-
Notifications
You must be signed in to change notification settings - Fork 4
/
ChaosEmptydS.nb
1538 lines (1512 loc) · 62.4 KB
/
ChaosEmptydS.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 63703, 1528]
NotebookOptionsPosition[ 62247, 1494]
NotebookOutlinePosition[ 62609, 1510]
CellTagsIndexPosition[ 62566, 1507]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<VariationalMethods`\>\"", "]"}]], "Input",
CellChangeTimes->{{3.768622445246044*^9,
3.768622452775896*^9}},ExpressionUUID->"601c80ac-cef2-41be-b3d4-\
ac71b3cec72b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"EulerEquations", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"q", "/",
RowBox[{"r", "[", "t", "]"}]}], "-",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{
RowBox[{"r", "[", "t", "]"}], "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}], ")"}], "-",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "t", "]"}], "^", "2"}], "/",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{
RowBox[{"r", "[", "t", "]"}], "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}], ")"}]}]}], "]"}]}], ",",
RowBox[{"r", "[", "t", "]"}], ",", "t"}], "\[IndentingNewLine]",
"]"}]], "Input",
CellChangeTimes->{{3.768622454167407*^9,
3.768622503129046*^9}},ExpressionUUID->"1b4a9270-ea74-403c-a462-\
8442aacb7c12"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "5"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "7"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}], ")"}]}], "-",
RowBox[{
SuperscriptBox["l", "6"], " ", "q", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}], " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "2"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["l", "4"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox["l", "6"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}]}], ")"}],
"/",
RowBox[{"(",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox[
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"],
SuperscriptBox["l", "2"]], "-",
FractionBox[
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"],
RowBox[{"1", "-",
FractionBox[
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"],
SuperscriptBox["l", "2"]]}]]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}]}]}],
")"}]}], ")"}]}], "\[Equal]", "0"}]], "Output",
CellChangeTimes->{
3.768622511194388*^9},ExpressionUUID->"f761c47c-30bb-49a8-b4bf-\
7f86308e4ed0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"rt", ",", "rt1", ",", "qcrit"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rt", "[",
