-
Notifications
You must be signed in to change notification settings - Fork 33
/
table-rhel8-srgmap-flat.csv
We can't make this file beautiful and searchable because it's too large.
2512 lines (1561 loc) · 648 KB
/
table-rhel8-srgmap-flat.csv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
CCI,SRGID,STIGID,SRG Requirement,Requirement,SRG VulDiscussion,VulDiscussion,Status,SRG Check,Check,SRG Fix,Fix,Severity,Mitigation,Artifact Description,Status Justification
V-56571,SRG-OS-000001-GPOS-00001,TBD - Assigned by DISA after STIG release,The operating system must provide automated mechanisms for supporting account management functions.,V-56571:The operating system must provide automated mechanisms for supporting account management functions.,"Enterprise environments make account management challenging and complex. A manual process for account management functions adds the risk of a potential oversight or other errors.
A comprehensive account management process that includes automation helps to ensure accounts designated as requiring attention are consistently and promptly addressed. Examples include, but are not limited to, using automation to take action on multiple accounts designated as inactive, suspended or terminated, or by disabling accounts located in non-centralized account stores such as multiple servers. This requirement applies to all account types, including individual/user, shared, group, system, guest/anonymous, emergency, developer/manufacturer/vendor, temporary, and service.
The automated mechanisms may reside within the operating system itself or may be offered by other infrastructure providing automated account management capabilities. Automated mechanisms may be composed of differing technologies that, when placed together, contain an overall automated mechanism supporting an organization's automated account management requirements.
Account management functions include: assigning group or role membership; identifying account type; specifying user access authorizations (i.e., privileges); account removal, update, or termination; and administrative alerts. The use of automated mechanisms can include, for example: using email or text messaging to automatically notify account managers when users are terminated or transferred; using the information system to monitor account usage; and using automated telephonic notification to report atypical system account usage.","<VulnDiscussion>Enterprise environments make account management challenging and complex. A manual process for account management functions adds the risk of a potential oversight or other errors.
A comprehensive account management process that includes automation helps to ensure accounts designated as requiring attention are consistently and promptly addressed. Examples include, but are not limited to, using automation to take action on multiple accounts designated as inactive, suspended or terminated, or by disabling accounts located in non-centralized account stores such as multiple servers. This requirement applies to all account types, including individual/user, shared, group, system, guest/anonymous, emergency, developer/manufacturer/vendor, temporary, and service.
The automated mechanisms may reside within the operating system itself or may be offered by other infrastructure providing automated account management capabilities. Automated mechanisms may be composed of differing technologies that, when placed together, contain an overall automated mechanism supporting an organization's automated account management requirements.
Account management functions include: assigning group or role membership; identifying account type; specifying user access authorizations (i.e., privileges); account removal, update, or termination; and administrative alerts. The use of automated mechanisms can include, for example: using email or text messaging to automatically notify account managers when users are terminated or transferred; using the information system to monitor account usage; and using automated telephonic notification to report atypical system account usage.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system provides automated mechanisms for supporting account management functions. If it does not, this is a finding.",,Configure the operating system to provide automated mechanisms for supporting account management functions.,"<VulnDiscussion>Enterprise environments make account management challenging and complex. A manual process for account management functions adds the risk of a potential oversight or other errors.
A comprehensive account management process that includes automation helps to ensure accounts designated as requiring attention are consistently and promptly addressed. Examples include, but are not limited to, using automation to take action on multiple accounts designated as inactive, suspended or terminated, or by disabling accounts located in non-centralized account stores such as multiple servers. This requirement applies to all account types, including individual/user, shared, group, system, guest/anonymous, emergency, developer/manufacturer/vendor, temporary, and service.
The automated mechanisms may reside within the operating system itself or may be offered by other infrastructure providing automated account management capabilities. Automated mechanisms may be composed of differing technologies that, when placed together, contain an overall automated mechanism supporting an organization's automated account management requirements.
Account management functions include: assigning group or role membership; identifying account type; specifying user access authorizations (i.e., privileges); account removal, update, or termination; and administrative alerts. The use of automated mechanisms can include, for example: using email or text messaging to automatically notify account managers when users are terminated or transferred; using the information system to monitor account usage; and using automated telephonic notification to report atypical system account usage.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56575,SRG-OS-000002-GPOS-00002,TBD - Assigned by DISA after STIG release,The operating system must automatically remove or disable temporary user accounts after 72 hours.,V-56575:The operating system must automatically remove or disable temporary user accounts after 72 hours.,"If temporary user accounts remain active when no longer needed or for an excessive period, these accounts may be used to gain unauthorized access. To mitigate this risk, automated termination of all temporary accounts must be set upon account creation.
Temporary accounts are established as part of normal account activation procedures when there is a need for short-term accounts without the demand for immediacy in account activation.
If temporary accounts are used, the operating system must be configured to automatically terminate these types of accounts after a DoD-defined time period of 72 hours.
To address access requirements, many operating systems may be integrated with enterprise-level authentication/access mechanisms that meet or exceed access control policy requirements.","<VulnDiscussion>If temporary user accounts remain active when no longer needed or for an excessive period, these accounts may be used to gain unauthorized access. To mitigate this risk, automated termination of all temporary accounts must be set upon account creation.
Temporary accounts are established as part of normal account activation procedures when there is a need for short-term accounts without the demand for immediacy in account activation.
If temporary accounts are used, the operating system must be configured to automatically terminate these types of accounts after a DoD-defined time period of 72 hours.
To address access requirements, many operating systems may be integrated with enterprise-level authentication/access mechanisms that meet or exceed access control policy requirements.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system automatically removes or disables local temporary user accounts after 72 hours. If it does not, this is a finding.",,Configure the operating system to automatically remove or disable local temporary user accounts after 72 hours.,"<VulnDiscussion>If temporary user accounts remain active when no longer needed or for an excessive period, these accounts may be used to gain unauthorized access. To mitigate this risk, automated termination of all temporary accounts must be set upon account creation.
Temporary accounts are established as part of normal account activation procedures when there is a need for short-term accounts without the demand for immediacy in account activation.
If temporary accounts are used, the operating system must be configured to automatically terminate these types of accounts after a DoD-defined time period of 72 hours.
To address access requirements, many operating systems may be integrated with enterprise-level authentication/access mechanisms that meet or exceed access control policy requirements.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56577,SRG-OS-000004-GPOS-00004,TBD - Assigned by DISA after STIG release,The operating system must audit all account creations.,V-56577:The operating system must audit all account creations.,"Once an attacker establishes access to a system, the attacker often attempts to create a persistent method of reestablishing access. One way to accomplish this is for the attacker to create an account. Auditing account creation actions provides logging that can be used for forensic purposes.
To address access requirements, many operating systems may be integrated with enterprise level authentication/access/auditing mechanisms that meet or exceed access control policy requirements. ","<VulnDiscussion>Once an attacker establishes access to a system, the attacker often attempts to create a persistent method of reestablishing access. One way to accomplish this is for the attacker to create an account. Auditing account creation actions provides logging that can be used for forensic purposes.
To address access requirements, many operating systems may be integrated with enterprise level authentication/access/auditing mechanisms that meet or exceed access control policy requirements. </VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system automatically audits account creation. If it does not, this is a finding.",,Configure the operating system to automatically audit account creation.,"<VulnDiscussion>Once an attacker establishes access to a system, the attacker often attempts to create a persistent method of reestablishing access. One way to accomplish this is for the attacker to create an account. Auditing account creation actions provides logging that can be used for forensic purposes.
To address access requirements, many operating systems may be integrated with enterprise level authentication/access/auditing mechanisms that meet or exceed access control policy requirements. </VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56579,SRG-OS-000021-GPOS-00005,TBD - Assigned by DISA after STIG release,The operating system must enforce the limit of three consecutive invalid logon attempts by a user during a 15-minute time period.,V-56579:The operating system must enforce the limit of three consecutive invalid logon attempts by a user during a 15-minute time period.,"By limiting the number of failed logon attempts, the risk of unauthorized system access via user password guessing, otherwise known as brute-force attacks, is reduced. Limits are imposed by locking the account.","<VulnDiscussion>By limiting the number of failed logon attempts, the risk of unauthorized system access via user password guessing, otherwise known as brute-force attacks, is reduced. Limits are imposed by locking the account.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify that the operating system enforces the limit of three consecutive invalid logon attempts by a user during a 15-minute time period. If it does not, this is a finding.",,Configure the operating system to enforce the limit of three consecutive invalid logon attempts by a user during a 15-minute time period.,"<VulnDiscussion>By limiting the number of failed logon attempts, the risk of unauthorized system access via user password guessing, otherwise known as brute-force attacks, is reduced. Limits are imposed by locking the account.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70845,SRG-OS-000023-GPOS-00006,TBD - Assigned by DISA after STIG release,The operating system must display the Standard Mandatory DoD Notice and Consent Banner before granting local or remote access to the system.,SV-70845:The operating system must display the Standard Mandatory DoD Notice and Consent Banner before granting local or remote access to the system.,"Display of a standardized and approved use notification before granting access to the operating system ensures privacy and security notification verbiage used is consistent with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and guidance.
System use notifications are required only for access via logon interfaces with human users and are not required when such human interfaces do not exist.
The banner must be formatted in accordance with applicable DoD policy. Use the following verbiage for operating systems that can accommodate banners of 1300 characters:
""You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only.
By using this IS (which includes any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access controls) to protect USG interests--not for your personal benefit or privacy.
-Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.""
Use the following verbiage for operating systems that have severe limitations on the number of characters that can be displayed in the banner:
""I've read & consent to terms in IS user agreem't.""","<VulnDiscussion>Display of a standardized and approved use notification before granting access to the operating system ensures privacy and security notification verbiage used is consistent with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and guidance.
System use notifications are required only for access via logon interfaces with human users and are not required when such human interfaces do not exist.
The banner must be formatted in accordance with applicable DoD policy. Use the following verbiage for operating systems that can accommodate banners of 1300 characters:
""You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only.
By using this IS (which includes any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access controls) to protect USG interests--not for your personal benefit or privacy.
-Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.""
Use the following verbiage for operating systems that have severe limitations on the number of characters that can be displayed in the banner:
""I've read & consent to terms in IS user agreem't.""</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system displays the Standard Mandatory DoD Notice and Consent Banner before granting access to the system.
The banner must be formatted in accordance with applicable DoD policy. Use the following verbiage for operating systems that can accommodate banners of 1300 characters:
""You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only.
By using this IS (which includes any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access controls) to protect USG interests--not for your personal benefit or privacy.
-Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.""
Use the following verbiage for operating systems that have severe limitations on the number of characters that can be displayed in the banner:
""I've read & consent to terms in IS user agreem't.""
If it does not, this is a finding.",,"Configure the operating system to display the Standard Mandatory DoD Notice and Consent Banner before granting access to the system.
The banner must be formatted in accordance with applicable DoD policy. Use the following verbiage for operating systems that can accommodate banners of 1300 characters:
""You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only.
By using this IS (which includes any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access controls) to protect USG interests--not for your personal benefit or privacy.
-Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.""
Use the following verbiage for operating systems that have severe limitations on the number of characters that can be displayed in the banner:
""I've read & consent to terms in IS user agreem't.""
If it does not, this is a finding.","<VulnDiscussion>Display of a standardized and approved use notification before granting access to the operating system ensures privacy and security notification verbiage used is consistent with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and guidance.
System use notifications are required only for access via logon interfaces with human users and are not required when such human interfaces do not exist.
The banner must be formatted in accordance with applicable DoD policy. Use the following verbiage for operating systems that can accommodate banners of 1300 characters:
""You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only.
By using this IS (which includes any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access controls) to protect USG interests--not for your personal benefit or privacy.
-Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.""
Use the following verbiage for operating systems that have severe limitations on the number of characters that can be displayed in the banner:
""I've read & consent to terms in IS user agreem't.""</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56593,SRG-OS-000024-GPOS-00007,TBD - Assigned by DISA after STIG release,The operating system must display the Standard Mandatory DoD Notice and Consent Banner until users acknowledge the usage conditions and take explicit actions to log on for further access.,V-56593:The operating system must display the Standard Mandatory DoD Notice and Consent Banner until users acknowledge the usage conditions and take explicit actions to log on for further access.,"The banner must be acknowledged by the user prior to allowing the user access to the operating system. This provides assurance that the user has seen the message and accepted the conditions for access. If the consent banner is not acknowledged by the user, DoD will not be in compliance with system use notifications required by law.
To establish acceptance of the application usage policy, a click-through banner at system logon is required. The system must prevent further activity until the user executes a positive action to manifest agreement by clicking on a box indicating ""OK"".","<VulnDiscussion>The banner must be acknowledged by the user prior to allowing the user access to the operating system. This provides assurance that the user has seen the message and accepted the conditions for access. If the consent banner is not acknowledged by the user, DoD will not be in compliance with system use notifications required by law.
To establish acceptance of the application usage policy, a click-through banner at system logon is required. The system must prevent further activity until the user executes a positive action to manifest agreement by clicking on a box indicating ""OK"".</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system displays the Standard Mandatory DoD Notice and Consent Banner until users acknowledge the usage conditions and take explicit actions to log on for further access. If it does not, this is a finding.",,Configure the operating system to display the Standard Mandatory DoD Notice and Consent Banner until users acknowledge the usage conditions and take explicit actions to log on for further access.,"<VulnDiscussion>The banner must be acknowledged by the user prior to allowing the user access to the operating system. This provides assurance that the user has seen the message and accepted the conditions for access. If the consent banner is not acknowledged by the user, DoD will not be in compliance with system use notifications required by law.
To establish acceptance of the application usage policy, a click-through banner at system logon is required. The system must prevent further activity until the user executes a positive action to manifest agreement by clicking on a box indicating ""OK"".</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56629,SRG-OS-000027-GPOS-00008,TBD - Assigned by DISA after STIG release,The operating system must limit the number of concurrent sessions to ten for all accounts and/or account types.,V-56629:The operating system must limit the number of concurrent sessions to ten for all accounts and/or account types.,"Operating system management includes the ability to control the number of users and user sessions that utilize an operating system. Limiting the number of allowed users and sessions per user is helpful in reducing the risks related to DoS attacks.
This requirement addresses concurrent sessions for information system accounts and does not address concurrent sessions by single users via multiple system accounts. The maximum number of concurrent sessions should be defined based upon mission needs and the operational environment for each system.","<VulnDiscussion>Operating system management includes the ability to control the number of users and user sessions that utilize an operating system. Limiting the number of allowed users and sessions per user is helpful in reducing the risks related to DoS attacks.
This requirement addresses concurrent sessions for information system accounts and does not address concurrent sessions by single users via multiple system accounts. The maximum number of concurrent sessions should be defined based upon mission needs and the operational environment for each system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system limits the number of concurrent sessions to ten for all accounts and/or account types. If it does not, this is a finding.",,Configure the operating system to limit the number of concurrent sessions to ten for all accounts and/or account types.,"<VulnDiscussion>Operating system management includes the ability to control the number of users and user sessions that utilize an operating system. Limiting the number of allowed users and sessions per user is helpful in reducing the risks related to DoS attacks.
This requirement addresses concurrent sessions for information system accounts and does not address concurrent sessions by single users via multiple system accounts. The maximum number of concurrent sessions should be defined based upon mission needs and the operational environment for each system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70891,SRG-OS-000028-GPOS-00009,TBD - Assigned by DISA after STIG release,The operating system must retain a users session lock until that user reestablishes access using established identification and authentication procedures.,SV-70891:The operating system must retain a users session lock until that user reestablishes access using established identification and authentication procedures.,"A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to log out because of the temporary nature of the absence.
The session lock is implemented at the point where session activity can be determined.
Regardless of where the session lock is determined and implemented, once invoked, the session lock shall remain in place until the user re-authenticates. No other activity aside from re-authentication shall unlock the system.","<VulnDiscussion>A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to log out because of the temporary nature of the absence.
The session lock is implemented at the point where session activity can be determined.
Regardless of where the session lock is determined and implemented, once invoked, the session lock shall remain in place until the user re-authenticates. No other activity aside from re-authentication shall unlock the system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system retains a user's session lock until that user reestablishes access using established identification and authentication procedures. If it does not, this is a finding.",,Configure the operating system to retain a user's session lock until that user reestablishes access using established identification and authentication procedures.,"<VulnDiscussion>A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to log out because of the temporary nature of the absence.
The session lock is implemented at the point where session activity can be determined.
Regardless of where the session lock is determined and implemented, once invoked, the session lock shall remain in place until the user re-authenticates. No other activity aside from re-authentication shall unlock the system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56633,SRG-OS-000029-GPOS-00010,TBD - Assigned by DISA after STIG release,The operating system must initiate a session lock after a 15-minute period of inactivity for all connection types.,V-56633:The operating system must initiate a session lock after a 15-minute period of inactivity for all connection types.,"A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not log out because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, operating systems need to be able to identify when a user's session has idled and take action to initiate the session lock.
The session lock is implemented at the point where session activity can be determined and/or controlled.","<VulnDiscussion>A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not log out because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, operating systems need to be able to identify when a user's session has idled and take action to initiate the session lock.
The session lock is implemented at the point where session activity can be determined and/or controlled.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system initiates a session lock after a 15-minute period of inactivity for all connection types. If it does not, this is a finding.",,Configure the operating system to initiate a session lock after a 15-minute period of inactivity for all connection types.,"<VulnDiscussion>A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not log out because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, operating systems need to be able to identify when a user's session has idled and take action to initiate the session lock.
The session lock is implemented at the point where session activity can be determined and/or controlled.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56635,SRG-OS-000030-GPOS-00011,TBD - Assigned by DISA after STIG release,The operating system must provide the capability for users to directly initiate a session lock for all connection types.,V-56635:The operating system must provide the capability for users to directly initiate a session lock for all connection types.,"A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to log out because of the temporary nature of the absence.
The session lock is implemented at the point where session activity can be determined. Rather than be forced to wait for a period of time to expire before the user session can be locked, operating systems need to provide users with the ability to manually invoke a session lock so users may secure their session should the need arise for them to temporarily vacate the immediate physical vicinity.","<VulnDiscussion>A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to log out because of the temporary nature of the absence.
The session lock is implemented at the point where session activity can be determined. Rather than be forced to wait for a period of time to expire before the user session can be locked, operating systems need to provide users with the ability to manually invoke a session lock so users may secure their session should the need arise for them to temporarily vacate the immediate physical vicinity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system provides the capability for users to directly initiate a session lock for all connection types. If it does not, this is a finding.",,Configure the operating system to provide the capability for users to directly initiate a session lock for all connection types.,"<VulnDiscussion>A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to log out because of the temporary nature of the absence.
The session lock is implemented at the point where session activity can be determined. Rather than be forced to wait for a period of time to expire before the user session can be locked, operating systems need to provide users with the ability to manually invoke a session lock so users may secure their session should the need arise for them to temporarily vacate the immediate physical vicinity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70897,SRG-OS-000031-GPOS-00012,TBD - Assigned by DISA after STIG release,"The operating system must conceal, via the session lock, information previously visible on the display with a publicly viewable image.","SV-70897:The operating system must conceal, via the session lock, information previously visible on the display with a publicly viewable image.","A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not log out because of the temporary nature of the absence.
The session lock is implemented at the point where session activity can be determined. The operating system session lock event must include an obfuscation of the display screen so as to prevent other users from reading what was previously displayed.
Publicly viewable images can include static or dynamic images, for example, patterns used with screen savers, photographic images, solid colors, a clock, a battery life indicator, or a blank screen, with the additional caveat that none of the images convey sensitive information.","<VulnDiscussion>A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not log out because of the temporary nature of the absence.
The session lock is implemented at the point where session activity can be determined. The operating system session lock event must include an obfuscation of the display screen so as to prevent other users from reading what was previously displayed.
Publicly viewable images can include static or dynamic images, for example, patterns used with screen savers, photographic images, solid colors, a clock, a battery life indicator, or a blank screen, with the additional caveat that none of the images convey sensitive information.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system conceals, via the session lock, information previously visible on the display with a publicly viewable image. If it does not, this is a finding.",,"Configure the operating system to conceal, via the session lock, information previously visible on the display with a publicly viewable image.","<VulnDiscussion>A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not log out because of the temporary nature of the absence.
