-
Notifications
You must be signed in to change notification settings - Fork 38
/
conn.go
647 lines (574 loc) · 20.2 KB
/
conn.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
package raknet
import (
"bytes"
"encoding"
"errors"
"fmt"
"github.com/sandertv/go-raknet/internal"
"github.com/sandertv/go-raknet/internal/message"
"io"
"net"
"net/netip"
"slices"
"sync"
"sync/atomic"
"time"
)
const (
// protocolVersion is the current RakNet protocol version. This is Minecraft
// specific.
protocolVersion byte = 11
minMTUSize = 576
maxMTUSize = 1492
maxWindowSize = 2048
)
// Conn represents a connection to a specific client. It is not a real
// connection, as UDP is connectionless, but rather a connection emulated using
// RakNet. Methods may be called on Conn from multiple goroutines
// simultaneously.
type Conn struct {
// rtt is the last measured round-trip time between both ends of the
// connection. The rtt is measured in nanoseconds.
rtt atomic.Int64
closing atomic.Int64
conn net.PacketConn
raddr net.Addr
handler connectionHandler
once sync.Once
closed, connected chan struct{}
mu sync.Mutex
buf *bytes.Buffer
ackBuf, nackBuf *bytes.Buffer
pk *packet
seq, orderIndex, messageIndex uint24
splitID uint32
// mtu is the MTU size of the connection. Packets longer than this size
// must be split into fragments for them to arrive at the client without
// losing bytes.
mtu uint16
// splits is a map of slices indexed by split IDs. The length of each of the
// slices is equal to the split count, and packets are positioned in that
// slice indexed by the split index.
splits map[uint16][][]byte
// win is an ordered queue used to track which datagrams were received and
// which datagrams were missing, so that we can send NACKs to request
// missing datagrams.
win *datagramWindow
ackMu sync.Mutex
// ackSlice is a slice containing sequence numbers of datagrams that were
// received over the last second. When ticked, all of these packets are sent
// in an ACK and the slice is cleared.
ackSlice []uint24
// packetQueue is an ordered queue containing packets indexed by their order
// index.
packetQueue *packetQueue
// packets is a channel containing content of packets that were fully
// processed. Calling Conn.Read() consumes a value from this channel.
packets *internal.ElasticChan[[]byte]
// retransmission is a queue filled with packets that were sent with a given
// datagram sequence number.
retransmission *resendMap
lastActivity atomic.Pointer[time.Time]
}
// newConn constructs a new connection specifically dedicated to the address
// passed.
func newConn(conn net.PacketConn, raddr net.Addr, mtu uint16, h connectionHandler) *Conn {
mtu = min(max(mtu, minMTUSize), maxMTUSize)
c := &Conn{
raddr: raddr,
conn: conn,
mtu: mtu,
handler: h,
pk: new(packet),
closed: make(chan struct{}),
connected: make(chan struct{}),
packets: internal.Chan[[]byte](4, 4096),
splits: make(map[uint16][][]byte),
win: newDatagramWindow(),
packetQueue: newPacketQueue(),
retransmission: newRecoveryQueue(),
buf: bytes.NewBuffer(make([]byte, 0, mtu-28)), // - headers.
ackBuf: bytes.NewBuffer(make([]byte, 0, 128)),
nackBuf: bytes.NewBuffer(make([]byte, 0, 64)),
}
t := time.Now()
c.lastActivity.Store(&t)
go c.startTicking()
return c
}
// effectiveMTU returns the mtu size without the space allocated for IP and
// UDP headers (28 bytes).
func (conn *Conn) effectiveMTU() uint16 {
return conn.mtu - 28
}
// startTicking makes the connection start ticking, sending ACKs and pings to
// the other end where necessary and checking if the connection should be timed
// out.
func (conn *Conn) startTicking() {
var (
interval = time.Second / 10
ticker = time.NewTicker(interval)
i int64
acksLeft int
)
defer ticker.Stop()
for {
select {
case t := <-ticker.C:
i++
conn.flushACKs()
if i%3 == 0 {
conn.checkResend(t)
}
if unix := conn.closing.Load(); unix != 0 {
before := acksLeft
conn.mu.Lock()
acksLeft = len(conn.retransmission.unacknowledged)
conn.mu.Unlock()
if before != 0 && acksLeft == 0 {
conn.closeImmediately()
}
since := t.Sub(time.Unix(unix, 0))
if (acksLeft == 0 && since > time.Second) || since > time.Second*5 {
conn.closeImmediately()
}
continue
}
if i%5 == 0 {
// Ping the other end periodically to prevent timeouts.
_ = conn.send(&message.ConnectedPing{PingTime: timestamp()})
conn.mu.Lock()
if t.Sub(*conn.lastActivity.Load()) > time.Second*5+conn.retransmission.rtt(t)*2 {
// No activity for too long: Start timeout.
_ = conn.Close()
}
conn.mu.Unlock()
}
case <-conn.closed:
return
}
}
}
// flushACKs flushes all pending datagram acknowledgements.
func (conn *Conn) flushACKs() {
conn.ackMu.Lock()
defer conn.ackMu.Unlock()
if len(conn.ackSlice) > 0 {
// Write an ACK packet to the connection containing all datagram
// sequence numbers that we received since the last tick.
if err := conn.sendACK(conn.ackSlice...); err != nil {
return
}
conn.ackSlice = conn.ackSlice[:0]
}
}
// checkResend checks if the connection needs to resend any packets. It sends
// an ACK for packets it has received and sends any packets that have been
// pending for too long.
func (conn *Conn) checkResend(now time.Time) {
conn.mu.Lock()
defer conn.mu.Unlock()
var (
resend []uint24
rtt = conn.retransmission.rtt(now)
delay = rtt + rtt/2
)
conn.rtt.Store(int64(rtt))
for seq, t := range conn.retransmission.unacknowledged {
// These packets have not been acknowledged for too long: We resend them
// by ourselves, even though no NACK has been issued yet.
if now.Sub(t.timestamp) > delay {
resend = append(resend, seq)
}
}
_ = conn.resend(resend)
}
// Write writes a buffer b over the RakNet connection. The amount of bytes
// written n is always equal to the length of the bytes written if writing was
// successful. If not, an error is returned and n is 0. Write may be called
// simultaneously from multiple goroutines, but will write one by one.
func (conn *Conn) Write(b []byte) (n int, err error) {
select {
case <-conn.closed:
return 0, conn.error(net.ErrClosed, "write")
default:
conn.mu.Lock()
defer conn.mu.Unlock()
n, err = conn.write(b)
return n, conn.error(err, "write")
}
}
// write writes a buffer b over the RakNet connection. The amount of bytes
// written n is always equal to the length of the bytes written if the write
// was successful. If not, an error is returned and n is 0. Write may be called
// simultaneously from multiple goroutines, but will write one by one. Unlike
// Write, write will not lock.
func (conn *Conn) write(b []byte) (n int, err error) {
fragments := split(b, conn.effectiveMTU())
orderIndex := conn.orderIndex.Inc()
splitID := uint16(conn.splitID)
if len(fragments) > 1 {
conn.splitID++
}
for splitIndex, content := range fragments {
pk := packetPool.Get().(*packet)
if cap(pk.content) < len(content) {
pk.content = make([]byte, len(content))
}
// We set the actual slice size to the same size as the content. It
// might be bigger than the previous size, in which case it will grow,
// which is fine as the underlying array will always be big enough.
pk.content = pk.content[:len(content)]
copy(pk.content, content)
pk.orderIndex = orderIndex
pk.messageIndex = conn.messageIndex.Inc()
if pk.split = len(fragments) > 1; pk.split {
// If there were more than one fragment, the pk was split, so we
// need to make sure we set the appropriate fields.
pk.splitCount = uint32(len(fragments))
pk.splitIndex = uint32(splitIndex)
pk.splitID = splitID
}
if err = conn.sendDatagram(pk); err != nil {
return 0, err
}
n += len(content)
}
return n, nil
}
// Read reads from the connection into the byte slice passed. If successful,
// the amount of bytes read n is returned, and the error returned will be nil.
// Read blocks until a packet is received over the connection, or until the
// session is closed or the read times out, in which case an error is returned.
func (conn *Conn) Read(b []byte) (n int, err error) {
pk, ok := conn.packets.Recv(conn.closed)
if !ok {
return 0, conn.error(net.ErrClosed, "read")
} else if len(b) < len(pk) {
return 0, conn.error(ErrBufferTooSmall, "read")
}
return copy(b, pk), err
}
// ReadPacket attempts to read the next packet as a byte slice. ReadPacket
// blocks until a packet is received over the connection, or until the session
// is closed or the read times out, in which case an error is returned.
func (conn *Conn) ReadPacket() (b []byte, err error) {
pk, ok := conn.packets.Recv(conn.closed)
if !ok {
return nil, conn.error(net.ErrClosed, "read")
}
return pk, err
}
// Close closes the connection. All blocking Read or Write actions are
// cancelled and will return an error, as soon as the closing of the connection
// is acknowledged by the client.
func (conn *Conn) Close() error {
conn.closing.CompareAndSwap(0, time.Now().Unix())
return nil
}
// closeImmediately sends a Disconnect notification to the other end of the
// connection and closes the underlying UDP connection immediately.
func (conn *Conn) closeImmediately() {
conn.once.Do(func() {
_, _ = conn.Write([]byte{message.IDDisconnectNotification})
conn.handler.close(conn)
close(conn.closed)
conn.mu.Lock()
defer conn.mu.Unlock()
// Make sure to return all unacknowledged packets to the packet pool.
for _, record := range conn.retransmission.unacknowledged {
record.pk.content = record.pk.content[:0]
packetPool.Put(record.pk)
}
clear(conn.retransmission.unacknowledged)
})
}
// RemoteAddr returns the remote address of the connection, meaning the address
// this connection leads to.
func (conn *Conn) RemoteAddr() net.Addr {
return conn.raddr
}
// LocalAddr returns the local address of the connection, which is always the
// same as the listener's.
func (conn *Conn) LocalAddr() net.Addr {
return conn.conn.LocalAddr()
}
// SetReadDeadline is unimplemented. It always returns ErrNotSupported.
func (conn *Conn) SetReadDeadline(time.Time) error { return ErrNotSupported }
// SetWriteDeadline is unimplemented. It always returns ErrNotSupported.
func (conn *Conn) SetWriteDeadline(time.Time) error { return ErrNotSupported }
// SetDeadline is unimplemented. It always returns ErrNotSupported.
func (conn *Conn) SetDeadline(time.Time) error { return ErrNotSupported }
// Latency returns a rolling average of rtt between the sending and the
// receiving end of the connection. The rtt returned is updated continuously
// and is half the average round trip time (RTT).
func (conn *Conn) Latency() time.Duration {
return time.Duration(conn.rtt.Load() / 2)
}
// send encodes an encoding.BinaryMarshaler and writes it to the Conn.
func (conn *Conn) send(pk encoding.BinaryMarshaler) error {
b, _ := pk.MarshalBinary()
_, err := conn.Write(b)
return err
}
// packetPool is used to pool packets that encapsulate their content.
var packetPool = sync.Pool{New: func() any { return &packet{reliability: reliabilityReliableOrdered} }}
// receive receives a packet from the connection, handling it as appropriate.
// If not successful, an error is returned.
func (conn *Conn) receive(b []byte) error {
t := time.Now()
conn.lastActivity.Store(&t)
switch {
case b[0]&bitFlagACK != 0:
return conn.handleACK(b[1:])
case b[0]&bitFlagNACK != 0:
return conn.handleNACK(b[1:])
case b[0]&bitFlagDatagram != 0:
return conn.receiveDatagram(b[1:])
}
return nil
}
// receiveDatagram handles the receiving of a datagram found in buffer b. If
// successful, all packets inside the datagram are handled. if not, an error is
// returned.
func (conn *Conn) receiveDatagram(b []byte) error {
if len(b) < 3 {
return fmt.Errorf("read datagram: %w", io.ErrUnexpectedEOF)
}
seq := loadUint24(b)
if !conn.win.add(seq) {
// Datagram was already received, this might happen if a packet took a
// long time to arrive, and we already sent a NACK for it. This is
// expected to happen sometimes under normal circumstances, so no reason
// to return an error.
return nil
}
conn.ackMu.Lock()
// Add this sequence number to the received datagrams, so that it is
// included in an ACK.
conn.ackSlice = append(conn.ackSlice, seq)
conn.ackMu.Unlock()
if conn.win.shift() == 0 {
// Datagram window couldn't be shifted up, so we're still missing
// packets.
rtt := time.Duration(conn.rtt.Load())
if missing := conn.win.missing(rtt + rtt/2); len(missing) > 0 {
if err := conn.sendNACK(missing); err != nil {
return fmt.Errorf("receive datagram: send NACK: %w", err)
}
}
}
if conn.win.size() > maxWindowSize && conn.handler.limitsEnabled() {
return fmt.Errorf("receive datagram: queue window size is too big (%v-%v)", conn.win.lowest, conn.win.highest)
}
return conn.handleDatagram(b[3:])
}
// handleDatagram handles the contents of a datagram encoded in a bytes.Buffer.
func (conn *Conn) handleDatagram(b []byte) error {
for len(b) > 0 {
n, err := conn.pk.read(b)
if err != nil {
return fmt.Errorf("handle datagram: read packet: %w", err)
}
b = b[n:]
handle := conn.receivePacket
if conn.pk.split {
handle = conn.receiveSplitPacket
}
if err := handle(conn.pk); err != nil {
return fmt.Errorf("handle datagram: receive packet: %w", err)
}
}
return nil
}
// receivePacket handles the receiving of a packet. It puts the packet in the
// queue and takes out all packets that were obtainable after that, and handles
// them.
func (conn *Conn) receivePacket(packet *packet) error {
if packet.reliability != reliabilityReliableOrdered {
// If it isn't a reliable ordered packet, handle it immediately.
return conn.handlePacket(packet.content)
}
if !conn.packetQueue.put(packet.orderIndex, packet.content) {
// An ordered packet arrived twice.
return nil
}
if conn.packetQueue.WindowSize() > maxWindowSize && conn.handler.limitsEnabled() {
return fmt.Errorf("packet queue window size is too big (%v-%v)", conn.packetQueue.lowest, conn.packetQueue.highest)
}
for _, content := range conn.packetQueue.fetch() {
if err := conn.handlePacket(content); err != nil {
return err
}
}
return nil
}
var errZeroPacket = errors.New("handle packet: zero packet length")
// handlePacket handles a packet serialised in byte slice b. If not successful,
// an error is returned. If the packet was not handled by RakNet, it is sent to
// the packet channel.
func (conn *Conn) handlePacket(b []byte) error {
if len(b) == 0 {
return errZeroPacket
}
if conn.closing.Load() != 0 {
// Don't continue handling packets if the connection is being closed.
return nil
}
handled, err := conn.handler.handle(conn, b)
if err != nil {
return fmt.Errorf("handle packet: %w", err)
}
if !handled {
conn.packets.Send(b)
}
return nil
}
func resolve(addr net.Addr) netip.AddrPort {
if udpAddr, ok := addr.(*net.UDPAddr); ok {
uaddr := *udpAddr
ip, _ := netip.AddrFromSlice(uaddr.IP)
return netip.AddrPortFrom(ip, uint16(uaddr.Port))
}
return netip.AddrPort{}
}
// receiveSplitPacket handles a passed split packet. If it is the last split
// packet of its sequence, it will continue handling the full packet as it
// otherwise would. An error is returned if the packet was not valid.
func (conn *Conn) receiveSplitPacket(p *packet) error {
const maxSplitCount = 512
const maxConcurrentSplits = 16
if p.splitCount > maxSplitCount && conn.handler.limitsEnabled() {
return fmt.Errorf("split packet: split count %v exceeds the maximum %v", p.splitCount, maxSplitCount)
}
if len(conn.splits) > maxConcurrentSplits && conn.handler.limitsEnabled() {
return fmt.Errorf("split packet: maximum concurrent splits %v reached", maxConcurrentSplits)
}
m, ok := conn.splits[p.splitID]
if !ok {
m = make([][]byte, p.splitCount)
conn.splits[p.splitID] = m
}
if p.splitIndex > uint32(len(m)-1) {
// The split index was either negative or was bigger than the slice
// size, meaning the packet is invalid.
return fmt.Errorf("split packet: split index %v is out of range (0 - %v)", p.splitIndex, len(m)-1)
}
m[p.splitIndex] = p.content
if slices.ContainsFunc(m, func(i []byte) bool { return len(i) == 0 }) {
// We haven't yet received all split fragments, so we cannot add the
// packets together yet.
return nil
}
p.content = slices.Concat(m...)
delete(conn.splits, p.splitID)
return conn.receivePacket(p)
}
// sendACK sends an acknowledgement packet containing the packet sequence
// numbers passed. If not successful, an error is returned.
