You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Different results in 《Democratizing Contrastive Language-Image Pre-training: A CLIP Benchmark of Data, Model, and Supervision》 and 《SUPERVISION EXISTS EVERYWHERE: A DATA EFFICIENT CONTRASTIVE LANGUAGE-IMAGE PRE-TRAINING PARADIGM》
#22
In the paper《SUPERVISION EXISTS EVERYWHERE: A DATA EFFICIENT CONTRASTIVE LANGUAGE-IMAGE PRE-TRAINING PARADIGM》, training on the YFCC_V2 dataset, CLIP and DECLIP can get 31.3 and 41.9 zero-shot performance of Imagenet, but it is reported 37.3 and 44.4 in the paper 《Democratizing Contrastive Language-Image Pre-training: A CLIP Benchmark of Data, Model, and Supervision》. So what's the difference between them?
The text was updated successfully, but these errors were encountered:
In the paper《SUPERVISION EXISTS EVERYWHERE: A DATA EFFICIENT CONTRASTIVE LANGUAGE-IMAGE PRE-TRAINING PARADIGM》, training on the YFCC_V2 dataset, CLIP and DECLIP can get 31.3 and 41.9 zero-shot performance of Imagenet, but it is reported 37.3 and 44.4 in the paper 《Democratizing Contrastive Language-Image Pre-training: A CLIP Benchmark of Data, Model, and Supervision》. So what's the difference between them?
The text was updated successfully, but these errors were encountered: