(
MakeSummary("GlobalStep/" + summary_scope + "_Example_Second",
examples_per_second), global_step_val)
summary_writer.flush()
info = (
"global_step {0} | Batch Hit@1: {1:.3f} | Batch PERR: {2:.3f} | Batch "
"Loss: {3:.3f} | Examples_per_sec: {4:.3f}").format(
global_step_val, this_hit_at_one, this_perr, this_loss,
examples_per_second)
return info
def AddEpochSummary(summary_writer,
global_step_val,
epoch_info_dict,
summary_scope="Eval"):
"""Add the epoch summary to the Tensorboard.
Args:
summary_writer: Tensorflow summary_writer.
global_step_val: a int value of the global step.
epoch_info_dict: a dictionary of the evaluation metrics calculated for the
whole epoch.
summary_scope: Train or Eval.
Returns:
A string of this global_step summary
"""
epoch_id = epoch_info_dict["epoch_id"]
avg_hit_at_one = epoch_info_dict["avg_hit_at_one"]
avg_perr = epoch_info_dict["avg_perr"]
avg_loss = epoch_info_dict["avg_loss"]
aps = epoch_info_dict["aps"]
gap = epoch_info_dict["gap"]
mean_ap = numpy.mean(aps)
summary_writer.add_summary(
MakeSummary("Epoch/" + summary_scope + "_Avg_Hit@1", avg_hit_at_one),
global_step_val)
summary_writer.add_summary(
MakeSummary("Epoch/" + summary_scope + "_Avg_Perr", avg_perr),
global_step_val)
summary_writer.add_summary(
MakeSummary("Epoch/" + summary_scope + "_Avg_Loss", avg_loss),
global_step_val)
summary_writer.add_summary(
MakeSummary("Epoch/" + summary_scope + "_MAP", mean_ap), global_step_val)
summary_writer.add_summary(
MakeSummary("Epoch/" + summary_scope + "_GAP", gap), global_step_val)
summary_writer.flush()
info = ("epoch/eval number {0} | Avg_Hit@1: {1:.3f} | Avg_PERR: {2:.3f} "
"| MAP: {3:.3f} | GAP: {4:.3f} | Avg_Loss: {5:3f} | num_classes: {6}"
).format(epoch_id, avg_hit_at_one, avg_perr, mean_ap, gap, avg_loss,
len(aps))
return info
def GetListOfFeatureNamesAndSizes(feature_names, feature_sizes):
"""Extract the list of feature names and the dimensionality of each feature
from string of comma separated values.
Args:
feature_names: string containing comma separated list of feature names
feature_sizes: string containing comma separated list of feature sizes
Returns:
List of the feature names and list of the dimensionality of each feature.
Elements in the first/second list are strings/integers.
"""
list_of_feature_names = [
feature_names.strip() for feature_names in feature_names.split(",")
]
list_of_feature_sizes = [
int(feature_sizes) for feature_sizes in feature_sizes.split(",")
]
if len(list_of_feature_names) != len(list_of_feature_sizes):
logging.error("length of the feature names (=" +
str(len(list_of_feature_names)) + ") != length of feature "
"sizes (=" + str(len(list_of_feature_sizes)) + ")")
return list_of_feature_names, list_of_feature_sizes
def clip_gradient_norms(gradients_to_variables, max_norm):
"""Clips the gradients by the given value.
Args:
gradients_to_variables: A list of gradient to variable pairs (tuples).
max_norm: the maximum norm value.
Returns:
A list of clipped gradient to variable pairs.
"""
clipped_grads_and_vars = []
for grad, var in gradients_to_variables:
if grad is not None:
if isinstance(grad, tf.IndexedSlices):
tmp = tf.clip_by_norm(grad.values, max_norm)
grad = tf.IndexedSlices(tmp, grad.indices, grad.dense_shape)
else:
grad = tf.clip_by_norm(grad, max_norm)
clipped_grads_and_vars.append((grad, var))
return clipped_grads_and_vars
def combine_gradients(tower_grads):
"""Calculate the combined gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list is
over individual gradients. The inner list is over the gradient calculation
for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been summed
across all towers.
"""
filtered_grads = [
[x for x in grad_list if x[0] is not None] for grad_list in tower_grads
]
final_grads = []
for i in xrange(len(filtered_grads[0])):
grads = [filtered_grads[t][i] for t in xrange(len(filtered_grads))]
grad = tf.stack([x[0] for x in grads], 0)
grad = tf.reduce_sum(grad, 0)
final_grads.append((
grad,
filtered_grads[0][i][1],
))
return final_grads