-
Notifications
You must be signed in to change notification settings - Fork 4
/
ChaosEmptyAdSpoincare3.nb
3047 lines (2989 loc) · 147 KB
/
ChaosEmptyAdSpoincare3.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 150018, 3037]
NotebookOptionsPosition[ 147631, 2990]
NotebookOutlinePosition[ 147993, 3006]
CellTagsIndexPosition[ 147950, 3003]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<VariationalMethods`\>\"", "]"}]], "Input",Expressi\
onUUID->"f7fd98cb-7ff4-4a78-a9f0-15dd709bf5f8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"EulerEquations", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"a", "/",
RowBox[{"y", "[", "t", "]"}]}], ")"}],
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "^", "2"}]}], "]"}]}], "-", " ",
RowBox[{"q", " ",
RowBox[{"y", "[", "t", "]"}]}]}], ",",
RowBox[{"y", "[", "t", "]"}], ",", "t"}], "]"}]], "Input",
CellChangeTimes->{{3.7682244869580107`*^9, 3.768224494517551*^9}, {
3.76829531854256*^9,
3.768295321772847*^9}},ExpressionUUID->"2dc31ea3-5c28-4d3c-9b89-\
4889b6f51bac"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"a", "+",
RowBox[{"q", " ",
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}], "-",
RowBox[{
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"q", " ",
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}]}], ")"}]}],
"-",
RowBox[{"a", " ",
RowBox[{"y", "[", "t", "]"}], " ",
RowBox[{
SuperscriptBox["y", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}],
RowBox[{
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]}]]}], "\[Equal]", "0"}]], "Output",
CellChangeTimes->{{3.768295316127104*^9,
3.7682953223929453`*^9}},ExpressionUUID->"25dad3f3-a997-4cde-a3bd-\
8cc8a88cc616"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"y1", ",", "y2", ",", "dy", ",", "py", ",", "qcrit"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y1", "[",
RowBox[{"a1_", ",", "ys_", ",", "q1_"}], "]"}], ":=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"a", "+",
RowBox[{"q", " ",
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}], "-",
RowBox[{
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"q", " ",
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}]}],
")"}]}], "-",
RowBox[{"a", " ",
RowBox[{"y", "[", "t", "]"}], " ",
RowBox[{
SuperscriptBox["y", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}],
RowBox[{
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]}]]}], "\[Equal]", "0"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"a", "\[Rule]", "a1"}], ",",
RowBox[{"q", "\[Rule]", "q1"}]}], "}"}]}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "ys"}], ",",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}],
",",
RowBox[{"y", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "10"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_", ",", "q_"}], "]"}], ":=",
RowBox[{
RowBox[{"y1", "[",
RowBox[{"a", ",", "ys", ",", "q"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"qcrit", "[",
RowBox[{"a_", ",", "ys_"}], "]"}], ":=",
RowBox[{"a", "/",
RowBox[{"ys", "^", "2"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_", ",", "q_"}], "]"}], ":=",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"y1", "[",
RowBox[{"a", ",", "ys", ",", "q"}], "]"}], ",", "t"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"py", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_", ",", "q_"}], "]"}], ":=",
RowBox[{
RowBox[{"a", "/",
RowBox[{"y2", "[",