RowBox[{"l1_", ",", "q1_", ",", "r1_"}], "]"}], ":=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "5"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "7"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
")"}]}], "-",
RowBox[{
SuperscriptBox["l", "6"], " ", "q", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
" ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "2"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["l", "4"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox["l", "6"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}]}],
"\[Equal]", "0"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"l", "\[Rule]", "l1"}], ",",
RowBox[{"q", "\[Rule]", "q1"}]}], "}"}]}], ",",
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "0", "]"}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{"r", "[", "0", "]"}], "\[Equal]", "r1"}]}], "}"}], ",",
RowBox[{"r", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0.01", ",", "20"}], "}"}], ",",
RowBox[{"Method", "\[Rule]", "\"\<BDF\>\""}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"rt1", "[",
RowBox[{"l1_", ",", "q1_", ",", "r1_", ",", "t1_"}], "]"}], ":=",
RowBox[{
RowBox[{"rt", "[",
RowBox[{"l1", ",", "q1", ",", "r1"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"qcrit", "[",
RowBox[{"l_", ",", "rs_"}], "]"}], ":=",
RowBox[{"rs", " ",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{"rs", "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}], "]"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{
RowBox[{"rt1", "[",
RowBox[{"1", ",",
RowBox[{"0.1",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "0.1"}], "]"}]}], ",", "0.1", ",", "i"}],
"]"}], "//", "Re"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.768622522019574*^9, 3.7686228330969467`*^9}, {
3.768622870660836*^9, 3.768622884419304*^9}, {3.768622915655685*^9,
3.7686229177764273`*^9}, {3.768622978894794*^9, 3.768622985320023*^9}, {
3.768623039188308*^9, 3.768623063297497*^9}, {3.768623115482308*^9,
3.768623117585822*^9}, {3.768623183438993*^9, 3.768623184282755*^9}, {
3.768623220711034*^9, 3.768623238829651*^9}, {3.768623307375985*^9,
3.7686233151838913`*^9}, 3.768623356628613*^9, {3.7686234610169573`*^9,
3.768623473232006*^9}, {3.768623658514076*^9,
3.768623676948268*^9}},ExpressionUUID->"ecfd493e-cdca-49a9-84ce-\
bd74e860142b"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.011111111111111112`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxN2HdYk/f6x3H2FkWZgkDCCJsMcVT0+Sh60PbnQD1alVpLcRQ97tHiaFFQ
LFZR66hVFEcdRy1a4YCiUXGAxQUOrDgQUYYQlBVW+JHxfO/8xXV/r+R1vXOT
PDxEELNo4mwjAwODVEMDA/XP1fZnI8viEzn5jwejs3bncDnuSTVR2We5u1bH
