-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
313 lines (251 loc) · 9.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from dataset import BilingualDataset, causal_mask
from model import build_transformer
from config import get_config, get_weights_file_path
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
from torch.utils.tensorboard import SummaryWriter
import warnings
from tqdm import tqdm
from pathlib import Path
def greedy_decode(
model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device
):
sos_idx = tokenizer_tgt.token_to_id("[SOS]")
eos_idx = tokenizer_tgt.token_to_id("[EOS]")
# Precompute the encoder output and reuse it for every token generated by the decoder
encoder_output = model.encoder(source, source_mask)
# Initialize the decoder with the SOS token
decoder_input = torch.empty(1, 1).fill_(sos_idx).type_as(source).to(device)
while True:
if decoder_input.size(1) == max_len:
break
# Build mask for the target
decoder_mask = (
causal_mask(decoder_input.size(1)).type_as(source_mask).to(device)
)
# Compute the decoder output
out = model.decoder(encoder_output, source_mask, decoder_input, decoder_mask)
# Get the next token
prob = model.project(out[:, -1])
_, next_token = torch.max(prob, dim=1)
decoder_input = torch.cat(
[
decoder_input,
torch.empty(1, 1).type_as(source).fill_(next_token.item()).to(device),
],
dim=1,
)
if next_token.item() == eos_idx:
break
return decoder_input.squeeze(0)
def run_validation(
model,
validation_ds,
tokenizer_src,
tokenizer_tgt,
max_len,
device,
print_msg,
global_state,
writer,
num_examples=2,
):
model.eval()
count = 0
# Size of the control window
console_width = 80
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch["encoder_input"].to(device)
encoder_mask = batch["encoder_mask"].to(device)
# Make sure the batch size is 1 for validation
assert encoder_input.size(0) == 1
model_out = greedy_decode(
model,
encoder_input,
encoder_mask,
tokenizer_src,
tokenizer_tgt,
max_len,
device,
)
source_text = batch["source_text"][0]
target_text = batch["target_text"][0]
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
# Print to the console
print_msg("-" * console_width)
print_msg(f"Source: {source_text}")
print_msg(f"Expected: {target_text}")
print_msg(f"Predicted: {model_out_text}")
if count == num_examples:
break
def get_all_sentences(ds, lang):
for item in ds:
yield item["translation"][lang]
def get_or_build_tokenizer(config, ds, lang):
# e.g., config['tokenizer_file'] = './tokenizers/tokenizer_{0}.json'
tokenizer_path = Path(config["tokenizer_file"].format(lang))
if not Path.exists(tokenizer_path):
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(
special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2
)
tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_ds(config):
ds_raw = load_dataset(
f"{config['datasource']}",
f"{config['lang_src']}-{config['lang_tgt']}",
split="train",
)
# Build the tokenizers
tokenizer_src = get_or_build_tokenizer(config, ds_raw, config["lang_src"])
tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config["lang_tgt"])
# train test split 90:10
train_ds_size = int(len(ds_raw) * 0.9)
val_ds_size = len(ds_raw) - train_ds_size
train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
train_ds = BilingualDataset(
train_ds_raw,
tokenizer_src,
tokenizer_tgt,
config["lang_src"],
config["lang_tgt"],
config["seq_len"],
)
val_ds = BilingualDataset(
val_ds_raw,
tokenizer_src,
tokenizer_tgt,
config["lang_src"],
config["lang_tgt"],
config["seq_len"],
)
max_len_scr = 0
max_len_tgt = 0
for item in ds_raw:
src_ids = tokenizer_src.encode(item["translation"][config["lang_src"]]).ids
tgt_ids = tokenizer_tgt.encode(item["translation"][config["lang_tgt"]]).ids
max_len_scr = max(max_len_scr, len(src_ids))
max_len_tgt = max(max_len_tgt, len(tgt_ids))
print(f"Max length of the source sentence(s): {max_len_scr}")
print(f"Max length of the target sentence(s): {max_len_tgt}")
train_dataloader = DataLoader(
train_ds, batch_size=config["batch_size"], shuffle=True
)
val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=False)
return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt
def get_model(config, vocab_scr_len, vocab_tgt_len):
model = build_transformer(
vocab_scr_len,
vocab_tgt_len,
config["seq_len"],
config["seq_len"],
config["d_model"],
)
return model
def train_model(config):
# Define the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
# Check whether the weights folder exists
Path(f"{config['datasource']}_{config['model_folder']}").mkdir(
parents=True, exist_ok=True
)
train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
model = get_model(
config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()
).to(device)
# Tensorboard
writer = SummaryWriter(config["experiment_name"])
optimizer = torch.optim.Adam(model.parameters(), lr=config["lr"], eps=1e-9)
initial_epoch = 0
global_step = 0
if config["preload"]:
model_filename = get_weights_file_path(config, config["preload"])
print(f"preloading model from {model_filename}")
state = torch.load(model_filename)
model.load_state_dict(state["model_state_dict"])
initial_epoch = state["epoch"] + 1
optimizer.load_state_dict(state["optimizer_state_dict"])
global_step = state["global_step"]
else:
print("Training from scratch")
loss_fn = nn.CrossEntropyLoss(
ignore_index=tokenizer_src.token_to_id("[PAD]"), label_smoothing=0.1
).to(device)
for epoch in range(initial_epoch, config["num_epochs"]):
torch.cuda.empty_cache()
model.train()
batch_iterator = tqdm(train_dataloader, desc=f"Epoch {epoch:02d}")
for batch in batch_iterator:
encoder_input = batch["encoder_input"].to(device) # (batch_size, seq_len)
decoder_input = batch["decoder_input"].to(device) # (batch_size, seq_len)
encoder_mask = batch["encoder_mask"].to(
device
) # (batch_size, 1, 1, seq_len)
decoder_mask = batch["decoder_mask"].to(
device
) # (batch_size, 1, seq_len, seq_len)
# Forward pass
encoder_output = model.encode(
encoder_input, encoder_mask
) # (batch_size, seq_len, d_model)
decoder_output = model.decode(
encoder_output, encoder_mask, decoder_input, decoder_mask
) # (batch_size, seq_len, d_model)
proj_output = model.project(
decoder_output
) # (batch_size, seq_len, tgt_vocab_size)
label = batch["label"].to(device) # (batch_size, seq_len)
# (batch_size, seq_len, tgt_vocab_size) -> (batch_size * seq_len, tgt_vocab_size)
loss = loss_fn(
proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1)
)
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
# Log the loss
writer.add_scalar("train_loss", loss.item(), global_step)
writer.flush()
# Backward pass
loss.backward()
# Update the weights
optimizer.step()
optimizer.zero_grad(set_to_none=True)
global_step += 1
run_validation(
model,
val_dataloader,
tokenizer_src,
tokenizer_tgt,
config["seq_len"],
device,
lambda msg: batch_iterator.write(msg),
global_step,
writer,
)
# Save the model after each epoch
model_filename = get_weights_file_path(config, f"{epoch:02d}")
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"global_step": global_step,
},
model_filename,
)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
config = get_config()
train_model(config)