RowBox[{"t1", ",", "a", ",", "ys", ",", "q"}], "]"}]}], "*",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1", ",", "a", ",", "ys", ",", "q"}], "]"}], "/",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1", ",", "a", ",", "ys", ",", "q"}], "]"}], "^", "2"}]}],
"]"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "1"}], "]"}], "//", "N"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "1", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "1"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "1", ",",
RowBox[{"0.82",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "1"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "1", ",",
RowBox[{"1.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "1"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.767847518498331*^9, 3.767847799491907*^9}, {
3.76784783084241*^9, 3.7678478663868*^9}, {3.767847917896153*^9,
3.767848056955784*^9}, {3.767848163359462*^9, 3.767848253116835*^9}, {
3.7678482865112467`*^9, 3.7678483016519012`*^9}, {3.768295354954091*^9,
3.768295402125799*^9}, {3.7682954729495087`*^9, 3.76829556390309*^9}, {
3.768296106155704*^9, 3.768296179145822*^9}, {3.768296307515894*^9,
3.768296317371832*^9}, {3.768296382489709*^9, 3.768296401367672*^9}, {
3.7682964816138678`*^9, 3.768296499477314*^9}, {3.768296676114233*^9,
3.768296709262621*^9}, {3.7682967641869392`*^9, 3.768296765941897*^9}, {
3.768296803020936*^9,
3.768296831614653*^9}},ExpressionUUID->"fc76a5cb-5a91-4761-a9bf-\
e46242034158"],
Cell[CellGroupData[{
Cell[BoxData["1.`"], "Print",
CellChangeTimes->{3.7682967099481287`*^9, 3.768296766709594*^9,
3.768296832566259*^9},ExpressionUUID->"9dec21b6-642e-411a-a442-\
6393fde90f71"],
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.01388888888888889],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxV1HlQFHcWB/CBgQGGAea+j55pNApGBUSjUX7PlYAxHIqygoqweCGCOxmv
NR4gXmjY4BE8EAU1iGIQl0O8xxMlalREEQHFY4djQG4FBYwujz/2VXV1dfV7
n/etX3W1NvKfQQssGQxGyefry/3/q4Wk7v9SJ0jUQfu0K6yB53NkDR1peCtv
IaM8vtR1EjBxe27g+IH3JaRyz2Z6a3QL6XceEM17d2tZ5kD/I3J+/rACvbmF
LFr4pZ6Qa17JrNrxrThfQRKyc9Ju72sl9+5+qSoy8nzr+dl9rejVkANpRv1/
Y9qw/yUJY+aX5rxuQ/81kWquATOyHeffkMDwhTfG17bjPhPhTAvIuGDoQK+O
bJ6b6NHI7ESvnoS9sp7uk9qJnpmsDnf/1t/zHXqNxLOmb3Ry2Tv03pINfe/5
mavek4Fz88sYscJN3YX9LSS2olJTc6sL/VbinqlzW7C8G+fbSPvOu/PX0h9w
XzsJKrYPqyv7gF4HoX75qfPHxI/odZAm35wjtRN60Osk3xyMeK7s7EHvHTlb
+/JwfU4veu9JWv1689CoPvS6SLZ5xLRL9Cf0uogPwzp9S80n9LrJwq0ZRs9A
BvR7H0hFsFacfYoB/d5H0pU0LCXF0QL6vR7iebx109ulFtDv9RCzla/09/sW
0O/1krHzqqcXj7REr490Fh/t8txlid4n0hS8SN/RbokeA2y991/8GMzEfgak
f8Vc5HOWiT4DZPn85fflVvC/cQ8LcG2v/vuudVa4zwLSGuxM22us0LOE8NWx
QYWTrNGzBMnvo9SOWdboWUKHy0jRLjYL8zCBNtv5eC1loccEqqz1o1MpCz0r
OH9des5qtA16ViC99oebPNUGPStYln3bN6DPBj1rSO+LYqVH2qJnDUWz7hxi
37JFjwWuVwrmJ7vaoccCway1d1x32KHHgoZw/bznHXbo2YCmfG55ZigbPRtY
XxzTEH+ZjZ4tTJ8sX7mUtkfPFvbJ3aJiE+3RswX/fyRfXdtkj54d9IYZfj0Q
xEHPDoKtbZglRRz02BAVO8XLSuWAHhse/1a2yS/BAT02cO3KtIdrHdCzh5KG
wTEW/o7o2UOYbfTNmDxH9DjQ4DRm/yuJE3ocCNynnxO5zgk9DviH7Ugyv3JC
zwH+dm9zuZczFz0HOBUSMYQzk4ueI8T6nEmo3sZFzxGYJw/l513koucIk18M
//nnZi56TvCd1LtqkY6HnhMErApe6xvMQ48Lqh0+k1wSefh9ccE4zMuee4GH
Phd4IZtOdzUNzHPBPiuU94bi4z4uNM1/5FA6nY8eDyq/Ldl6bQsfPR7MCy+I
LDzHR48HM97v3JjdyEePB8c23HtwWCNAjweL3V3cDwQJ0OODXJCzY89mAXp8
6LDa/mT3WQF6fFimFzTvMgvQ48OH/2QV71YL0ePDHkPGlD3ThOgJYMKN7xan
bhLi+QggvdfIyygSoieA1kT2qKwGIXoCkHjUXclVidATQOzh8hPnporQE0J+
pu3LGxtF6AnhWM200IdnROgJITtoKOtFvQg9IbibUyublGL0hBBlIn/2BorR
E0HcgTGPHDeK0RPBsyCqhjojRk8EE325Zo96MXoiuK5PbvBVStATQVfLrsdz
AiXoiWHjvFVHDQkS9MRwJPHdD9sKJeiJYfht51sZdRL0xDB2kd7hnEKKnhju