quwkOZx/9LbrTX653OST5xLiwrK5NZrH3+By7Yp3/bE7i3sTrz64w11au7/E
NfwCd3TxUKunRx5wTduSlK6tGVzJEfVBMfftynETplaf4Kyfag644f3X3vgj
cA83zEp98A/n+K8Yx7dlu+VL1E9f/IKbnKjIH7H2vHxitjroNaeIi05OCZDL
P0SpD8q4/PbVeV+U3JRvrFEflHOpi8y8BxoUyj3U+e4VHBcc8sTc+KFc+3re
cQ0rN4+UfyzWeZWc66SF3y4teKLzqrgdRY42WZue6bwazvX0aEFyQKnOq+Wm
r4vwiMp4qfPquJSamqkfU17Ltfup597U3iscnFEmb/ZTH9RzksPb5IU33sjz
mtQHH7nnxrWJhwrK5anX1QefuF2fUpYUXXkr/0r99OgGLiWzoS39aIXOa+Sm
dHhdnL/6nc5r5M5HD151NOK9zmviIs33zX7U+V7nNXOTX8Sd3XGqUue1cKuH
OExL+LxK5yk5D//UI2NeVuk8JZf03rpw75xqndfKzX04dUy/t9U6r41bMud5
fOLUGp3XzoV/PzHv+2s1Oq+Di2xsbDoo/KDzOrjNnscD9q3+oPM6uY5RK0oM
7n7QeSoubc6TkDlOtTqvi0uJeXJu8oxauebtZG+AkKSyjnG/1cq170cDvFNe
yLj/sFZepnl/GUDxz6ENY0zr5JGaA0PM/X3ubFH/Ornm6WcNcXpv8KXCmXU6
zwgbF50/sSupTucZwX5vQszTE3U6zwjx3tXJr/Pr5KM1B8aYJjDY2FrBe8aY
dXB1bayBQueZYPJL2xdfOyt0ngleRzRNF4YodJ4JRIbXz70artB5puCMzApu
TVLoPFPsvf1lvFEs75mh3rykLGcp75mhc27ryV4/8Z4ZFFsfTBRt4T1znLt/
a7nrHt4zxy8J0zrN03nPAmmnni8wPcV7FnhWtsw64DzvWcBkrIn9zzm8Z4m8
hDFVA6/yniVUk624kbd4zwoWEfmfXfmb96wwZclv+/56wHtWONA4q0T8mPes
UbZ3yajhz3jPGl+eDhcqSnnPBn4vj1+MeM17Nrhu+3ptZDnv2SBzJHoaveO9
HuibsWZafCXv9cB3zsr0rGres0W0TcOe3A+8Z4v+cudZ2+t4zxaPll8+PLie
93qisenh3pyPvNcTxZ+bOzg0KOSay49VLxivStsyvlEh11x+hvbC0DNLBQua
FLrrUS8sXDDk1H+aFXLt9a0XsmrGZU9pUci1l7NeqBvwVZq/kvfs8LfRgFWV
St6zww+LigJ2tfKeHa65TF0qaeM9Ozisull6pY337CD/PObRsHbe641Niycc
Ot/Oe73hYRUxz7WD93rjzRkMju/gvd5wjBli+qCD93rj9E758X6dvNcHjd9U
vf+2e9Zef/tgWrrZD0c6ea8Piq/e7izt5L0+WLO73NJOxXt9EB5VLICK9+xx
4M/R8jgV79kjLzFy3HYV79kjbuQh6QUV79ljmM/dG8XMs8eXrp9NqWeeA3bf
zAy16uI9B/yZmbRT0MV7DvjvP39eHtDFew7d+6osH9PFew4ocqwYOKOL9xxx
TPljRRzzHLE7YpjDD8xzxNC/kmqSmOcIobwqeTvzHMHNzbXezzwn7J4wbOsx
5jnBc8oy/7PMc0LmhKufMpnnBIsFJ1S5zHOCuejEzDzmOeOe9HevAuY5o31x
2ox7zHPGwU+H7YuZ54yvD1+e/pR5zti+I3LQc+a5oHKhV/ZL5rmgPXPrmzLm
uWBl2B35W+a5QFGyd+p75rmgyMkgo4p5fdFn9qL7Nczri5Rc8aVa5vXF6vE2
3yuY1xdeX+RafWReX9hfVK78xDxXWF/adbWBea6Q3H5V3cg8Vzz1XaJsYp4r
HPov+dDMPFdUhv1U0MI8N9jku21XMs8NG0P3jWplnht6RMZWtTLPDVUxS9a2
Mc8NiV6uxu3M6wf/gtg17czrhw1vI6vbmdcP59asHNvBvH4oyBt/vIN5/eB7
6r6yg3nugMWiEZ3Mc8fTWMukTua5o+jcomudzHOHtMRC2ck8dxxKmeWvYp4H
Ri9zn6JingdOPt69TsU8D9iMMz2iYp4H7MbW5KmY54F1vz4qU8+a2xtTTyTX
WXWqZ+39jicsJyY4dHXPmtulQZ6IyVoQqJ6190+e2DD8/zj1rLl/mu8JL49N
UV28l+QJ0VDnmC7eS/NE2Dc1i5mX7Yn4Gdw65j30RFty3M/Mq/FE7Nxdu5hn
KkBYzemDzHMX4JdJV09QnwADU5szqE+AGWOWZVOfAPLs4XLqEyB35Jyb1CfA
1ZBPd6hPgFcTW+9TnwDLf/v5EfUJMOH8yRLqE0LweEYp9QmxefL5V9QnhPTD
lTfUJ0TfN0kV1CfETLfW99QnxEiVYzX1CfHvxvoa6hOi+atDtdQnhCxkiIL6
hNi1Jb+e+ryQc2XAJ+rzQpbjggb1rLmfHeSF0tR5jdTnhQEz0UR9Xgj+y7aZ
+rzg8WtlM/V5oTz9fgvzsr2QPOuMkvq8kPnDqlbq80KgsayN+ryxIaWmjfq8
8Uvc2Xbq80aG3cYO6vNGzPPlndTnjc3jR6qozxuZl5+oqM8bxT8rVdTnjXXv