The session lock is implemented at the point where session activity can be determined. The operating system session lock event must include an obfuscation of the display screen so as to prevent other users from reading what was previously displayed.
Publicly viewable images can include static or dynamic images, for example, patterns used with screen savers, photographic images, solid colors, a clock, a battery life indicator, or a blank screen, with the additional caveat that none of the images convey sensitive information.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56639,SRG-OS-000032-GPOS-00013,TBD - Assigned by DISA after STIG release,The operating system must monitor remote access methods.,V-56639:The operating system must monitor remote access methods.,"Remote access services, such as those providing remote access to network devices and information systems, which lack automated monitoring capabilities, increase risk and make remote user access management difficult at best.
Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless.
Automated monitoring of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote access capabilities, such as Remote Desktop Protocol (RDP), on a variety of information system components (e.g., servers, workstations, notebook computers, smartphones, and tablets).","<VulnDiscussion>Remote access services, such as those providing remote access to network devices and information systems, which lack automated monitoring capabilities, increase risk and make remote user access management difficult at best.
Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless.
Automated monitoring of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote access capabilities, such as Remote Desktop Protocol (RDP), on a variety of information system components (e.g., servers, workstations, notebook computers, smartphones, and tablets).</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system monitors remote access methods. If it does not, this is a finding.",,Configure the operating system to monitor remote access methods.,"<VulnDiscussion>Remote access services, such as those providing remote access to network devices and information systems, which lack automated monitoring capabilities, increase risk and make remote user access management difficult at best.
Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless.
Automated monitoring of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote access capabilities, such as Remote Desktop Protocol (RDP), on a variety of information system components (e.g., servers, workstations, notebook computers, smartphones, and tablets).</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56641,SRG-OS-000033-GPOS-00014,TBD - Assigned by DISA after STIG release,The operating system must implement DoD-approved encryption to protect the confidentiality of remote access sessions.,V-56641:The operating system must implement DoD-approved encryption to protect the confidentiality of remote access sessions.,"Without confidentiality protection mechanisms, unauthorized individuals may gain access to sensitive information via a remote access session.
Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless.
Encryption provides a means to secure the remote connection to prevent unauthorized access to the data traversing the remote access connection (e.g., RDP), thereby providing a degree of confidentiality. The encryption strength of a mechanism is selected based on the security categorization of the information.","<VulnDiscussion>Without confidentiality protection mechanisms, unauthorized individuals may gain access to sensitive information via a remote access session.
Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless.
Encryption provides a means to secure the remote connection to prevent unauthorized access to the data traversing the remote access connection (e.g., RDP), thereby providing a degree of confidentiality. The encryption strength of a mechanism is selected based on the security categorization of the information.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system implements DoD-approved encryption to protect the confidentiality of remote access sessions. If it does not, this is a finding.",,Configure the operating system to implement DoD-approved encryption to protect the confidentiality of remote access sessions.,"<VulnDiscussion>Without confidentiality protection mechanisms, unauthorized individuals may gain access to sensitive information via a remote access session.
Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless.
Encryption provides a means to secure the remote connection to prevent unauthorized access to the data traversing the remote access connection (e.g., RDP), thereby providing a degree of confidentiality. The encryption strength of a mechanism is selected based on the security categorization of the information.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70907,SRG-OS-000037-GPOS-00015,TBD - Assigned by DISA after STIG release,The operating system must produce audit records containing information to establish what type of events occurred.,SV-70907:The operating system must produce audit records containing information to establish what type of events occurred.,"Without establishing what type of events occurred, it would be difficult to establish, correlate, and investigate the events leading up to an outage or attack.
Audit record content that may be necessary to satisfy this requirement includes, for example, time stamps, source and destination addresses, user/process identifiers, event descriptions, success/fail indications, filenames involved, and access control or flow control rules invoked.
Associating event types with detected events in the operating system audit logs provides a means of investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured operating system.","<VulnDiscussion>Without establishing what type of events occurred, it would be difficult to establish, correlate, and investigate the events leading up to an outage or attack.
Audit record content that may be necessary to satisfy this requirement includes, for example, time stamps, source and destination addresses, user/process identifiers, event descriptions, success/fail indications, filenames involved, and access control or flow control rules invoked.
Associating event types with detected events in the operating system audit logs provides a means of investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured operating system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system produces audit records containing information to establish what type of events occurred. If it does not, this is a finding.",,Configure the operating system to produce audit records containing information to establish what type of events occurred.,"<VulnDiscussion>Without establishing what type of events occurred, it would be difficult to establish, correlate, and investigate the events leading up to an outage or attack.
Audit record content that may be necessary to satisfy this requirement includes, for example, time stamps, source and destination addresses, user/process identifiers, event descriptions, success/fail indications, filenames involved, and access control or flow control rules invoked.
Associating event types with detected events in the operating system audit logs provides a means of investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured operating system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56649,SRG-OS-000038-GPOS-00016,TBD - Assigned by DISA after STIG release,The operating system must produce audit records containing information to establish when (date and time) the events occurred.,V-56649:The operating system must produce audit records containing information to establish when (date and time) the events occurred.,"Without establishing when events occurred, it is impossible to establish, correlate, and investigate the events leading up to an outage or attack.
In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to know when events occurred (date and time).
Associating event types with detected events in the operating system audit logs provides a means of investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured operating system.","<VulnDiscussion>Without establishing when events occurred, it is impossible to establish, correlate, and investigate the events leading up to an outage or attack.
In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to know when events occurred (date and time).
Associating event types with detected events in the operating system audit logs provides a means of investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured operating system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system produces audit records containing information to establish when (date and time) the events occurred. If it does not, this is a finding.",,Configure the operating system to produce audit records containing information to establish when (date and time) the events occurred.,"<VulnDiscussion>Without establishing when events occurred, it is impossible to establish, correlate, and investigate the events leading up to an outage or attack.
In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to know when events occurred (date and time).
Associating event types with detected events in the operating system audit logs provides a means of investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured operating system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56651,SRG-OS-000039-GPOS-00017,TBD - Assigned by DISA after STIG release,The operating system must produce audit records containing information to establish where the events occurred.,V-56651:The operating system must produce audit records containing information to establish where the events occurred.,"Without establishing where events occurred, it is impossible to establish, correlate, and investigate the events leading up to an outage or attack.
In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to know where events occurred, such as operating system components, modules, device identifiers, node names, file names, and functionality.
Associating information about where the event occurred within the operating system provides a means of investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured operating system.","<VulnDiscussion>Without establishing where events occurred, it is impossible to establish, correlate, and investigate the events leading up to an outage or attack.
In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to know where events occurred, such as operating system components, modules, device identifiers, node names, file names, and functionality.
Associating information about where the event occurred within the operating system provides a means of investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured operating system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system produces audit records containing information to establish where the events occurred. If it does not, this is a finding.",,Configure the operating system to produce audit records containing information to establish where the events occurred.,"<VulnDiscussion>Without establishing where events occurred, it is impossible to establish, correlate, and investigate the events leading up to an outage or attack.
In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to know where events occurred, such as operating system components, modules, device identifiers, node names, file names, and functionality.
Associating information about where the event occurred within the operating system provides a means of investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured operating system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56653,SRG-OS-000040-GPOS-00018,TBD - Assigned by DISA after STIG release,The operating system must produce audit records containing information to establish the source of the events.,V-56653:The operating system must produce audit records containing information to establish the source of the events.,"Without establishing the source of the event, it is impossible to establish, correlate, and investigate the events leading up to an outage or attack.
In addition to logging where events occur within the operating system, the operating system must also generate audit records that identify sources of events. Sources of operating system events include, but are not limited to, processes and services.
In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to know the source of the event.","<VulnDiscussion>Without establishing the source of the event, it is impossible to establish, correlate, and investigate the events leading up to an outage or attack.
In addition to logging where events occur within the operating system, the operating system must also generate audit records that identify sources of events. Sources of operating system events include, but are not limited to, processes and services.
In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to know the source of the event.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system produces audit records containing information to establish the source of the events. If it does not, this is a finding.",,Configure the operating system to produce audit records containing information to establish the source of the events.,"<VulnDiscussion>Without establishing the source of the event, it is impossible to establish, correlate, and investigate the events leading up to an outage or attack.
In addition to logging where events occur within the operating system, the operating system must also generate audit records that identify sources of events. Sources of operating system events include, but are not limited to, processes and services.
In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to know the source of the event.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56655,SRG-OS-000041-GPOS-00019,TBD - Assigned by DISA after STIG release,The operating system must produce audit records containing information to establish the outcome of the events.,V-56655:The operating system must produce audit records containing information to establish the outcome of the events.,"Without information about the outcome of events, security personnel cannot make an accurate assessment as to whether an attack was successful or if changes were made to the security state of the system.
Event outcomes can include indicators of event success or failure and event-specific results (e.g., the security state of the information system after the event occurred). As such, they also provide a means to measure the impact of an event and help authorized personnel to determine the appropriate response.","<VulnDiscussion>Without information about the outcome of events, security personnel cannot make an accurate assessment as to whether an attack was successful or if changes were made to the security state of the system.
Event outcomes can include indicators of event success or failure and event-specific results (e.g., the security state of the information system after the event occurred). As such, they also provide a means to measure the impact of an event and help authorized personnel to determine the appropriate response.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system produces audit records containing information to establish the outcome of the events. If it does not, this is a finding.",,Configure the operating system to produce audit records containing information to establish the outcome of the events.,"<VulnDiscussion>Without information about the outcome of events, security personnel cannot make an accurate assessment as to whether an attack was successful or if changes were made to the security state of the system.
Event outcomes can include indicators of event success or failure and event-specific results (e.g., the security state of the information system after the event occurred). As such, they also provide a means to measure the impact of an event and help authorized personnel to determine the appropriate response.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56657,SRG-OS-000042-GPOS-00020,TBD - Assigned by DISA after STIG release,The operating system must generate audit records containing the full-text recording of privileged commands.,V-56657:The operating system must generate audit records containing the full-text recording of privileged commands.,"Reconstruction of harmful events or forensic analysis is not possible if audit records do not contain enough information.
At a minimum, the organization must audit the full-text recording of privileged commands. The organization must maintain audit trails in sufficient detail to reconstruct events to determine the cause and impact of compromise.","<VulnDiscussion>Reconstruction of harmful events or forensic analysis is not possible if audit records do not contain enough information.