func (conn *Conn) sendACK(packets ...uint24) error {
defer conn.ackBuf.Reset()
return conn.sendAcknowledgement(packets, bitFlagACK, conn.ackBuf)
}
// sendNACK sends an acknowledgement packet containing the packet sequence
// numbers passed. If not successful, an error is returned.
func (conn *Conn) sendNACK(packets []uint24) error {
defer conn.nackBuf.Reset()
return conn.sendAcknowledgement(packets, bitFlagNACK, conn.nackBuf)
}
// sendAcknowledgement sends an acknowledgement packet with the packets passed,
// potentially sending multiple if too many packets are passed. The bitflag is
// added to the header byte.
func (conn *Conn) sendAcknowledgement(packets []uint24, bitflag byte, buf *bytes.Buffer) error {
ack := &acknowledgement{packets: packets}
for len(ack.packets) != 0 {
buf.WriteByte(bitflag | bitFlagDatagram)
n := ack.write(buf, conn.effectiveMTU())
// We managed to write n packets in the ACK with this MTU size, write
// the next of the packets in a new ACK.
ack.packets = ack.packets[n:]
if err := conn.writeTo(buf.Bytes(), conn.raddr); err != nil {
return fmt.Errorf("send acknowlegement: %w", err)
}
buf.Reset()
}
return nil
}
// handleACK handles an acknowledgement packet from the other end of the
// connection. These mean that a datagram was successfully received by the
// other end.
func (conn *Conn) handleACK(b []byte) error {
conn.mu.Lock()
defer conn.mu.Unlock()
ack := &acknowledgement{}
if err := ack.read(b); err != nil {
return fmt.Errorf("read ACK: %w", err)
}
for _, sequenceNumber := range ack.packets {
// Take out all stored packets from the recovery queue.
if p, ok := conn.retransmission.acknowledge(sequenceNumber); ok {
// Clear the packet and return it to the pool so that it may be
// re-used.
p.content = p.content[:0]
packetPool.Put(p)
}
}
return nil
}
// handleNACK handles a negative acknowledgment packet from the other end of
// the connection. These mean that a datagram was found missing.
func (conn *Conn) handleNACK(b []byte) error {
conn.mu.Lock()
defer conn.mu.Unlock()
nack := &acknowledgement{}
if err := nack.read(b); err != nil {
return fmt.Errorf("read NACK: %w", err)
}
return conn.resend(nack.packets)
}
// resend sends all datagrams currently in the recovery queue with the sequence
// numbers passed.
func (conn *Conn) resend(sequenceNumbers []uint24) (err error) {
for _, sequenceNumber := range sequenceNumbers {
pk, ok := conn.retransmission.retransmit(sequenceNumber)
if !ok {
continue
}
if err = conn.sendDatagram(pk); err != nil {
return err
}
}
return nil
}
// sendDatagram sends a datagram over the connection that includes the packet
// passed. It is assigned a new sequence number and added to the retransmission.
func (conn *Conn) sendDatagram(pk *packet) error {
conn.buf.WriteByte(bitFlagDatagram | bitFlagNeedsBAndAS)
seq := conn.seq.Inc()
writeUint24(conn.buf, seq)
pk.write(conn.buf)
defer conn.buf.Reset()
// We then re-add the pk to the recovery queue in case the new one gets
// lost too, in which case we need to resend it again.
conn.retransmission.add(seq, pk)
if err := conn.writeTo(conn.buf.Bytes(), conn.raddr); err != nil {
return fmt.Errorf("send datagram: %w", err)
}
return nil
}
// writeTo calls WriteTo on the underlying UDP connection and returns an error
// only if the error returned is net.ErrClosed. In any other case, the error
// is logged but not returned. This is done because at this stage, packets
// being lost to an error can be recovered through resending.
func (conn *Conn) writeTo(p []byte, raddr net.Addr) error {
if _, err := conn.conn.WriteTo(p, raddr); errors.Is(err, net.ErrClosed) {
return fmt.Errorf("write to: %w", err)
} else if err != nil {
conn.handler.log().Error("write to: "+err.Error(), "raddr", raddr.String())
}
return nil
}
// timestamp returns a timestamp in milliseconds.
func timestamp() int64 {
return time.Now().UnixNano() / int64(time.Millisecond)
}