tLO2zxsHvDpU1OeNQ6dU5Jn64M8KFXnuPkgp7iBvkA9+2tdKXpQPxrq2kDff
Bz0SW/T6fCAo79Dr84HrRYsu6vPByVTXLurzwdpN/buozweDayZ0UZ8vJvku
6KI+X8Q+SCRvkC+Oxe8nL8oX6T4XyJvvi+TIQvKSfNHnw1vy0nyx8FGnXp8v
tnxh3f3fY72uzxeVXztpZm2fLy62CDWztk+E5s5gzaztE8EieZBm1vaJcKti
BHlRIsScG0vefBF2pE4jL0mEf0+fQ16aCGcKlpGXLYLrhQS9PhGOmqbq9Ylw
NzdNr88Px96d0evzg3zfZb0+P4S33NXr80Oe2yu9Pj9sC/io1+eH2Z+ZGFKf
Hw5GOxtSnx/8fw02pD4/JBVFGFKfH+40TDekPn+cvriUPHd/WH25kbxB/ijI
OkBelD/ObLlC3nx/pNi/Jy/JHw9sXYyozx+z3cYbUZ8/eozcYER9/ii6eMmI
+vzRNabNiPoCMLh3uDH1BWBBcoIx9QWg06TQmPoCYNvlakJ9AcjvWmlCfd1z
QrEJ9QUgdsgAU+oLwJiwI6bUFwCBpJcZ9QUg3WWDGfUFAuVtZtQXiP/uWWJO
fYFYmF1rTn2BEAjnWlBfIObLn1lQXyCCh4+1pL5AmNjmWVJfIBa7hFpRXyB8
H+61or5A9E1tsKK+IGxTRlpTX/cs/M2a+oIwuvqBNfUFIbJKYU19QVhxzNaG
+oIwb4e/DfUFYTgG2VBfEO6VhNtQXxCexA60ob4gPNvpS55pMO4ctyDPvXue
VarXF4xI6WG9vmAsv/aNXl8wdq4XWlNfMIIt3lpRXzA6BqdbUV8wPldO0ttf
MCLkSkvqC0b26B2W1BeC5C8C6PfhHoJ9o25bUF8Inlh/Z0F9IbgVb633+w2B
2+iT5tQXgvBHw8ypr/vx7YVm1BcCs7hoM+oLQe6lJlPqC8Hxyu2m1BeKbbcC
TakvFDnSQhPqC8WdguUm1BeKH3/31Pt8hMJw531j6gvF+eMb6POWFopWUTh9
3rJD0SBq1fv8hiIjUf/zG4rSio2aWfN9jZEYBmtnaGbN9zU9xch/EaaZNd/X
uImRIrbTzAGa73/EqIqt0lxPNN//hImxMPayIfNGiBH+fLsh88aLMchspSHz
orsfv1V7PdN488TIfLievBVitFv+Tt56MRwzzpK3TYytL7PI2y/G4fZs8k6I
MXjlHfIyxZBnlZJ3XYyvNneQd1+MCid7er2lYjh960uvt1KMEf+TGDGvSYyP
Kwbo7U8C8aFQvf1JcCShn97+JHicZai3PwmCbrzU258EL0//T29/EpRv3qa3
PwlqPb/T258E01f/S29/EojW+untT4Lq1bZ6+5PgzOMmA9qfBBMFTwxofxL0
mX/AgPYnQUchDGh/EgjHrdH8/dfuT4Iw5/6a+xft/iRoib6kuT/T7k8Co33+
mvs37f4kmM/t0dz/afcnwZzNLkrmGUlRNe1KM/N6ShHVO7mJeW5SmPznu0bm
+UmRUxTRwLwwKdYXqD4yb4QU+0dtr2feeCmOLmyrY160FMp0rpZ586R4tTGu
hnkrpMgQbqpi3nop6j+kv2feNiniy29WMG+/FMfS2sqZd0KKObNHvGFephTL
h+99TfuTQpRY95L2J8XjnM9e0P6k2PjH2ue0PykmuuQ8o/1JIe2reEr7k6H+
muAJ7U8G596THtH+ZKgsTCyi/ckwamz2A/XcotmfDKdm1t2j/cng6iC6S/uT
wfHYN3/T/mQ47X6ggPYnw8RVXD7zVsgQIWi/RfuTIapdeIv2J0PL1wk3aX8y
NPW8epP2J4Nx/9abzMuUYXCBE3nXZYg+1kXefRmCzjrn0/5kuN3SkE/7k6G3
dOod5jXJsHyhdaF6/n9+ydpo
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 19.960000000000004`}, {-1.0000000455889224`,
0.09995593797020684}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.7686230760394907`*^9, 3.7686231283452587`*^9, {3.768623213627204*^9,
3.768623252373816*^9}, 3.768623352222588*^9, 3.768623465082185*^9, {
3.768623654494988*^9,
3.768623687457809*^9}},ExpressionUUID->"520430d1-882d-44ae-abf4-\
8d464177b5db"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{" ",
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"rt", ",", "rt1", ",", "qcrit"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rt", "[",