At a minimum, the organization must audit the full-text recording of privileged commands. The organization must maintain audit trails in sufficient detail to reconstruct events to determine the cause and impact of compromise.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system generates audit records containing the full-text recording of privileged commands. If it does not, this is a finding.",,Configure the operating system to generate audit records containing the full-text recording of privileged commands.,"<VulnDiscussion>Reconstruction of harmful events or forensic analysis is not possible if audit records do not contain enough information.
At a minimum, the organization must audit the full-text recording of privileged commands. The organization must maintain audit trails in sufficient detail to reconstruct events to determine the cause and impact of compromise.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56659,SRG-OS-000042-GPOS-00021,TBD - Assigned by DISA after STIG release,The operating system must produce audit records containing the individual identities of group account users.,V-56659:The operating system must produce audit records containing the individual identities of group account users.,"Reconstruction of harmful events or forensic analysis is not possible if audit records do not contain enough information.
At a minimum, the organization must audit the individual identities of group users. The organization must maintain audit trails in sufficient detail to reconstruct events to determine the actual account involved in the activity.","<VulnDiscussion>Reconstruction of harmful events or forensic analysis is not possible if audit records do not contain enough information.
At a minimum, the organization must audit the individual identities of group users. The organization must maintain audit trails in sufficient detail to reconstruct events to determine the actual account involved in the activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system produces audit records containing the individual identities of group account users. If it does not, this is a finding.",,Configure the operating system to produce audit records containing the individual identities of group account users.,"<VulnDiscussion>Reconstruction of harmful events or forensic analysis is not possible if audit records do not contain enough information.
At a minimum, the organization must audit the individual identities of group users. The organization must maintain audit trails in sufficient detail to reconstruct events to determine the actual account involved in the activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56661,SRG-OS-000046-GPOS-00022,TBD - Assigned by DISA after STIG release,The operating system must alert the ISSO and SA (at a minimum) in the event of an audit processing failure.,V-56661:The operating system must alert the ISSO and SA (at a minimum) in the event of an audit processing failure.,"It is critical for the appropriate personnel to be aware if a system is at risk of failing to process audit logs as required. Without this notification, the security personnel may be unaware of an impending failure of the audit capability, and system operation may be adversely affected.
Audit processing failures include software/hardware errors, failures in the audit capturing mechanisms, and audit storage capacity being reached or exceeded.
This requirement applies to each audit data storage repository (i.e., distinct information system component where audit records are stored), the centralized audit storage capacity of organizations (i.e., all audit data storage repositories combined), or both.","<VulnDiscussion>It is critical for the appropriate personnel to be aware if a system is at risk of failing to process audit logs as required. Without this notification, the security personnel may be unaware of an impending failure of the audit capability, and system operation may be adversely affected.
Audit processing failures include software/hardware errors, failures in the audit capturing mechanisms, and audit storage capacity being reached or exceeded.
This requirement applies to each audit data storage repository (i.e., distinct information system component where audit records are stored), the centralized audit storage capacity of organizations (i.e., all audit data storage repositories combined), or both.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system alerts the ISSO and SA (at a minimum) in the event of an audit processing failure. If it does not, this is a finding.",,Configure the operating system to alert the ISSO and SA (at a minimum) in the event of an audit processing failure.,"<VulnDiscussion>It is critical for the appropriate personnel to be aware if a system is at risk of failing to process audit logs as required. Without this notification, the security personnel may be unaware of an impending failure of the audit capability, and system operation may be adversely affected.
Audit processing failures include software/hardware errors, failures in the audit capturing mechanisms, and audit storage capacity being reached or exceeded.
This requirement applies to each audit data storage repository (i.e., distinct information system component where audit records are stored), the centralized audit storage capacity of organizations (i.e., all audit data storage repositories combined), or both.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56663,SRG-OS-000047-GPOS-00023,TBD - Assigned by DISA after STIG release,The operating system must shut down by default upon audit failure (unless availability is an overriding concern).,V-56663:The operating system must shut down by default upon audit failure (unless availability is an overriding concern).,"It is critical that when the operating system is at risk of failing to process audit logs as required, it takes action to mitigate the failure. Audit processing failures include: software/hardware errors; failures in the audit capturing mechanisms; and audit storage capacity being reached or exceeded. Responses to audit failure depend upon the nature of the failure mode.
When availability is an overriding concern, other approved actions in response to an audit failure are as follows:
1) If the failure was caused by the lack of audit record storage capacity, the operating system must continue generating audit records if possible (automatically restarting the audit service if necessary), overwriting the oldest audit records in a first-in-first-out manner.
2) If audit records are sent to a centralized collection server and communication with this server is lost or the server fails, the operating system must queue audit records locally until communication is restored or until the audit records are retrieved manually. Upon restoration of the connection to the centralized collection server, action should be taken to synchronize the local audit data with the collection server.","<VulnDiscussion>It is critical that when the operating system is at risk of failing to process audit logs as required, it takes action to mitigate the failure. Audit processing failures include: software/hardware errors; failures in the audit capturing mechanisms; and audit storage capacity being reached or exceeded. Responses to audit failure depend upon the nature of the failure mode.
When availability is an overriding concern, other approved actions in response to an audit failure are as follows:
1) If the failure was caused by the lack of audit record storage capacity, the operating system must continue generating audit records if possible (automatically restarting the audit service if necessary), overwriting the oldest audit records in a first-in-first-out manner.
2) If audit records are sent to a centralized collection server and communication with this server is lost or the server fails, the operating system must queue audit records locally until communication is restored or until the audit records are retrieved manually. Upon restoration of the connection to the centralized collection server, action should be taken to synchronize the local audit data with the collection server.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system shuts down by default upon audit failure (unless availability is an overriding concern). If it does not, this is a finding.",,Configure the operating system to shut down by default upon audit failure (unless availability is an overriding concern).,"<VulnDiscussion>It is critical that when the operating system is at risk of failing to process audit logs as required, it takes action to mitigate the failure. Audit processing failures include: software/hardware errors; failures in the audit capturing mechanisms; and audit storage capacity being reached or exceeded. Responses to audit failure depend upon the nature of the failure mode.
When availability is an overriding concern, other approved actions in response to an audit failure are as follows:
1) If the failure was caused by the lack of audit record storage capacity, the operating system must continue generating audit records if possible (automatically restarting the audit service if necessary), overwriting the oldest audit records in a first-in-first-out manner.
2) If audit records are sent to a centralized collection server and communication with this server is lost or the server fails, the operating system must queue audit records locally until communication is restored or until the audit records are retrieved manually. Upon restoration of the connection to the centralized collection server, action should be taken to synchronize the local audit data with the collection server.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56665,SRG-OS-000051-GPOS-00024,TBD - Assigned by DISA after STIG release,The operating system must provide the capability to centrally review and analyze audit records from multiple components within the system.,V-56665:The operating system must provide the capability to centrally review and analyze audit records from multiple components within the system.,"Successful incident response and auditing relies on timely, accurate system information and analysis in order to allow the organization to identify and respond to potential incidents in a proficient manner. If the operating system does not provide the ability to centrally review the operating system logs, forensic analysis is negatively impacted.
Segregation of logging data to multiple disparate computer systems is counterproductive and makes log analysis and log event alarming difficult to implement and manage, particularly when the system has multiple logging components writing to different locations or systems.
To support the centralized capability, the operating system must be able to provide the information in a format that can be extracted and used, allowing the application performing the centralization of the log records to meet this requirement.","<VulnDiscussion>Successful incident response and auditing relies on timely, accurate system information and analysis in order to allow the organization to identify and respond to potential incidents in a proficient manner. If the operating system does not provide the ability to centrally review the operating system logs, forensic analysis is negatively impacted.
Segregation of logging data to multiple disparate computer systems is counterproductive and makes log analysis and log event alarming difficult to implement and manage, particularly when the system has multiple logging components writing to different locations or systems.
To support the centralized capability, the operating system must be able to provide the information in a format that can be extracted and used, allowing the application performing the centralization of the log records to meet this requirement.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system provides the capability to centrally review and analyze audit records from multiple components within the system. If it does not, this is a finding.",,Configure the operating system to provide the capability to centrally review and analyze audit records from multiple components within the system.,"<VulnDiscussion>Successful incident response and auditing relies on timely, accurate system information and analysis in order to allow the organization to identify and respond to potential incidents in a proficient manner. If the operating system does not provide the ability to centrally review the operating system logs, forensic analysis is negatively impacted.
Segregation of logging data to multiple disparate computer systems is counterproductive and makes log analysis and log event alarming difficult to implement and manage, particularly when the system has multiple logging components writing to different locations or systems.
To support the centralized capability, the operating system must be able to provide the information in a format that can be extracted and used, allowing the application performing the centralization of the log records to meet this requirement.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56667,SRG-OS-000054-GPOS-00025,TBD - Assigned by DISA after STIG release,The operating system must provide the capability to filter audit records for events of interest based upon all audit fields within audit records.,V-56667:The operating system must provide the capability to filter audit records for events of interest based upon all audit fields within audit records.,"The ability to specify the event criteria that are of interest provides the individuals reviewing the logs with the ability to quickly isolate and identify these events without having to review entries that are of little or no consequence to the investigation. Without this capability, forensic investigations are impeded.
Events of interest can be identified by the content of specific audit record fields, including, for example, identities of individuals, event types, event locations, event times, event dates, system resources involved, IP addresses involved, or information objects accessed. Organizations may define audit event criteria to any degree of granularity required, for example, locations selectable by general networking location (e.g., by network or subnetwork) or selectable by specific information system component.
This requires operating systems to provide the capability to customize audit record reports based on all available criteria.","<VulnDiscussion>The ability to specify the event criteria that are of interest provides the individuals reviewing the logs with the ability to quickly isolate and identify these events without having to review entries that are of little or no consequence to the investigation. Without this capability, forensic investigations are impeded.
Events of interest can be identified by the content of specific audit record fields, including, for example, identities of individuals, event types, event locations, event times, event dates, system resources involved, IP addresses involved, or information objects accessed. Organizations may define audit event criteria to any degree of granularity required, for example, locations selectable by general networking location (e.g., by network or subnetwork) or selectable by specific information system component.
This requires operating systems to provide the capability to customize audit record reports based on all available criteria.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system provides the capability to filter audit records for events of interest based upon all audit fields within audit records. If it does not, this is a finding.",,Configure the operating system to provide the capability to filter audit records for events of interest based upon all audit fields within audit records.,"<VulnDiscussion>The ability to specify the event criteria that are of interest provides the individuals reviewing the logs with the ability to quickly isolate and identify these events without having to review entries that are of little or no consequence to the investigation. Without this capability, forensic investigations are impeded.
Events of interest can be identified by the content of specific audit record fields, including, for example, identities of individuals, event types, event locations, event times, event dates, system resources involved, IP addresses involved, or information objects accessed. Organizations may define audit event criteria to any degree of granularity required, for example, locations selectable by general networking location (e.g., by network or subnetwork) or selectable by specific information system component.
This requires operating systems to provide the capability to customize audit record reports based on all available criteria.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56669,SRG-OS-000055-GPOS-00026,TBD - Assigned by DISA after STIG release,The operating system must use internal system clocks to generate time stamps for audit records.,V-56669:The operating system must use internal system clocks to generate time stamps for audit records.,"Without an internal clock used as the reference for the time stored on each event to provide a trusted common reference for the time, forensic analysis would be impeded. Determining the correct time a particular event occurred on a system is critical when conducting forensic analysis and investigating system events.
If the internal clock is not used, the system may not be able to provide time stamps for log messages. Additionally, externally generated time stamps may not be accurate.","<VulnDiscussion>Without an internal clock used as the reference for the time stored on each event to provide a trusted common reference for the time, forensic analysis would be impeded. Determining the correct time a particular event occurred on a system is critical when conducting forensic analysis and investigating system events.
If the internal clock is not used, the system may not be able to provide time stamps for log messages. Additionally, externally generated time stamps may not be accurate.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system uses internal system clocks to generate time stamps for audit records. If it does not, this is a finding.",,Configure the operating system to use internal system clocks to generate time stamps for audit records.,"<VulnDiscussion>Without an internal clock used as the reference for the time stored on each event to provide a trusted common reference for the time, forensic analysis would be impeded. Determining the correct time a particular event occurred on a system is critical when conducting forensic analysis and investigating system events.
If the internal clock is not used, the system may not be able to provide time stamps for log messages. Additionally, externally generated time stamps may not be accurate.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56671,SRG-OS-000057-GPOS-00027,TBD - Assigned by DISA after STIG release,The operating system must protect audit information from unauthorized read access.,V-56671:The operating system must protect audit information from unauthorized read access.,"Unauthorized disclosure of audit records can reveal system and configuration data to attackers, thus compromising its confidentiality.
Audit information includes all information (e.g., audit records, audit settings, audit reports) needed to successfully audit operating system activity.","<VulnDiscussion>Unauthorized disclosure of audit records can reveal system and configuration data to attackers, thus compromising its confidentiality.
Audit information includes all information (e.g., audit records, audit settings, audit reports) needed to successfully audit operating system activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system protects audit information from unauthorized read access. If it does not, this is a finding.",,Configure the operating system to protect audit information from unauthorized read access.,"<VulnDiscussion>Unauthorized disclosure of audit records can reveal system and configuration data to attackers, thus compromising its confidentiality.
Audit information includes all information (e.g., audit records, audit settings, audit reports) needed to successfully audit operating system activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70933,SRG-OS-000058-GPOS-00028,TBD - Assigned by DISA after STIG release,The operating system must protect audit information from unauthorized modification.,SV-70933:The operating system must protect audit information from unauthorized modification.,"If audit information were to become compromised, then forensic analysis and discovery of the true source of potentially malicious system activity is impossible to achieve.
To ensure the veracity of audit information, the operating system must protect audit information from unauthorized modification.
Audit information includes all information (e.g., audit records, audit settings, audit reports) needed to successfully audit information system activity.","<VulnDiscussion>If audit information were to become compromised, then forensic analysis and discovery of the true source of potentially malicious system activity is impossible to achieve.
To ensure the veracity of audit information, the operating system must protect audit information from unauthorized modification.
Audit information includes all information (e.g., audit records, audit settings, audit reports) needed to successfully audit information system activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system protects audit information from unauthorized modification. If it does not, this is a finding.",,Configure the operating system to protect audit information from unauthorized modification.,"<VulnDiscussion>If audit information were to become compromised, then forensic analysis and discovery of the true source of potentially malicious system activity is impossible to achieve.
To ensure the veracity of audit information, the operating system must protect audit information from unauthorized modification.
Audit information includes all information (e.g., audit records, audit settings, audit reports) needed to successfully audit information system activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70935,SRG-OS-000059-GPOS-00029,TBD - Assigned by DISA after STIG release,The operating system must protect audit information from unauthorized deletion.,SV-70935:The operating system must protect audit information from unauthorized deletion.,"If audit information were to become compromised, then forensic analysis and discovery of the true source of potentially malicious system activity is impossible to achieve.
To ensure the veracity of audit information, the operating system must protect audit information from unauthorized deletion. This requirement can be achieved through multiple methods, which will depend upon system architecture and design.
Audit information includes all information (e.g., audit records, audit settings, audit reports) needed to successfully audit information system activity.","<VulnDiscussion>If audit information were to become compromised, then forensic analysis and discovery of the true source of potentially malicious system activity is impossible to achieve.
To ensure the veracity of audit information, the operating system must protect audit information from unauthorized deletion. This requirement can be achieved through multiple methods, which will depend upon system architecture and design.
Audit information includes all information (e.g., audit records, audit settings, audit reports) needed to successfully audit information system activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system protects audit information from unauthorized deletion. If it does not, this is a finding.",,Configure the operating system to protect audit information from unauthorized deletion.,"<VulnDiscussion>If audit information were to become compromised, then forensic analysis and discovery of the true source of potentially malicious system activity is impossible to achieve.
To ensure the veracity of audit information, the operating system must protect audit information from unauthorized deletion. This requirement can be achieved through multiple methods, which will depend upon system architecture and design.
Audit information includes all information (e.g., audit records, audit settings, audit reports) needed to successfully audit information system activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56677,SRG-OS-000062-GPOS-00031,TBD - Assigned by DISA after STIG release,The operating system must provide audit record generation capability for DoD-defined auditable events for all operating system components.,V-56677:The operating system must provide audit record generation capability for DoD-defined auditable events for all operating system components.,"Without the capability to generate audit records, it would be difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one.
Audit records can be generated from various components within the information system (e.g., module or policy filter).
The list of audited events is the set of events for which audits are to be generated. This set of events is typically a subset of the list of all events for which the system is capable of generating audit records.
DoD has defined the list of events for which the operating system will provide an audit record generation capability as the following:
1) Successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels);
2) Access actions, such as successful and unsuccessful logon attempts, privileged activities or other system-level access, starting and ending time for user access to the system, concurrent logons from different workstations, successful and unsuccessful accesses to objects, all program initiations, and all direct access to the information system;
3) All account creations, modifications, disabling, and terminations; and
4) All kernel module load, unload, and restart actions.","<VulnDiscussion>Without the capability to generate audit records, it would be difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one.
Audit records can be generated from various components within the information system (e.g., module or policy filter).
The list of audited events is the set of events for which audits are to be generated. This set of events is typically a subset of the list of all events for which the system is capable of generating audit records.
DoD has defined the list of events for which the operating system will provide an audit record generation capability as the following:
1) Successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels);
2) Access actions, such as successful and unsuccessful logon attempts, privileged activities or other system-level access, starting and ending time for user access to the system, concurrent logons from different workstations, successful and unsuccessful accesses to objects, all program initiations, and all direct access to the information system;
3) All account creations, modifications, disabling, and terminations; and
4) All kernel module load, unload, and restart actions.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system provides audit record generation capability for DoD-defined auditable events for all operating system components.
DoD has defined the list of events for which the operating system will provide an audit record generation capability as the following:
1) Successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels);
2) Access actions, such as successful and unsuccessful logon attempts, privileged activities or other system-level access, starting and ending time for user access to the system, concurrent logons from different workstations, successful and unsuccessful accesses to objects, all program initiations, and all direct access to the information system;
3) All account creations, modifications, disabling, and terminations; and
4) All kernel module load, unload, and restart actions.
If it does not, this is a finding.",,"Configure the operating system to provide audit record generation capability for DoD-defined auditable events for all operating system components.
DoD has defined the list of events for which the operating system will provide an audit record generation capability as the following:
1) Successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels);
2) Access actions, such as successful and unsuccessful logon attempts, privileged activities or other system-level access, starting and ending time for user access to the system, concurrent logons from different workstations, successful and unsuccessful accesses to objects, all program initiations, and all direct access to the information system;
3) All account creations, modifications, disabling, and terminations; and
4) All kernel module load, unload, and restart actions.","<VulnDiscussion>Without the capability to generate audit records, it would be difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one.
Audit records can be generated from various components within the information system (e.g., module or policy filter).
The list of audited events is the set of events for which audits are to be generated. This set of events is typically a subset of the list of all events for which the system is capable of generating audit records.
DoD has defined the list of events for which the operating system will provide an audit record generation capability as the following:
1) Successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels);
2) Access actions, such as successful and unsuccessful logon attempts, privileged activities or other system-level access, starting and ending time for user access to the system, concurrent logons from different workstations, successful and unsuccessful accesses to objects, all program initiations, and all direct access to the information system;
3) All account creations, modifications, disabling, and terminations; and
4) All kernel module load, unload, and restart actions.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56679,SRG-OS-000063-GPOS-00032,TBD - Assigned by DISA after STIG release,The operating system must allow only the ISSM (or individuals or roles appointed by the ISSM) to select which auditable events are to be audited.,V-56679:The operating system must allow only the ISSM (or individuals or roles appointed by the ISSM) to select which auditable events are to be audited.,"Without the capability to restrict which roles and individuals can select which events are audited, unauthorized personnel may be able to prevent the auditing of critical events. Misconfigured audits may degrade the system's performance by overwhelming the audit log. Misconfigured audits may also make it more difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one.","<VulnDiscussion>Without the capability to restrict which roles and individuals can select which events are audited, unauthorized personnel may be able to prevent the auditing of critical events. Misconfigured audits may degrade the system's performance by overwhelming the audit log. Misconfigured audits may also make it more difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system allows only the ISSM (or individuals or roles appointed by the ISSM) to select which auditable events are to be audited. If it does not, this is a finding.",,Configure the operating system to allow only the ISSM (or individuals or roles appointed by the ISSM) to select which auditable events are to be audited.,"<VulnDiscussion>Without the capability to restrict which roles and individuals can select which events are audited, unauthorized personnel may be able to prevent the auditing of critical events. Misconfigured audits may degrade the system's performance by overwhelming the audit log. Misconfigured audits may also make it more difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70941,SRG-OS-000064-GPOS-00033,TBD - Assigned by DISA after STIG release,The operating system must generate audit records when successful/unsuccessful attempts to access privileges occur.,SV-70941:The operating system must generate audit records when successful/unsuccessful attempts to access privileges occur.,"Without generating audit records that are specific to the security and mission needs of the organization, it would be difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one.