zz4kKQ2QoicBbcaV5+YNUvQkcCnMYw6rUIqeBHrcUrdp66ToScC7tCpigkKG
ngSuPdBWhQbI0JPCzCH3OldukKEnhT8ECcd/LZChJwX+OmVzXq0Mvc9u5okb
D+Vy9KTQmLLAudVfjp4MXC8Y7Xgb5OjJgJMzU+9WIEdPBnmS7ulBtXL0ZEC9
2Ht6mVyBngyW5AYkpPgr0JNDW2v4zaJ4BXpysIz3WPksX4GeHMK5M3b2mhTo
ycH/QoxAK1eiJwduu2+3t78SPQV4nLxPFscr0VOAOMv+zb/zlegpYOsazes8
kxI9BYTmTh73VKZCTwEHpz439fqp0FNCSNxUEx2vQk8JMeyvRk/JV6GnBOEY
RpnepEJPCaGDki/tlanRU0JL9/6Wy35q9FQwsbQn2hSnRk8FvsITLo75avRU
cH/Q0a9Hm9ToqcCLZhjmyjToqUC693XnFj8NemrgseKKcuM06KmBvUJU+DRP
g54awu90N1qYNOipYdyd4lMpHAo9NQQoMhJcBlPoaaDX2vdHI6HQ08APjz+t
nhFKoaeBiG5hWr2BQk8DfYzyJ+uTBjwNVHDThgqPDXgUNBcad58wYr+MAs3l
I0JSQeH/hoIC7smTZW0470fBx7hJIdEcLe6j4LShUsYYrO334inwMZuaU4gW
91OwW/+8wjVU2+/lU1B9x6v8qkGLeT7vLU6snZmEnokCqg7YbzPRY2ihMbjZ
a5MRPZkWMtnUZnkFeh5aePZTZNXpNvT8tBCx5HtvX44O82mh4UX0xepBOsyn
hTN2Ed7LiQ7zaeGS581KdqgO82lhffrYhMMGHeb77E0JH/NNEnomLSxhV374
MxM9hg5UC2bcXWBET6YD76UrTvY8Rc9DBxd+a9i7uw09Px3UPIjc6cKhMZ8O
0pjJe68OojGfDloP6rJDCI35dFDv+eh2cwiN+XQQvC6kfYuBxnw6eDIkZqg6
CT2TDp49KYkuzESPQcOj3uFFfkb0ZDRcejfL8c1TGr8fGlyqHPVr2tDzo+H2
vxyq+BxnzEdDxURFUPYgZ8xHQ9a0vocTiTPmo2HV7PWzK0Kc+718GgKT5r/V
G5wxHw25a9dst01Cz0TD8a+TR2RkosdwhnGs2OoxRmf4C9Lr/gk=
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[1, 0, 0], PointSize[0.01388888888888889], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJxV1HlQVHcSB/AZGEZmGGHu+55BqU28QAGV4dfoGsQFBVS8iAcqBhAZFChL
NCKC4q1oLA5FcVQ80EXBBY14hhCyaAB1AFfwCOcOCopyCMhiaP7Yrnr16lev
+9PfevXqaUKiAtdaUSiUsqHr6/3/q4NkpH+ti8TFtyLGjzFyvklumhvbaY4d
ZLLL13pI/I8sa0gLHHleRqZZDXp/c6SDDDsV5L5lx9tTL0f6n5Dxb4sN1zze
k3WhX8tM5L5hKbSc9zhfS2qvWl2crvhAHpV/rRdkWkxElVXWB/RekVd6X1ep
Uyf2vybsn5yal93qRP9P8uLN9Qt35n/E+QbS7BawJajzI+5rImnLHhyfn/YJ
vRbydN5AImVGF3qtpC5uo+luexd6FtL3a+Yp2+xu9NrIzvqwyrULe9B7Rxon
0J5Hs3rJyHs74Xwh8llJL/Z3EOddecGzdnxG/z1xVU18nuDZh/MfCK/j3/3z
BvpwXyfx3CWKTSzuR+8jeTpfv+ndjwPofSQs99gbUV5f0PtEHtzm3G6iDaLX
RSKWC6XuZYPodZMTs1s7HL0pMOz1kP5Xc4/SL1Fg2Oshzl6TyyaPpsKw10sS
1G7JF4xUGPY+k7tFzXlLn1Jh2OsjBS4VdrPcrdDrJ66P5A4hJ6zQ6ydnAjc9
y6VYozdARHe86Zq11uh9IVdffnl4q8wavUFyoTXtRNx4GnoUENYkbA04SsN+
Cmze/41pdg8NfQrEdr9MW/K9Dfw17kKF+VNSxyQ+sMF9VLjgOXbuvbF09Kzg
1EP637kH6OgNnROCw+I+0NGzgiDPSd6WRaMwjzXkjeveE1U8Cj1rKM77Y4Cq
s0WPBgdPjtmXnWKLHg2offkufu9s0aPByqIaB9oCBno2cMu4yrfkJgM9G2D+
K9zpsIqJHh2+bTjauTqZiR4dTuauZIGFiR4dqKsf1+sC7NAbBfLlTW/sC+3Q
GwV7d1dnUhQs9GzBf0np8Z5EFnq2ELGgMayrhYWeLSh68vJ7545GjwG1p8ZL
rW6MRo8BizzHznGQ2aPHBKWpqEu9wx49JlAV52pcm+3RY4I5peuKv58DenbQ
/ihm6oZ8B/TsIMrJKbuUxUaPBXey6stqCRs9FuRO8P/x7UY2eiwYrMjOsTrP
Rm80SOu2T5TUstEbDUc2KWwmsTjo2UP2PQpvDuGgZw9Vzytmr9nIQc8exreE
HN9+joOeA6x4ndWWWcNBzwEOzvzecNOOix4bylOC46s9ufh9sWGVeWJGVzQX
fTa0FLgcFJ7j4jwbjt2O9XWr4eI+NlQxCn5fbMdDjwP0P+cMbvHkoceB51fG
vD4ZzUOPAz81FK+7f5aHHgccjfR9jdU89DgwryZyJtOOjx4XVvRW7JngyUeP
C/abYxctjOajx4X4Z9Tz8Wf56HEhMi826kw1Hz0uDJwZc7WMKUCPB0/23Qp+
bxDg++FBR7IqThItQG8o9y+7P3mdFaDHgzBxpDm8WoAeD9arUvjHmEL0+FBq
KLlcbBCixwfu/llpzUYhenx493iFmXNWiB4fygozQjyqhejxwbXq4tR1TBF6
AgiXRCxONYjQE8C20w0/FxtF6AngXIfXqlaTCD0BtDGrZgmqRegJIM3NZp0X
U4yeEOJiIh5EGsToCWFbeP7CDKMYPSHon+YoS01i9IRgdhon+2gWoycE57Ve
PhqmBD0RlE76fH6uQYKeCNaf2+m81ShBTwTW8ar/XjRJ0BNB4z5debVZgt7Q
vLzXbMOUoieG9noZY7JBip4YFi8SrwoxStETw7SevXWHTVL0xODOU2+7a5ai
JwbTq1TPdwwZehIIjs9VKwwy9CQgmD5D62uUoSeB3IIpM+JNMvQksO163PZL
Zhl6EqjPpNbWMuToSUESVefHMMjRk0Ldz5I6d6McvaEclsfJP5jk6EnhrIfG
O80sR08KvxROV//GUKAngxh/f3aPhwI9GdTOTBc6GRXoyeDF5qXOi00K9GQQ
mPgmJMWsQE8GSbTdOUUMJXpysM4/PdjioURPDq7H9odLjEr05JBZf6XZx6RE
Tw4sc1TcFrMSPTkID30nvMxQoaeAXbxLv/7HQ4WeApLchLtZRhV6CkhNsFtk
MKnQU8CUcQ6uG8wq9BRAsp4d+YOmRk8JEvdChx+UavSU0PY69hjFXY2eEtS/
vVClB6jRU0JuWdG1SRFq9JQQl1rj83vSiKeCohuslpCsEU8FE+6N3d9XOOKp
wPJyYMqxyhFPBTm71zR+axnxVBC/1TmjhKZBTw0dzWTBcqVmuF+ihs9hobxu
Nw3+b9SweuaO6kMBmuF5XzX4dEaedorQ4D41GB4wN9xPQi9BDXSeKyzNQi9d
DTXXHgs7C9HLV8OmMQXv91WiV66GxfTSCr0FvSY1tH/Xml9M02I+DVw79CUj
SKnFfEPO3rbkdjct5tPAPEFGTEqAFvNpYH3O21BNhBbzaUAX+jj4VhJ6CRpw
9NUHzc9CL10DvqqawLZC9PI1kB36JDC5Er1yDcStpAQpLeg1aSC0xye4kKbD
fFoIL85c66/UYT4txDx8Hd3qpsN8WpB72+5IDNBhPi2MndOfKovQYT4tdN67
nFOQhF6CFrrX29z1y0IvXQuMwp6apkL08rVwYE/sp+2V6JVr4e7f1vMlFvSa
tGARPppynabHfDq4/SRlyT+UesynA/3UQ9sb3PT4/ejAP6gyZ1uAHvPpIKZk
RpUwQo/5dJDXUv3ln0noJehg/ODOcT5Z6KXrYJXz1OVvCtHLH5r3sxyOr0Sv
fGh/w4ESvgW9Jh2sSeP3X6E5Yj49dFZumuytdIT/ARdW8Iw=
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[0, 1, 0], PointSize[0.01388888888888889], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJxV1HlQk3caB3ASXhBCgNz39SZBqyPUQWJYVH6Pi+sJdAGtotYDNcTgAaKj
oNWEq6y6atWtIoYq4oG23VUMAosHsnbrFROrFsW1MCKNqBwK4gG6dXn4Y5+Z
d955532ez/Od37zz0imrEpcyvby8rvx+fbz/f3WS/UUfq5zsbY8xNQQMPleT
XwzGlP6wThIx+mPVk6OL2pcnmAffXyG6nLdN+spOMuC4yBf58+osoi7s/5m0
OOgHzwu6SKrpY90lQ40dTRt9XuD8PaI9Mu1T/50vyI3rH+sB2cOI+6pK/xK9
JmL/QgDP6l5ifzPRbi1KnGDqRv8Rmbru2IhtnB6cbyFzz45dfetCD+5rJdMn
N0dNzHyFnodcq32+2DCiF70npJZ7/ltxSy96T8mrnybHrD34Gr1nJGz+1eZn
89+g104uzVx7NFT9lgyem9NjSupueov9neSgPfqGX9k79LtIg3SPfJy5D+df
kHELZl4xhfbjvpdkT65zV+rLfvS6ySbrlCRtzXv0usmq3MyQzbYP6PWQhLZV
d8/ovWDAe0VyFbPAU+gFA14vGd5QMDvxuRcMeK9JUP+YU88SGDDgvSZUh+Lc
qUoGDHhvyNgTjO8PyJnovSUd9JPEcisTvXekiL+CdfsxE70+Ul13uEw63Ru9
PlIUsWDWun94o9dPRmcF/b1NSKH3nhT/4cecjA0Ueh+ILSa6zb+ZQs8L5qaN
NJye5IP9XvCwrvOR+Tsf9L2AuX7poZE8X/jf+GgG7FiSPb5vnS/uY8Al/8PH
7/7HFz0mmHKvdNTEDEGPCWeaXkceLx+CHhOMlOWiPdgP83jD+MKGO/vX+qHn
De6OzPsljX7oUTAl4UR0+QR/9Cj47mG5tfqYP3oUsGyXR9wMZKHnA7XZEbee
ZLLQ84Gy5a1C//ss9HyBa//SPhIC0POFik3LJTOOBqDnC/f0gvGb2Wz0hsDp
2Sk/fb+ajd4QOLPw9sZfG9jo+cGiZV20gASi5weNPay86UcC0fODWPHuzPyA
IPT8IaDd+a+6jCD0/OHUwazPvBqC0GOBKH5NO0QHo8eC7JD8zbllweix4E8B
eV2LfTjoBUDytAf9BZEc9AJg2zTyy4k0DnpsyKY1GTdLOOixYTH14EK3m4Me
G/InHqmS+XDRC4TDa9ITJkRy0QuEHbEeqzmNi14QZOxMjt5ZwkUvCC6Yy21V
bi56QRC5NjGmmeKhFwyTcqZuZEXy0AsGW/OrkIg0HnocaL8TETW/hIffFwdG
zYupKHTz0OdA6bGLWysoPs5zoDm59PxDIx/3cUBRFzaZlcZHjwusD680Y0r4
6HHhybhbk1PcfPS4cHLLvbPbKQF6XOD2L1zxT6MAPS7c2dK9xGMRoMeDg5/M
KBaWCNDjwbu89MAYtwA9HlxwplalU0L0eACtOUUlRiF6PMieEf7DdYsQPT4U
7mV1v7UL8Xz4sNKv3jzcLUSPDz320azZlAg9PrzfnXC3wChCjw97qdBrDosI
PQHQpLu1xS5CTwDLojqHCdwi9ATwuHXTthhKjJ4A5kTx+JlGMXoCcL8Orym1
iNETQhWdZb1lF6MnhJbh25cw3WL0hBDqGrU0nJKgJ4Tr7yJsKUYJekLwPF5/
dpdFgp4I2EEtvvV2CXoiKPx8+cqXLgl6IkifIHuuo6ToieDCfmbODKMUPRFM
qvzjyHyLFD0xUHHMpw67FD0x9B3IPNfqkqInhu3zfy4VUzL0xNARmrp/ilGG
nhiW6jcezrLI0JPAsQmp507YZehJYBej4LdGlww9CUyRR9OBlBw9CXAz3i2L
NsrRk8Csuk/rVlnk6ElhQ3DS0EN2OXpS+GZyy75bLjl6UlghSJNQlAI9KZTt
W11mMCrQk8Ip8VfjUi0K9GRwxWFs2mdXoCeDI1MlO666FOjJYHpY/ZQ+byV6
Muj3bmSHGZXoyaDEPaRxgUWJnhy2nuk6/bVdiZ4c2OqJe+pdSvTkcJX/w6Ye
bxV6cgjtbM4YZlShJ4fzY/62ItmiQk8BtmRrxla7Cj0FMKj5X55zqdBTAJXV
trPDW42eAvLuPz5JG9XoKeB0F9+ZZFGjp4SqeWN78+1q9JSwtlY/rMqlRk8J
iq7rYT0MDXpKiP02PG67XIOeEnpvl68cZtCgp4K8aNnui/Ea9FTQmLK8Jtms
QU8FzNK/tLywDXoqcEbM424rHvRUsHfkTQhxDHpqMKU7V593DnpqSNow6dgs
z6CnBtli/cNOBo2eGlZIPhdvkdPoqeFQ3NVEnYFGTwNbZ6fvrI3HfqkG5ggi
XTPNNP5vNJBdz+V12HA+VgM8dvvMwmIa92mgOvx8Me1Az6qBUYFrHtU4B/dr
QNLNCJ3hQa9CA7XVc9Y/Z2gxjwZaD2ZcLpBrB7xWDZQnRQk0Bi3mo6Gn9fiS
6ngt5qNhPXW6MtGsxXw0FByYxnpmQy+WhnZn6oL8YvRMNFzsfe9QOdCz0jC0
1ieoyoleEQ0x4tWpCR70Kmj4YIq61MbQYT4a2tbPVOXJdZiPhqxvajYoDTrM
p4W/vll4vzJeh/m08EkSifqzWYf5tKCYGFf8xIZerBb4ybn9OcXombRQ/uP9
hQoHelYt7AiJu+xwolekhcqw2yM+86BXoYUl65Z97WHoMZ8WUkJ939jkesyn
heGPShfJDXrMp4OaG5HXzsTrMZ8O9E/rDPFmPX4/OqhsNR76zYZerA6mZuwJ
tBWjZ9JB70l3tsyBnlUHv2a2eSqc6BX9Pn/g3qw4D3oVOghn7v93KyME8+ng
2s2hkVZ5CObTwdzkDeVSQwjm08O+F7vkFfEh8F/OqeiL
"]]}}, {}, {}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox["y", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->{571.328125, Automatic},
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10.}, {0, 10.373473090704568`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.7682967099481287`*^9, 3.768296766709594*^9,
3.768296835523387*^9},ExpressionUUID->"16d183ee-3038-4e58-9798-\
6d6df51dd212"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"y1", ",", "y2", ",", "dy", ",", "py", ",", "qcrit"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y1", "[",
RowBox[{"a1_", ",", "ys_", ",", "q1_"}], "]"}], ":=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"a", "+",
RowBox[{"q", " ",
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}], "-",
RowBox[{
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"q", " ",
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}]}],
")"}]}], "-",
RowBox[{"a", " ",
RowBox[{"y", "[", "t", "]"}], " ",
RowBox[{
SuperscriptBox["y", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}],
RowBox[{
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]}]]}], "\[Equal]", "0"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"a", "\[Rule]", "a1"}], ",",
RowBox[{"q", "\[Rule]", "q1"}]}], "}"}]}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "ys"}], ",",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}],
",",
RowBox[{"y", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_", ",", "q_"}], "]"}], ":=",
RowBox[{
RowBox[{"y1", "[",
RowBox[{"a", ",", "ys", ",", "q"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"qcrit", "[",
RowBox[{"a_", ",", "ys_"}], "]"}], ":=",
RowBox[{"a", "/",
RowBox[{"ys", "^", "2"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_", ",", "q_"}], "]"}], ":=",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"y1", "[",
RowBox[{"a", ",", "ys", ",", "q"}], "]"}], ",", "t"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"py", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_", ",", "q_"}], "]"}], ":=",
RowBox[{
RowBox[{"a", "/",
RowBox[{"y2", "[",
RowBox[{"t1", ",", "a", ",", "ys", ",", "q"}], "]"}]}], "*",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1", ",", "a", ",", "ys", ",", "q"}], "]"}], "/",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1", ",", "a", ",", "ys", ",", "q"}], "]"}], "^", "2"}]}],
"]"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "10"}], "]"}], "//", "N"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "12"}], "]"}], "//", "N"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "14"}], "]"}], "//", "N"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "10", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "10"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "12", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "12"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "14", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "14"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "10", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "10"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "py"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "12", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "12"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "14", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "14"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "10", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "10"}], "]"}]}]}], "]"}], ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "10", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "10"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"y", ",", "py"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "12", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "12"}], "]"}]}]}], "]"}], ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "12", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "12"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"y", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "14", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "14"}], "]"}]}]}], "]"}], ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "14", ",",
RowBox[{"0.32",
RowBox[{"qcrit", "[",
RowBox[{"1", ",", "14"}], "]"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"y", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.767847518498331*^9, 3.767847799491907*^9}, {
3.76784783084241*^9, 3.7678478663868*^9}, {3.767847917896153*^9,
3.767848056955784*^9}, {3.767848163359462*^9, 3.767848253116835*^9}, {
3.7678482865112467`*^9, 3.7678483016519012`*^9}, {3.768295354954091*^9,
3.768295402125799*^9}, {3.7682954729495087`*^9, 3.76829556390309*^9}, {
3.768296106155704*^9, 3.768296179145822*^9}, {3.768296307515894*^9,
3.768296317371832*^9}, {3.768296382489709*^9, 3.768296401367672*^9}, {
3.7682964816138678`*^9,
3.768296499477314*^9}},ExpressionUUID->"05d79d80-c3cb-41be-9657-\
f137cec1641c"],
Cell[CellGroupData[{
Cell[BoxData["0.01`"], "Print",
CellChangeTimes->{3.768295575756001*^9, 3.768296179698511*^9,
3.76829632034376*^9, 3.768296404371882*^9,
3.768296500016931*^9},ExpressionUUID->"3b7de591-6de6-4047-a2f8-\
450f151051d8"],
Cell[BoxData["0.006944444444444444`"], "Print",
CellChangeTimes->{3.768295575756001*^9, 3.768296179698511*^9,
3.76829632034376*^9, 3.768296404371882*^9,
3.768296500023612*^9},ExpressionUUID->"7cb714b2-d22c-4804-b7fd-\
16d004fd2ee0"],
Cell[BoxData["0.00510204081632653`"], "Print",
CellChangeTimes->{3.768295575756001*^9, 3.768296179698511*^9,
3.76829632034376*^9, 3.768296404371882*^9,
3.768296500031793*^9},ExpressionUUID->"1e8dcde4-0fd5-4b9d-9bed-\
c4a1e1bd03b2"],
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011111111111111112`], AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw92XlclOUWB/BhFEQ2GWBgYFhmYxVSU1u82XvQtOuWu5aV4Zq7RlZWaJh6
1TQVNRfMta5er1oqFVbme9TELMVWUjLLMCj0upUJInp1zvk1//iZj+9838PM
+z7POb/XPXxyv1FWi8VSFGCx3PlXXj4eHW0r/yT1Lhp951Xt5aHOyhc/ibyL
jh298/LyyeznHzrckENt77xKvNyl7sTDP1TnUPHqOy8vrx93z7r6r3LIzxV6
+dDY0OGeT3LEG+3lCet87wz8T454Pb18KrBo7bJl6rX1cubmrT1OzVAv3stj
Lju+bTVOPYuXT/z6db9FA9Wr9vCi2PCz10i9ox4uSej89oRs1Ofhb3t33nk+
DvV5OGhiWuq0JqjPw7Ure7taXMzW+jw85f2J5q7KbK3Pw0UfFbjyyrK1Pg+H
N5YNS9idrfV5OHt29caf12ZrfR5+4bGyW7vnq1ft5hdPvlVc9Jx6R9185GTE
0oJh6pW4Oe2hs4FTe6m32s1DnuoXO+1+9QrdfP+mH6rmpaI+N9fyoMWbbajP
zc/suXD/V40ttT43U6UnsHltS63PzZ9/Xxb1SEVLrc/NEeXWORsOtNT6XJzT
t/8My7sttT4XB7w83z1pjXolLh7Z/GjR73PVW+3i9EnFV/Knqlfo4ouzjj0d
Mky90S7+asJK+85e6vV08bv5s1wjO6A+Fy+reW5HWjrqc3GLoO1nrkWjPhev
+OrjX763tCR/OUdT+KPw5RVl/8vS86dwsW9G1aeVWXq+FB65wtX668NZ6qfw
8Aszqi68l6VeCpePrvc5N2Wpl8xbFvZMHLwYXjIvqFpyeVMBvGSeM7/DsZtj
4SXz0h8cJ8YNhpfMxXmD/1HzELwkfjx8pmvq3fCSeOv2wl02F7wkXt9ug4PD
4SXxgwnzCl9pyFQvia++/WBMn98z1Utko1P6rTbfZ6qXyA+cDJiYeihTvUTe
cbp2flZJpnqJPP61oa/mboSXyFcCO8watxiek1+c89GH/54Oz8lhvQv6/zEe
npPX739xRv8h8Jzc+omQsWX/hOfk7z89k9vzXngJ3BjR4r5fU+El8IhzN18q
ioGXwAfOT+/Qtwm8BG54rXSz70qGegl877F2l0LPZKgXz7F/Vj7c7MsM9eL5
uLf2dKyZoV48D4q4Ud3hnQz14jlxp3Xps2vhxfMr7m5R+xfCc/D1rs8Xewvg
OdhtXfjkmvHwHFwz89dFGY/Dc3Cnpe2Hf9EdnoOPn5sdOrtDht4PcfzcrNZm
v6wM8nOr4/iLn2p23ZsAL44LGrY72obAi+NEV0VGl+vp6sXx+0vDHJNq09WL
5V77uye+U5muXix3frlyfOAX6erF8rbM/h2nfpyu3u33zVYdvr4NXiyfHFKR
u/pNeHYe7p5d1ft1eHY+1j3vbPIMeHYeenVKQdBkeHaeaQScDcqDZ+ecTuv7
u/qm6/cXw91DE5r27wQvhlesfuWu9W3hxfBTGc6wwFR4MTyBn62YHQsvhg9d
63Y4ORheNF+a9objm/o09aK5Yf6rTTedS1MvmpesnHxowY9p6kVz5sPn3lhy
PE2928cn7965c3+aelHcOHRbn/Ml8KL4RH71zs6b4UVx5aRVYaWr4EVx7cL4
9V0XwIviR7b+8taV6fBsXHpq/qCPp8Cz8bWifVc2jIBn48vFXd97axA8Gz84
uqHiYDd4Nj7e7vCKgI7wIjm3fmOrJ1vDi+ToRxf+WOGFF8nW/a+fmhQHL5If
6LFrTGoovEgedHfAvus3U2mV//Mt+Jm+rzouXkmlu/3Ht+C9F1u9Z61J1fNF
8KQPGo+2/yFV/Qh++d7ydfOOp6oXwaVdnx7VcBBeOGcPyn9i0R544fz0Y9PN
3B3wwnjtpoYj9k3wwtjbt2NpyEp4Ybyp5qkDroXwQrmgakjaozPhhXL783VJ
u56HF8ID7j5W1XICvBDuWp6x+7Nh8EL4sy72g3MHw2vOdU1G9xnbC15zXtxm
3bKJneEFc4X97KHl98ML5rJ1VtdPreAF843L4yp7psFrxnsb2+ecToTXjK2B
aX2WRcML4jUFa1+aEAIviIOHzq4aGwAviJfsfmT/gjqfeoG87Ux9t68v+tQL
5NJ3g0o61vjUa8rbHni2Tflpn3pN+Zj1/fpZFT71mnK78t3GU+XwmvC0S/vu
ySuD14Td+W/Y5u6DZ+XPTg+2fvsBPCvXfjmnw8PvwrOyY+jV2p+3wAvgN4q/
6LxxA7wAXj2iYOq81fAsnNLpyLYVS+FZ2L14T9zRBfAsPCl04a8Zc3zU2v/5
W+bzZ0pzd8zw0Rj/8TfN9keqBj82DedrNPfdd6FfTr6PPvP7N8xP3vvlicwJ
8G6YVesvrOs1Gl6DObfv4NziPHjXzTEjCsa3eBxevdlqxsnOOwbCqzNTZt28
+GwfeHXmsC5zl4/oAe+aGTI+ZmBBV3h/mUH9ew3YlwvvqnlowHclmR3h/Wm2
/qvL8n33wfvTjGjbxj69Hbw/zDfzPANHtYZ3xdy6aO4zL2TDu2x+/g7/qyQD
3iXzJWvOzvhUeJfMslBb8H/dPsrzf/6Caevx8paRyT760n/8ebOwztjczYnz
nTMPxaU7H3P4aInf/90cHnzCucwO7zdzaeyevdei4FWbIzuE2OZGwjtrtj1c
k5UbAa/KbN3F50wLg3fGPHFs1OX2IfB+NocccO2dEuwj9n/+lFk3cMS8iiAf
FfqPP2kenZc1/OlAnK/CrHj/hQHepj5y+f1vzJm20jEhTeB9afLkqC2JVnz+
iHmmtF/skIDb/+8//qBZlJ+794AF//+hudIyYO2g2+8t/vdbzca+NZvslr+v
P33dfu/fwLcaf/+///2HBj4vC+hBAz7L+Y2/zy/1GahPjv/GQP2F8vcZ+Ps2
yN9v4O//Wb4fA9+Pfn8Gvj85/oyB71f8KgPfv/4+Bn6fKfL7Gfj99Pc18PuK
97uB31+8cwauD71+DFw/4l0wcH3p9Wfg+pPjLxm4PsW/bOD61evbwPV9n1z/
Bq5/vT8M3B/i/Wm00ftHvKtGmd5fev8ZuP/Eu2bg/tT718D9K16dgftbvHoD
97+uDwbWB/EaDKwfur4YWF/Eu2Fg/RGv0cD6pOuXgfVLvFvGC7q+6YVHWP/k
eAthfRTfQi5dP9vJ+kpYX9+U9ZdW6Pqr6zNhfRbPSli/xbMS1nfxmhDWf/Ga
EPYH3T8I+4d4TQn7i3hNabvuP+IFEvYn8QIJ+5fub4T9Tbwgwv4nXhBhfxSv
GWH/FK8ZYX8VL5iw/4oXTNifxQsm7N/iNSfs7+I1p3rd/8ULIfQH4oUQ+gfx
Qgj9hXihhP5DvFBCfyJeGKF/ES+M0N+IF0bof8QLJ/RH4oVTjvZP4kUQ+ivx
Igj9l3gRNFn7M/FaEPo38VpQvvZ34kUS+j85PpLQH4ofSegfZb6JJPSX5dJ/
EvpP8WyE/lQ8G6F/Fc9G6G/FsxH6X/FstEf7Y/GiCP2zeFF0Tvtr8aII/bd4
UXRS+3Pxouim9u/iRRP6e/GiCf2/eNFUpPOBeLeP1/lBvGi6rPOFeDGE+UO8
GJqo84l4MZSn84t4MYT5RrwY6qHzj3h2wnwknp0wP4lnJ8xX4tkJ85d4dhqh
85l4sYT5TbxYwnwnXixt1/lPvFjCfCheLGF+FC+OMF+KF0dJOn+KF0fTdT4V
L44wv4oXR5hvxXMQ5l/xHIT5WDwH/abzs1y/DvLofC39pYMwf4sXT5jPxYun
JJ3fxYunwTrfixdPmP/FiyfkA+IlEPID8RII+YJ4CXRQ8wfxEmik5hPiJRDy
C/GchHxDPCch/xDPSchHxHMS8hPxnIR8RbxEQv4iXiIhnxEvkZDfiJdIHTXf
ES+RkP+Il0TIh8RLIuRH4iXRBs2XxEsi5E/iJRHyKfGSCfmVeMmEfEu8ZEL+
JV4yIR8TL5mQn4mXQsjXxEuhEZq/iZdCozSfEy+F1mh+J14KId8Tz0XI/zQf
JOSD4rtoueaH/uu3p4t2ar4o84yLkD/6uUIXIZ/U/JKQX/q9EheN0nxT7gcX
WTX/lHbNRchHpT43IT/VfJWQr0p9bsrV/FXqc1O+5rNSn5uQ30p9bkK+q/kv
If+V+tyEfFjqu30+zY+lPjchX5b6PIT8WfNpQj4t9XkoQvNrqc9DSzXflt/L
Q/maf0t9HkI+rvk5IT+X+jz0nebrUp+HkL/7vWoPLdF8XurzEvJ7zfcJ+b7U
56Uszf+lPi/9qM8HpD4vTdLnB1Kfl/B8QZ8/EJ4/SH1e6qrPJ6Q+L1Xq8wup
z0t5+nxD6rs9F+vzj/8DEzAWoQ==