RowBox[{"l1_", ",", "q1_", ",", "r1_"}], "]"}], ":=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "5"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "7"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
")"}]}], "-",
RowBox[{
SuperscriptBox["l", "6"], " ", "q", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
" ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "2"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}],
"+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["l", "4"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox["l", "6"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}]}],
"\[Equal]", "0"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"l", "\[Rule]", "l1"}], ",",
RowBox[{"q", "\[Rule]", "q1"}]}], "}"}]}], ",",
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "0", "]"}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{"r", "[", "0", "]"}], "\[Equal]", "r1"}]}], "}"}], ",",
RowBox[{"r", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0.01", ",", "20"}], "}"}], ",",
RowBox[{"Method", "\[Rule]", "\"\<BDF\>\""}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"rt1", "[",
RowBox[{"l1_", ",", "q1_", ",", "r1_", ",", "t1_"}], "]"}], ":=",
RowBox[{
RowBox[{"rt", "[",
RowBox[{"l1", ",", "q1", ",", "r1"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"qcrit", "[",
RowBox[{"l_", ",", "rs_"}], "]"}], ":=",
RowBox[{"rs", " ",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{"rs", "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}], "]"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{
RowBox[{"rt1", "[",
RowBox[{"1", ",",
RowBox[{"3",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "0.1"}], "]"}]}], ",", "0.1", ",", "i"}],
"]"}], "//", "Re"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]}]], "Input",
CellChangeTimes->{{3.768623269305716*^9,
3.768623278892631*^9}},ExpressionUUID->"f276178a-5f23-4950-ad22-\
1ff06fcc3e09"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.011111111111111112`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxN2HdcFNcaBmDYYsECSJe2lKUusCXY0MwrYgsaJXKDRmIssYVIohE1gJJg
NOpVUSPRIBdFUdHYYgvWtWCJDdDYQFGKFIFFlA67e2F255z5i993ZB/e/c6Z
b8Zxm/3dZ3MFJiYmW0xNTLp/JlgfG1sS/wszxuq8TBpyjjnnsqYmIucY82fE
4KJPh55gfKNTrjX5XGQsZi0yNSvcxCSyv5/LePqmV0gke9Wl8d0Ld5gPW0Iz
Q/PPqLO+H2H2dF8+U5T1/eivh11VP9vXvfCI+XvpJFnv5bfUfZ6yC8ygzZl+
p36/r/7YrHuhkFl2Zfv9cf8UqBd3f/z7l0yZQ2jliJP/qj/L6Q70mgmMzf6Q
vPqpujaie6GEOf/Va82tYYXqtTXdC2XMlqLEFK8nL9Su3fFd3jD3Y8vNPSJf
qQ3fp4JJSdebPn7+2uhVMdu2ah6K20uMXjWzy9c2Nd6szOjVMOXFg0M/6lNu
9OqYl0lFv03rLDd6GgYLRzgoi9+oDf15x0Q+FA1y+6tC3ezTvfCOKZ56Ykhm
XKX6elP3QgPzRaxD9seyKvWWa90L75nYsAPlvz2uUn/Z/fHoD4zzz/sDRy+p
NnqNzPSsGwO1grdGr5GZu+HAioXr3hq9JuZk2eBDQ4Q1Rq+ZSZeJl9gtrTF6
LUzPnf2kx4tqjF4r8yBkpDxrWK3Ra2UqenSIUrfWGr02pjBm58cOJbVGr51R
K6ZZX/WtM3odzKd2K7TW39YZvU4m3b18VWp2ndHrZDp2uHhdeFVn9LRMxfX4
9GZLjdHTMXeddj48wWiMnp6Jnm8/MnyhRs0eJ2sTzDs7WCVJ0agN59EEgtgE
p9V/adQl7Pkywe+7fmq8kq9Rj2UXTGEVszJVUqdRsx8/Zoqjsh1OZT3qjZ4A
sU+fjg9zqTd6AuSusSqOV9UbPQE8TmmbcsbUq8exC0LUTyqZJZtab/SEqIr+
uU03n/NEiJmzuObzZZwnwoWZJ3tGreY8EWZduyl2TeE8MU6eVN68+wfnifEy
7ZPNy/dxXg+cdLMOG3aE83pAZBO5z/c05/VA4J7medMucF5P6DqaEoqucl5P
hN0d63/lFuf1wsTzjUNt73NeLzjvOdKvpoDzemH7s+C8T55wXm+c2Cr9FYWc
1xuVo6w/evKS88wwOMf3jXUJ55mh/fLoh6JyzjPD+Lc5i45WcF4fOPw1Ic6m
mvP6IHNHrWhUDef1xd6fsg6E1HFeXxw0s5ohque8vtAHvj+d+Y7z+uHRZ+Lb
du85rx/GhwyJ+OYD5/XH+MBFx9MbOa8/lv1xtP6vJs7rjzbh5cdHmjnPHEKX
hNKUFs4zR37N19O+bK1Xs+PHzALJTR5j7drq1ez4GWEBhbXzr+qu2jCPLLC4
duatqPZ643yzwK6OCxtLumrDOLOAbd7GwTM6OM8S94983jOvg/Ms0bE81zG4
k/Ms4eZ0KX5rJ+dZYlHBOos3nZxniWlWm07KtZw3ALOTStzjtJw3AGWHVlic
0nLeAKSfi3Ko0XLeACyX1dx31nHeACiaSo+F6zjPCuN9OpVxXbVh/lqhem7i
9TQd51lhiXTW1Ys6zrPCzFvDVhcRzwq3f66LaiGeNSr9Hq+10HOeNVZJJZO9
9ZxnDdXk3zUhes6zRs3x0N8/1XOeNS6IGpd/pec8G0Q9L7wUSzwbPI5w2ZJI
PBvcW7bUcj3xbPA2Zcrs7cSzQf7aPbsziGeLX3IXlx0kni2+Gnp99Ani2WK/
06miv4lni0iTvucuE88WrUyrJpd4dshS5W26Qzw72P4yYV8e8ezg8n74iH+J
Z4cpkYL5z4hnh6/29PN/QTx77L7+8rdXxLPHhqjwQ6XEs8fFvad+eEM8ezQv
+bK9knj2CCkOG/WWeA745OHFyFriOWDYyBsqDfEcoJ0Y8KaeeA6oaIhf1EA8
BxTNnpD/nngDUReyxLKReANxJ0mraiLeQHQmbRvWTLyB+OZFlE8L8QZiwMGj
+hbiOaI4wvxaK/EcUdr4YXEb8RyRsW2LZTvxHJHbfDaznXiOSPupwaODeE6Q
pwSkdRDPCe+K5eJO4jmhPvPe3E7iOSHEc9alTuI5wdnqZl8t8Zxx5n58pJZ4
zniSMDtVSzxnPEgcnq8lnjPGHlwg1hHPGbdHJwbriOeCXx/YztIRzwUNO1au
0xHPBftrGv/UEc8F7wYJ71HPBfrpgdXUc8W28hNCPfFc4Vma4Kgnnit6Py2Q
64nniinnVGF64rki8Zn2P901+3gjlmDDYJd53bXheUcCxz4blnbX7OPSEAk+
F639ubs2PD9JYBs8b1N3zT4/xUgwunX8TuKtkeC7G857iZchwel7jYeJlyNB
76nNJ4lX0FWbh50nXo0EJ5ZXXKH53DBcU3qT5nPDZ6bh92g+N1yXKQtoPjcU
jz/wmOZzQ5bD4ec0nxtWPhv1kuZzw2bBmtc0nxsWLl1VRvO5wdRGVUHzucFq
bWoVzeeO3WsPvKX53HE+akUtzeeOlu0eGprPHX9XXKin+dwhPh3WQPO546jw
8Huazx0bz7Z8oPncMU3o2UTzuSN+UHAzzeeOsxd9W2g+D5hPE7fSfB54r/yH
rdnn2SEe6FuZ0EbzeWDRKpt2ms8DI8/tb6f5PLC5flAHzecByda7HcTL8YB4
78xOms8Dk5vrO2k+D5QvWqKl+TwxRF6qpfk84Vo1XEfzeWKzfo2O5vNExpHb
OprPE6eWW+lpPk+ce/utnubzxCz1Iz3N54kCgVvX/37eGfN5wl46la0N+Tzx
44yNbG3IJ8U1/0tsbcgnxdqZdWxtyCdFaqeTKfEipF3Pc5+YEi9Giur1S02J
t0aKJXP/Z0q8DCnGS2+aEi9HCr3wHfUKpIgNdRTQfFK8OzpGQPN5IX3JYgHN
5wX3pF0Cms8LK57kCmg+L0zaUEe9GC8s/ttGSPN5ISB5hJDm88LpAXOFNJ8X
1m7dKKT5vJDvcVpI83nhUWUR9cTeCG8Qimg+bzwYLRPRfN4Y9DxSRPN5Q7xh
pYjm80Zt0n4RzeeNSZ43qZfhjT6Dn1EvxxvBtU+pV+CNIfNyqVfjjSbJbuqJ
fVAYHcPL54MeGwJ4+Xww49Rb+n0jfHC8+iD9vjE+uH1sIa9/PkidqeL1zweh
WT14/fPB5IJSuh8FPjgVncvbXx/0Kc7i7a8vkpHM219fLJwxg7e/vnDcOYy3
v77444Edb3994bC8mXf+fLHz2BPe+evyJubwzp8vctvTeOfPF9Owip7nGl8U
/28W9cR+2JMeRj0XP9iUeVFviB8WjuvFuz78YF5VRa+3GD9U+f1Dr7c1fghW
HaLXW4YfthWso9dbjl/X8/t83vXrB+/EMbzrt+vzmzx5168/GoIFvOvXHxP9
1XQeDPFH0e4f9XS++GOU5Ud6Ol/8cU6t0dH54o/CokM6Ol/8sXfVXDqvcvzx
RaYbnVcF/lhnU6yl888fb39K480/GQIPfc6bfzI4pwzQ0nwyYOgDOk8jZMg7
sZ7O0xgZik1Gd9J8Mvw32KST5pNBNv0Cbz7LkLRyWQfNJ8PTA4oOmk+G8Fe1
dN6LA1Dun91O8wXg7qY57TRfAOJNXdtpvgC8WVnYRvMF4MfsHW00XwAa+i5s
o/kCYH8qpI3mC8DHJub0flQQAI+Dla00XwC2jVG30nyBWPTvEd79LRCzUnJ4
97dAfBv/oJXmC8R2wXPqxQRib/QL6q0JxIyXLdTLCMQRKwUvXyDqfv2Bly8Q
b5IP0+9bE4j9j5/T7ysOQpKfOa9/QYgbOY7XvyCM2JnM618QsmIu8u6/QXiQ
2ci7/wYh4bQf7/4bhAm7ZvD2Nwjis1t4+xuEf89e5e1vELZtfM/W7PsagRy9
Jnqy54V9X2Mux0euU9mafV/jJMd6aQpb+7Hvf+QIWXCHrdn3P8FyJKjNtMQL
lePypcla4k2SQ5CWriVetByWAzVa4i2QIzcxTEe8ODmi5mToiJcsR/WmNh3x
UuTwjpmiJ166HFK7w3riZcvxenqnnnhn5HB8YJgHhvdTcvzwahxbs16eHNc3
fsPWrPeiK0/ABrZmvSo5tg/PZmvD+y45hoffoJ5AAd+2EuqZK/BnlY56Tgos
OW14PjD0T4H+b0JMiResQGxFtCnxQhWYqk0yJd4kBTTD95sSL1oBn8R71Fug
QGR4E/XiFPi22kVAvGQF/ERjBcRLUaBE9Y2AeOkKFA/cICBetgLf2f8pIN4Z
BQp+zKfeNQUkZa3Uy1Mgf71ESPunwOT00ULaPwVePZ8npP1ToDJ2tZD2TwlJ
dZqQ9k+J4/5HqeekxMQ556nno8S89mvUC1YCm25RL1QJu+Lb1JukxNh/blEv
WomYoTeot0CJJEeeF6eEaIqaeslKeBy7RL0UJfKeX6JeuhJV/7lCvWwlpi+8
Qb0zSoTb3qfeNSUC+j+lXp4S9ftLef1Twv6Ohtc/JQYK2nn9U8KkTSCi/VMh
4WovEe2fCumXzUS0fyrIdhn+3dA/FfxGGj7fwvZPhYkFLbz+qZCUVs3rnwpf
WD7j9U+F7FvXef1ToXiOYb9YL67r7+9M5fVPBV+nlbz+qdCw+2te/1QQ357A
658K290HUe+MCrGubrz+qbCyZ39e/1QY29hJz/MLFebfqqPnuUoFc/fXAuI1
qbA6+hFb/x/YcNLv
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 19.960000000000004`}, {-1.0000000180475037`,
0.098558734340327}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.7686232895721416`*^9},ExpressionUUID->"6931d73b-d9f8-4585-b034-\
672d920617f2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"rt", ",", "rt1", ",", "qcrit"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rt", "[",
RowBox[{"l1_", ",", "q1_", ",", "r1_"}], "]"}], ":=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "5"]}], "-",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "7"], "+",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
")"}]}], "-",
RowBox[{
SuperscriptBox["l", "6"], " ", "q", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
" ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "2"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["l", "4"], " ", "q", " ",
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]}],
RowBox[{
SuperscriptBox["l", "4"], "-",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}]}]]]}], "+",
RowBox[{
SuperscriptBox["l", "6"], " ",
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",