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[1, 0, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw92Xl8TOcaB/DJJhHZt8lkmczCNclk64299DzUdlUiJGpXS4Km0qqKtTQI
Rd2L1ha0fNCovRGltp7n2rVKEFrbzaKNqiKIWkrdmuf9df7xmY8z3/Nk5pz3
fZ7fsQ57p1euu8FgWORmMLz4V16N+dqsX6ovFqbSiBevWjsHjrnfyzIhlb4/
+eJl5xbNs9aPzk+ltBevMjuPb7Gy5pvhqbSi+MXLzsNrJkYZ+6eSiyu0859f
lPUtyFTeCDtvv5O46WJn5XW388teVdEd2ykvzc7/Da/ZuzNNeSY7bzMPW+xM
UJ7Bzkc9Nn71hQX12Xg4RSUmGlGfjXs2aua1yx/12biy24KMzp6oz8Zbm+vO
vQ9SVH02/nl97Zn6mhRVn413hY3c3LY8RdVn4+adulYsOpCi6rNx6qJjo+o3
paj6bHx2S59ZOcuVZ7DxrFfWdK6ZpbxaK981Fp7If095J6389Xx/p/dQ5ZVZ
2S1u6ZxtGcortrJv4mfPh7dFfVbesLxqa9ME1GflS1MzSh8bUZ+Vs84HOC55
oT4rP28yLfXE/WRVn5XfejX5xtHqZFWflVtNuD7m3OlkVZ+Fb7TaVHv7QLKq
z8Llz7e9adqSrOqzcNm3uaasFcortvC4DQXhq+Yor9DCpW32T60fr7wRFs7v
kj52YK7yult4d4uxoRVZykuzcMfVG6cP6ID6LPz6tZKr91JRn4WnZmV1XRGX
TK5yTsbx5rOna3oG4Pxx/M2UcadMz5LU+eI4/enpxHs3k5Qfx3PvlMRdvpSk
vDh2b33/eMWJJOWZeeYb17pVfp2kPDNXX7947MkGeGY+tX30sKbL4Jm5cnRO
u9zZ8Mz8qOLAlJ0F8GLZ7cYmCs+FF8tFAz/e/mE2vFi+dDjgt0Yd4cXy8OO3
TGvT4MXyvvSUQd3s8GL4+ibPS56h8GL4PxWnd55xhxfDif+2hZTeS1ReDDtr
D0Ssq0lUXgx3mPfJ9Q1nE5UXzaOPHNmoH0xUXjTfWlgy49cdicqL5h67dy1z
rIMXzQWP1gdM/gReNC9NSvevnAkvirvm797TZxy8KJ6TYmzzUw68KN7/7rc7
i3rDi+Ljxn6ZrTvDi+L3exSkubeEZ+JV+54UVTaFZ+LM7FtvnYmEZ+JG+RMD
f2wIz8Rj9t5aev+JU3km1voejm/8m1N5kdz49LI7b151Ki+SGyQ3DTpyyqm8
SO79XnZZc3YqL5IHrLO77S+FF8kexXusfdc51f1g5NEV/dv5LnGSiys28rR/
5b1/djY8I09KHuVdOhGekaOq6hqU5MEz8tyk/etKB8KL4MxTKxtUZMCL4Pm3
J/X1bw8vgv0f9Tk4KA1eBG8bkJ5/pAm8CF7ff/aMjpHwwjmgvIPzsi+8cL70
pGLh3GcJygvnC5tWX+lRl6C8cM5OD2uVfC1BeeG8eE7pycYXEtT3F8af1bgd
TjuRoLwwjhq1osuA/fDCOCnLNH3ldnhhvHl+4xX1a+GF8YorI/aPWAovlLf5
Lgi+NxdeKA+6mHFo6VR4obzwf33/yH4XXigH9h18LTEXXijXPPf73NwPXggP
rvbLS0iHF8L5uw0DM9vDC+En3WavX9gcXgifeOTMvxkPL4T1V96pHGKGF8yP
rQca3w2BF8xVi8eOWOUNL5g7Xr3y/bCn8coL5qEDWhd1vBuvvGDmXzfuaF8b
r7wg/nlgsxn9L8crL4hnZZyIXlAer7wgts7Wvqg8Ai+IZ1ZmZHbfBy+Im7X8
qO35L+Npuevzgfy89xtLJpfE0z9dxwfyR27+M9uuwvkCODV5b1L0x/AD+MuU
QQci5sAL4C7pu/qlTIPnz5HTMxNyx8HzZ2454/Wv8+D58c3At73ih8Lz4+vF
HoN394Hnx22Mhg+HZ8BrxOuH3SpJ6gSvEc/bGvRTeFt4vmyqGpUTkwbPl4dP
2ZHePgGeL184mnOkyAqvIVtubqurjYTXkMP9C+pHBsHz4eJR6Q+8feD58PS3
phqPPXcoz4fzj/8+7fOHDuV585g12T3W3XEoz5u/e+XyZr7uUF4Dzuw+fvez
SofyGvCPzb5a3P9HeA34dOGx3B/K4XlxkXNS93En4Hnx3JrkvJcOwvPkIq6t
DNgHz5NbrG11ym8nPE9ecKNnb+dWeB7sV1+3OK8Engc/Xjhky7er4blzxNL3
9r5WDM+d+7WeffXWx/DceWSn6Wml8+G58ZHPz19cMhueG0e5Tbi1shCegSdl
XZh3aDI8A997+er3fgXwDHxuSN2ZCe84KNX1+ef6zBF3Sz3zHDTKdfyfejfz
y3PKcnC+Z7r/nE/fLnrDQcdd/lM9r6LftAn94T3Vjc/M5fN7w/tDX7vM7/3D
mfCe6I1jthabu8N7rM87WKet7ALvkZ72YfKsNq/Ce6SPyWjywdNX4D3UB09/
2qG6Dbzf9Y0ezX/+pQW8B3r9+a2TQtPg1evjq78KHZoCr15/e5rh6BknvPt6
lzbL1+Y64N3Te6w9szemCby7+pSyLnEPrfDq9PzoJ5X1Znh1+obVr/lFxDho
iOvzt/WLC2/s6G9yULnr+N/0cd8drT4YgfPd1Js9TivJCHPQQpd/Qx+ReMHv
z2B4v+jODxZbzwTCq9Vrbq65c8wf3k96u6FF02sawbum97ofVG3xhVetN5yr
GWf6wKvSwzvnJTb0dhC7Pn9FH2mf6CjzclCh6/iL+vBROSHTPXG+C3pKj4F1
Yz0cZHH553TfjiePzXGHV64v3Zn96UE3fP6EvnJlQIHlr/cG1/GH9LolPXut
NeD/9+i/LtvSsutf7w2u9xv1zTXRPiGGv68/9frrvWsD36j9/f+u93s0fF4W
0EMafJbza3+fX+rTUJ8cf05D/YXy92n4+9bI36/h76+S70fD96O+Pw3fnxxf
reH7Ff+ahu9f/T4afp8x8vtp+P3U76vh9xXvhobfX7ybGq4Pdf1ouH7Eu63h
+lLXn4brT46v03B9in9Xw/Wrrm8N13cruf41XP/q/tBwf4hXr+H+Ee+BhvtL
3X8a7j/xHmq4P9X9q+H+Fe+RhvtbvMca7n+1PmhYH8T7Q8P6odYXDeuLeE81
rD/iPdOwPqn1S8P6Jd5zDeubuvAI658cbyCsj+IbCOtnM1lfCevrKll/Ceuv
Wp8J67N47oT1Wzx3wvoungdh/RfPg7A/qP2DsH+I50nYX8TzJOw/4nkR9ifx
vAj7l9rfCPubeA0I+594DQj7o3jehP1TPG/C/iqeD2H/Fc+HZqj9WTwfwv4t
XkPC/i5eQ8L+L54voT8Qz5dyVP8gni9Fqf5CvEb0keo/xGtE6E/E8yP0L+L5