Audit records can be generated from various components within the information system (e.g., module or policy filter).","<VulnDiscussion>Without generating audit records that are specific to the security and mission needs of the organization, it would be difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one.
Audit records can be generated from various components within the information system (e.g., module or policy filter).</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system generates audit records when successful/unsuccessful attempts to access privileges occur. If it does not, this is a finding.",,Configure the operating system to generate audit records when successful/unsuccessful attempts to access privileges occur.,"<VulnDiscussion>Without generating audit records that are specific to the security and mission needs of the organization, it would be difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one.
Audit records can be generated from various components within the information system (e.g., module or policy filter).</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56683,SRG-OS-000066-GPOS-00034,TBD - Assigned by DISA after STIG release,"The operating system, for PKI-based authentication, must validate certificates by constructing a certification path (which includes status information) to an accepted trust anchor.","V-56683:The operating system, for PKI-based authentication, must validate certificates by constructing a certification path (which includes status information) to an accepted trust anchor.","Without path validation, an informed trust decision by the relying party cannot be made when presented with any certificate not already explicitly trusted.
A trust anchor is an authoritative entity represented via a public key and associated data. It is used in the context of public key infrastructures, X.509 digital certificates, and DNSSEC.
When there is a chain of trust, usually the top entity to be trusted becomes the trust anchor; it can be, for example, a Certification Authority (CA). A certification path starts with the subject certificate and proceeds through a number of intermediate certificates up to a trusted root certificate, typically issued by a trusted CA.
This requirement verifies that a certification path to an accepted trust anchor is used for certificate validation and that the path includes status information. Path validation is necessary for a relying party to make an informed trust decision when presented with any certificate not already explicitly trusted. Status information for certification paths includes certificate revocation lists or online certificate status protocol responses. Validation of the certificate status information is out of scope for this requirement.","<VulnDiscussion>Without path validation, an informed trust decision by the relying party cannot be made when presented with any certificate not already explicitly trusted.
A trust anchor is an authoritative entity represented via a public key and associated data. It is used in the context of public key infrastructures, X.509 digital certificates, and DNSSEC.
When there is a chain of trust, usually the top entity to be trusted becomes the trust anchor; it can be, for example, a Certification Authority (CA). A certification path starts with the subject certificate and proceeds through a number of intermediate certificates up to a trusted root certificate, typically issued by a trusted CA.
This requirement verifies that a certification path to an accepted trust anchor is used for certificate validation and that the path includes status information. Path validation is necessary for a relying party to make an informed trust decision when presented with any certificate not already explicitly trusted. Status information for certification paths includes certificate revocation lists or online certificate status protocol responses. Validation of the certificate status information is out of scope for this requirement.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system, for PKI-based authentication, validates certificates by constructing a certification path (which includes status information) to an accepted trust anchor. If it does not, this is a finding.",,"Configure the operating system, for PKI-based authentication, to validate certificates by constructing a certification path (which includes status information) to an accepted trust anchor.","<VulnDiscussion>Without path validation, an informed trust decision by the relying party cannot be made when presented with any certificate not already explicitly trusted.
A trust anchor is an authoritative entity represented via a public key and associated data. It is used in the context of public key infrastructures, X.509 digital certificates, and DNSSEC.
When there is a chain of trust, usually the top entity to be trusted becomes the trust anchor; it can be, for example, a Certification Authority (CA). A certification path starts with the subject certificate and proceeds through a number of intermediate certificates up to a trusted root certificate, typically issued by a trusted CA.
This requirement verifies that a certification path to an accepted trust anchor is used for certificate validation and that the path includes status information. Path validation is necessary for a relying party to make an informed trust decision when presented with any certificate not already explicitly trusted. Status information for certification paths includes certificate revocation lists or online certificate status protocol responses. Validation of the certificate status information is out of scope for this requirement.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56685,SRG-OS-000067-GPOS-00035,TBD - Assigned by DISA after STIG release,"The operating system, for PKI-based authentication, must enforce authorized access to the corresponding private key.","V-56685:The operating system, for PKI-based authentication, must enforce authorized access to the corresponding private key."," If the private key is discovered, an attacker can use the key to authenticate as an authorized user and gain access to the network infrastructure.
The cornerstone of the PKI is the private key used to encrypt or digitally sign information.
If the private key is stolen, this will lead to the compromise of the authentication and non-repudiation gained through PKI because the attacker can use the private key to digitally sign documents and pretend to be the authorized user.
Both the holders of a digital certificate and the issuing authority must protect the computers, storage devices, or whatever they use to keep the private keys.","<VulnDiscussion> If the private key is discovered, an attacker can use the key to authenticate as an authorized user and gain access to the network infrastructure.
The cornerstone of the PKI is the private key used to encrypt or digitally sign information.
If the private key is stolen, this will lead to the compromise of the authentication and non-repudiation gained through PKI because the attacker can use the private key to digitally sign documents and pretend to be the authorized user.
Both the holders of a digital certificate and the issuing authority must protect the computers, storage devices, or whatever they use to keep the private keys.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system, for PKI-based authentication, enforces authorized access to the corresponding private key. If it does not, this is a finding.",,"Configure the operating system, for PKI-based authentication, to enforce authorized access to the corresponding private key.","<VulnDiscussion> If the private key is discovered, an attacker can use the key to authenticate as an authorized user and gain access to the network infrastructure.
The cornerstone of the PKI is the private key used to encrypt or digitally sign information.
If the private key is stolen, this will lead to the compromise of the authentication and non-repudiation gained through PKI because the attacker can use the private key to digitally sign documents and pretend to be the authorized user.
Both the holders of a digital certificate and the issuing authority must protect the computers, storage devices, or whatever they use to keep the private keys.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70947,SRG-OS-000068-GPOS-00036,TBD - Assigned by DISA after STIG release,The operating system must map the authenticated identity to the user or group account for PKI-based authentication.,SV-70947:The operating system must map the authenticated identity to the user or group account for PKI-based authentication.,"Without mapping the certificate used to authenticate to the user account, the ability to determine the identity of the individual user or group will not be available for forensic analysis.","<VulnDiscussion>Without mapping the certificate used to authenticate to the user account, the ability to determine the identity of the individual user or group will not be available for forensic analysis.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system maps the authenticated identity to the user or group account for PKI-based authentication. If it does not, this is a finding.",,Configure the operating system to map the authenticated identity to the user or group account for PKI-based authentication.,"<VulnDiscussion>Without mapping the certificate used to authenticate to the user account, the ability to determine the identity of the individual user or group will not be available for forensic analysis.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56689,SRG-OS-000069-GPOS-00037,TBD - Assigned by DISA after STIG release,The operating system must enforce password complexity by requiring that at least one upper-case character be used.,V-56689:The operating system must enforce password complexity by requiring that at least one upper-case character be used.,"Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.","<VulnDiscussion>Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system enforces password complexity by requiring that at least one upper-case character be used. If it does not, this is a finding.",,Configure the operating system to enforce password complexity by requiring that at least one upper-case character be used.,"<VulnDiscussion>Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56691,SRG-OS-000070-GPOS-00038,TBD - Assigned by DISA after STIG release,The operating system must enforce password complexity by requiring that at least one lower-case character be used.,V-56691:The operating system must enforce password complexity by requiring that at least one lower-case character be used.,"Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.","<VulnDiscussion>Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system enforces password complexity by requiring that at least one lower-case character be used. If it does not, this is a finding.",,Configure the operating system to enforce password complexity by requiring that at least one lower-case character be used.,"<VulnDiscussion>Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56693,SRG-OS-000071-GPOS-00039,TBD - Assigned by DISA after STIG release,The operating system must enforce password complexity by requiring that at least one numeric character be used.,V-56693:The operating system must enforce password complexity by requiring that at least one numeric character be used.,"Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.","<VulnDiscussion>Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system enforces password complexity by requiring that at least one numeric character be used. If it does not, this is a finding.",,Configure the operating system to enforce password complexity by requiring that at least one numeric character be used.,"<VulnDiscussion>Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56695,SRG-OS-000072-GPOS-00040,TBD - Assigned by DISA after STIG release,The operating system must require the change of at least 50% of the total number of characters when passwords are changed.,V-56695:The operating system must require the change of at least 50% of the total number of characters when passwords are changed.," If the operating system allows the user to consecutively reuse extensive portions of passwords, this increases the chances of password compromise by increasing the window of opportunity for attempts at guessing and brute-force attacks.
The number of changed characters refers to the number of changes required with respect to the total number of positions in the current password. In other words, characters may be the same within the two passwords; however, the positions of the like characters must be different.
If the password length is an odd number then number of changed characters must be rounded up. For example, a password length of 15 characters must require the change of at least 8 characters.","<VulnDiscussion> If the operating system allows the user to consecutively reuse extensive portions of passwords, this increases the chances of password compromise by increasing the window of opportunity for attempts at guessing and brute-force attacks.
The number of changed characters refers to the number of changes required with respect to the total number of positions in the current password. In other words, characters may be the same within the two passwords; however, the positions of the like characters must be different.
If the password length is an odd number then number of changed characters must be rounded up. For example, a password length of 15 characters must require the change of at least 8 characters.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system requires the change of at least eight of the total number of characters when passwords are changed. If it does not, this is a finding.",, Configure the operating system to require the change of at least eight of the total number of characters when passwords are changed.,"<VulnDiscussion> If the operating system allows the user to consecutively reuse extensive portions of passwords, this increases the chances of password compromise by increasing the window of opportunity for attempts at guessing and brute-force attacks.
The number of changed characters refers to the number of changes required with respect to the total number of positions in the current password. In other words, characters may be the same within the two passwords; however, the positions of the like characters must be different.
If the password length is an odd number then number of changed characters must be rounded up. For example, a password length of 15 characters must require the change of at least 8 characters.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56697,SRG-OS-000073-GPOS-00041,TBD - Assigned by DISA after STIG release,The operating system must store only encrypted representations of passwords.,V-56697:The operating system must store only encrypted representations of passwords.,"Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised.","<VulnDiscussion>Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system stores only encrypted representations of passwords. If it does not, this is a finding.",,Configure the operating system to store only encrypted representations of passwords.,"<VulnDiscussion>Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70959,SRG-OS-000074-GPOS-00042,TBD - Assigned by DISA after STIG release,The operating system must transmit only encrypted representations of passwords.,SV-70959:The operating system must transmit only encrypted representations of passwords.,"Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised.","<VulnDiscussion>Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system transmits only encrypted representations of passwords. If it does not, this is a finding.",,Configure the operating system to transmit only encrypted representations of passwords.,"<VulnDiscussion>Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56701,SRG-OS-000075-GPOS-00043,TBD - Assigned by DISA after STIG release,Operating systems must enforce 24 hours/1 day as the minimum password lifetime.,V-56701:Operating systems must enforce 24 hours/1 day as the minimum password lifetime.,"Enforcing a minimum password lifetime helps to prevent repeated password changes to defeat the password reuse or history enforcement requirement. If users are allowed to immediately and continually change their password, then the password could be repeatedly changed in a short period of time to defeat the organization's policy regarding password reuse.","<VulnDiscussion>Enforcing a minimum password lifetime helps to prevent repeated password changes to defeat the password reuse or history enforcement requirement. If users are allowed to immediately and continually change their password, then the password could be repeatedly changed in a short period of time to defeat the organization's policy regarding password reuse.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify operating system enforces 24 hours/1 day as the minimum password lifetime. If it does not, this is a finding.",,Configure operating system to enforce 24 hours/1 day as the minimum password lifetime.,"<VulnDiscussion>Enforcing a minimum password lifetime helps to prevent repeated password changes to defeat the password reuse or history enforcement requirement. If users are allowed to immediately and continually change their password, then the password could be repeatedly changed in a short period of time to defeat the organization's policy regarding password reuse.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56703,SRG-OS-000076-GPOS-00044,TBD - Assigned by DISA after STIG release,Operating systems must enforce a 60-day maximum password lifetime restriction.,V-56703:Operating systems must enforce a 60-day maximum password lifetime restriction.,"Any password, no matter how complex, can eventually be cracked. Therefore, passwords need to be changed periodically. If the operating system does not limit the lifetime of passwords and force users to change their passwords, there is the risk that the operating system passwords could be compromised.","<VulnDiscussion>Any password, no matter how complex, can eventually be cracked. Therefore, passwords need to be changed periodically. If the operating system does not limit the lifetime of passwords and force users to change their passwords, there is the risk that the operating system passwords could be compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify operating system enforces a 60-day maximum password lifetime restriction. If it does not, this is a finding.",,Configure operating system to enforce a 60-day maximum password lifetime restriction. ,"<VulnDiscussion>Any password, no matter how complex, can eventually be cracked. Therefore, passwords need to be changed periodically. If the operating system does not limit the lifetime of passwords and force users to change their passwords, there is the risk that the operating system passwords could be compromised.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-70965,SRG-OS-000077-GPOS-00045,TBD - Assigned by DISA after STIG release,The operating system must prohibit password reuse for a minimum of five generations.,SV-70965:The operating system must prohibit password reuse for a minimum of five generations.,"Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks. If the information system or application allows the user to consecutively reuse their password when that password has exceeded its defined lifetime, the end result is a password that is not changed as per policy requirements.","<VulnDiscussion>Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks. If the information system or application allows the user to consecutively reuse their password when that password has exceeded its defined lifetime, the end result is a password that is not changed as per policy requirements.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system prohibits password reuse for a minimum of five generations. If it does not, this is a finding.",,Configure the operating system to prohibit password reuse for a minimum of five generations.,"<VulnDiscussion>Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks. If the information system or application allows the user to consecutively reuse their password when that password has exceeded its defined lifetime, the end result is a password that is not changed as per policy requirements.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56743,SRG-OS-000078-GPOS-00046,TBD - Assigned by DISA after STIG release,The operating system must enforce a minimum 15-character password length.,V-56743:The operating system must enforce a minimum 15-character password length.,"The shorter the password, the lower the number of possible combinations that need to be tested before the password is compromised.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks. Password length is one factor of several that helps to determine strength and how long it takes to crack a password. Use of more characters in a password helps to exponentially increase the time and/or resources required to compromise the password.","<VulnDiscussion>The shorter the password, the lower the number of possible combinations that need to be tested before the password is compromised.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks. Password length is one factor of several that helps to determine strength and how long it takes to crack a password. Use of more characters in a password helps to exponentially increase the time and/or resources required to compromise the password.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system enforces a minimum 15-character password length. If it does not, this is a finding.",,Configure the operating system to enforce a minimum 15-character password length.,"<VulnDiscussion>The shorter the password, the lower the number of possible combinations that need to be tested before the password is compromised.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks. Password length is one factor of several that helps to determine strength and how long it takes to crack a password. Use of more characters in a password helps to exponentially increase the time and/or resources required to compromise the password.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56745,SRG-OS-000079-GPOS-00047,TBD - Assigned by DISA after STIG release,The operating system must obscure feedback of authentication information during the authentication process to protect the information from possible exploitation/use by unauthorized individuals.,V-56745:The operating system must obscure feedback of authentication information during the authentication process to protect the information from possible exploitation/use by unauthorized individuals.,"To prevent the compromise of authentication information, such as passwords during the authentication process, the feedback from the operating system shall not provide any information allowing an unauthorized user to compromise the authentication mechanism.
Obfuscation of user-provided information that is typed into the system is a method used when addressing this risk.
For example, displaying asterisks when a user types in a password is an example of obscuring feedback of authentication information.","<VulnDiscussion>To prevent the compromise of authentication information, such as passwords during the authentication process, the feedback from the operating system shall not provide any information allowing an unauthorized user to compromise the authentication mechanism.
Obfuscation of user-provided information that is typed into the system is a method used when addressing this risk.
For example, displaying asterisks when a user types in a password is an example of obscuring feedback of authentication information.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system obscures feedback of authentication information during the authentication process to protect the information from possible exploitation/use by unauthorized individuals. If it does not, this is a finding.",,Configure the operating system to obscure feedback of authentication information during the authentication process to protect the information from possible exploitation/use by unauthorized individuals.,"<VulnDiscussion>To prevent the compromise of authentication information, such as passwords during the authentication process, the feedback from the operating system shall not provide any information allowing an unauthorized user to compromise the authentication mechanism.
Obfuscation of user-provided information that is typed into the system is a method used when addressing this risk.
For example, displaying asterisks when a user types in a password is an example of obscuring feedback of authentication information.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-71007,SRG-OS-000080-GPOS-00048,TBD - Assigned by DISA after STIG release,The operating system must enforce approved authorizations for logical access to information and system resources in accordance with applicable access control policies.,SV-71007:The operating system must enforce approved authorizations for logical access to information and system resources in accordance with applicable access control policies.,"To mitigate the risk of unauthorized access to sensitive information by entities that have been issued certificates by DoD-approved PKIs, all DoD systems (e.g., web servers and web portals) must be properly configured to incorporate access control methods that do not rely solely on the possession of a certificate for access. Successful authentication must not automatically give an entity access to an asset or security boundary. Authorization procedures and controls must be implemented to ensure each authenticated entity also has a validated and current authorization. Authorization is the process of determining whether an entity, once authenticated, is permitted to access a specific asset. Information systems use access control policies and enforcement mechanisms to implement this requirement.
Access control policies include: identity-based policies, role-based policies, and attribute-based policies. Access enforcement mechanisms include: access control lists, access control matrices, and cryptography. These policies and mechanisms must be employed by the application to control access between users (or processes acting on behalf of users) and objects (e.g., devices, files, records, processes, programs, and domains) in the information system.","<VulnDiscussion>To mitigate the risk of unauthorized access to sensitive information by entities that have been issued certificates by DoD-approved PKIs, all DoD systems (e.g., web servers and web portals) must be properly configured to incorporate access control methods that do not rely solely on the possession of a certificate for access. Successful authentication must not automatically give an entity access to an asset or security boundary. Authorization procedures and controls must be implemented to ensure each authenticated entity also has a validated and current authorization. Authorization is the process of determining whether an entity, once authenticated, is permitted to access a specific asset. Information systems use access control policies and enforcement mechanisms to implement this requirement.
Access control policies include: identity-based policies, role-based policies, and attribute-based policies. Access enforcement mechanisms include: access control lists, access control matrices, and cryptography. These policies and mechanisms must be employed by the application to control access between users (or processes acting on behalf of users) and objects (e.g., devices, files, records, processes, programs, and domains) in the information system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies. If it does not, this is a finding.",,Configure the operating system to enforce approved authorizations for logical access to information and system resources in accordance with applicable access control policies.,"<VulnDiscussion>To mitigate the risk of unauthorized access to sensitive information by entities that have been issued certificates by DoD-approved PKIs, all DoD systems (e.g., web servers and web portals) must be properly configured to incorporate access control methods that do not rely solely on the possession of a certificate for access. Successful authentication must not automatically give an entity access to an asset or security boundary. Authorization procedures and controls must be implemented to ensure each authenticated entity also has a validated and current authorization. Authorization is the process of determining whether an entity, once authenticated, is permitted to access a specific asset. Information systems use access control policies and enforcement mechanisms to implement this requirement.
Access control policies include: identity-based policies, role-based policies, and attribute-based policies. Access enforcement mechanisms include: access control lists, access control matrices, and cryptography. These policies and mechanisms must be employed by the application to control access between users (or processes acting on behalf of users) and objects (e.g., devices, files, records, processes, programs, and domains) in the information system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-71009,SRG-OS-000095-GPOS-00049,TBD - Assigned by DISA after STIG release,The operating system must be configured to disable non-essential capabilities.,SV-71009:The operating system must be configured to disable non-essential capabilities.,"It is detrimental for operating systems to provide, or install by default, functionality exceeding requirements or mission objectives. These unnecessary capabilities or services are often overlooked and therefore may remain unsecured. They increase the risk to the platform by providing additional attack vectors.
Operating systems are capable of providing a wide variety of functions and services. Some of the functions and services, provided by default, may not be necessary to support essential organizational operations (e.g., key missions, functions).
Examples of non-essential capabilities include, but are not limited to, games, software packages, tools, and demonstration software, not related to requirements or providing a wide array of functionality not required for every mission, but which cannot be disabled.","<VulnDiscussion>It is detrimental for operating systems to provide, or install by default, functionality exceeding requirements or mission objectives. These unnecessary capabilities or services are often overlooked and therefore may remain unsecured. They increase the risk to the platform by providing additional attack vectors.
Operating systems are capable of providing a wide variety of functions and services. Some of the functions and services, provided by default, may not be necessary to support essential organizational operations (e.g., key missions, functions).
Examples of non-essential capabilities include, but are not limited to, games, software packages, tools, and demonstration software, not related to requirements or providing a wide array of functionality not required for every mission, but which cannot be disabled.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system is configured to disable non-essential capabilities. If it does not, this is a finding.",,Configure the operating system to disable non-essential capabilities.,"<VulnDiscussion>It is detrimental for operating systems to provide, or install by default, functionality exceeding requirements or mission objectives. These unnecessary capabilities or services are often overlooked and therefore may remain unsecured. They increase the risk to the platform by providing additional attack vectors.
Operating systems are capable of providing a wide variety of functions and services. Some of the functions and services, provided by default, may not be necessary to support essential organizational operations (e.g., key missions, functions).
Examples of non-essential capabilities include, but are not limited to, games, software packages, tools, and demonstration software, not related to requirements or providing a wide array of functionality not required for every mission, but which cannot be disabled.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56751,SRG-OS-000096-GPOS-00050,TBD - Assigned by DISA after STIG release,"The operating system must be configured to prohibit or restrict the use of functions, ports, protocols, and/or services, as defined in the PPSM CAL and vulnerability assessments.","V-56751:The operating system must be configured to prohibit or restrict the use of functions, ports, protocols, and/or services, as defined in the PPSM CAL and vulnerability assessments.","In order to prevent unauthorized connection of devices, unauthorized transfer of information, or unauthorized tunneling (i.e., embedding of data types within data types), organizations must disable or restrict unused or unnecessary physical and logical ports/protocols on information systems.
Operating systems are capable of providing a wide variety of functions and services. Some of the functions and services provided by default may not be necessary to support essential organizational operations. Additionally, it is sometimes convenient to provide multiple services from a single component (e.g., VPN and IPS); however, doing so increases risk over limiting the services provided by any one component.
To support the requirements and principles of least functionality, the operating system must support the organizational requirements, providing only essential capabilities and limiting the use of ports, protocols, and/or services to only those required, authorized, and approved to conduct official business or to address authorized quality of life issues.","<VulnDiscussion>In order to prevent unauthorized connection of devices, unauthorized transfer of information, or unauthorized tunneling (i.e., embedding of data types within data types), organizations must disable or restrict unused or unnecessary physical and logical ports/protocols on information systems.
Operating systems are capable of providing a wide variety of functions and services. Some of the functions and services provided by default may not be necessary to support essential organizational operations. Additionally, it is sometimes convenient to provide multiple services from a single component (e.g., VPN and IPS); however, doing so increases risk over limiting the services provided by any one component.
To support the requirements and principles of least functionality, the operating system must support the organizational requirements, providing only essential capabilities and limiting the use of ports, protocols, and/or services to only those required, authorized, and approved to conduct official business or to address authorized quality of life issues.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system is configured to prohibit or restrict the use of functions, ports, protocols, and/or services, as defined in the PPSM CAL and vulnerability assessments. If it does not, this is a finding.",,"Configure the operating system to prohibit or restrict the use of functions, ports, protocols, and/or services, as defined in the PPSM CAL and vulnerability assessments.","<VulnDiscussion>In order to prevent unauthorized connection of devices, unauthorized transfer of information, or unauthorized tunneling (i.e., embedding of data types within data types), organizations must disable or restrict unused or unnecessary physical and logical ports/protocols on information systems.
Operating systems are capable of providing a wide variety of functions and services. Some of the functions and services provided by default may not be necessary to support essential organizational operations. Additionally, it is sometimes convenient to provide multiple services from a single component (e.g., VPN and IPS); however, doing so increases risk over limiting the services provided by any one component.
To support the requirements and principles of least functionality, the operating system must support the organizational requirements, providing only essential capabilities and limiting the use of ports, protocols, and/or services to only those required, authorized, and approved to conduct official business or to address authorized quality of life issues.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56753,SRG-OS-000104-GPOS-00051,TBD - Assigned by DISA after STIG release,The operating system must uniquely identify and must authenticate organizational users (or processes acting on behalf of organizational users).,V-56753:The operating system must uniquely identify and must authenticate organizational users (or processes acting on behalf of organizational users).,"To assure accountability and prevent unauthenticated access, organizational users must be identified and authenticated to prevent potential misuse and compromise of the system.
Organizational users include organizational employees or individuals the organization deems to have equivalent status of employees (e.g., contractors). Organizational users (and processes acting on behalf of users) must be uniquely identified and authenticated to all accesses, except for the following:
1) Accesses explicitly identified and documented by the organization. Organizations document specific user actions that can be performed on the information system without identification or authentication; and
2) Accesses that occur through authorized use of group authenticators without individual authentication. Organizations may require unique identification of individuals in group accounts (e.g., shared privilege accounts) or for detailed accountability of individual activity.","<VulnDiscussion>To assure accountability and prevent unauthenticated access, organizational users must be identified and authenticated to prevent potential misuse and compromise of the system.
Organizational users include organizational employees or individuals the organization deems to have equivalent status of employees (e.g., contractors). Organizational users (and processes acting on behalf of users) must be uniquely identified and authenticated to all accesses, except for the following:
1) Accesses explicitly identified and documented by the organization. Organizations document specific user actions that can be performed on the information system without identification or authentication; and
2) Accesses that occur through authorized use of group authenticators without individual authentication. Organizations may require unique identification of individuals in group accounts (e.g., shared privilege accounts) or for detailed accountability of individual activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system uniquely identifies and authenticates organizational users (or processes acting on behalf of organizational users). If it does not, this is a finding.",,Configure the operating system to uniquely identify and authenticate organizational users (or processes acting on behalf of organizational users).,"<VulnDiscussion>To assure accountability and prevent unauthenticated access, organizational users must be identified and authenticated to prevent potential misuse and compromise of the system.
Organizational users include organizational employees or individuals the organization deems to have equivalent status of employees (e.g., contractors). Organizational users (and processes acting on behalf of users) must be uniquely identified and authenticated to all accesses, except for the following:
1) Accesses explicitly identified and documented by the organization. Organizations document specific user actions that can be performed on the information system without identification or authentication; and
2) Accesses that occur through authorized use of group authenticators without individual authentication. Organizations may require unique identification of individuals in group accounts (e.g., shared privilege accounts) or for detailed accountability of individual activity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56755,SRG-OS-000105-GPOS-00052,TBD - Assigned by DISA after STIG release,The operating system must use multifactor authentication for network access to privileged accounts.,V-56755:The operating system must use multifactor authentication for network access to privileged accounts.,"Without the use of multifactor authentication, the ease of access to privileged functions is greatly increased.
Multifactor authentication requires using two or more factors to achieve authentication.
Factors include:
1) something a user knows (e.g., password/PIN);
2) something a user has (e.g., cryptographic identification device, token); and
3) something a user is (e.g., biometric).
A privileged account is defined as an information system account with authorizations of a privileged user.
Network access is defined as access to an information system by a user (or a process acting on behalf of a user) communicating through a network (e.g., local area network, wide area network, or the Internet).
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.","<VulnDiscussion>Without the use of multifactor authentication, the ease of access to privileged functions is greatly increased.
Multifactor authentication requires using two or more factors to achieve authentication.
Factors include:
1) something a user knows (e.g., password/PIN);
2) something a user has (e.g., cryptographic identification device, token); and
3) something a user is (e.g., biometric).
A privileged account is defined as an information system account with authorizations of a privileged user.
Network access is defined as access to an information system by a user (or a process acting on behalf of a user) communicating through a network (e.g., local area network, wide area network, or the Internet).
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system uses multifactor authentication for network access to privileged accounts. If it does not, this is a finding.",,Configure the operating system to use multifactor authentication for network access to privileged accounts.,"<VulnDiscussion>Without the use of multifactor authentication, the ease of access to privileged functions is greatly increased.
Multifactor authentication requires using two or more factors to achieve authentication.
Factors include:
1) something a user knows (e.g., password/PIN);
2) something a user has (e.g., cryptographic identification device, token); and
3) something a user is (e.g., biometric).
A privileged account is defined as an information system account with authorizations of a privileged user.
Network access is defined as access to an information system by a user (or a process acting on behalf of a user) communicating through a network (e.g., local area network, wide area network, or the Internet).
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-71017,SRG-OS-000106-GPOS-00053,TBD - Assigned by DISA after STIG release,The operating system must use multifactor authentication for network access to non-privileged accounts.,SV-71017:The operating system must use multifactor authentication for network access to non-privileged accounts.,"To assure accountability and prevent unauthenticated access, non-privileged users must utilize multifactor authentication to prevent potential misuse and compromise of the system.
Multifactor authentication uses two or more factors to achieve authentication.
Factors include:
1) Something you know (e.g., password/PIN);
2) Something you have (e.g., cryptographic identification device, token); and
3) Something you are (e.g., biometric).
A non-privileged account is any information system account with authorizations of a non-privileged user.
Network access is any access to an application by a user (or process acting on behalf of a user) where said access is obtained through a network connection.
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.","<VulnDiscussion>To assure accountability and prevent unauthenticated access, non-privileged users must utilize multifactor authentication to prevent potential misuse and compromise of the system.
Multifactor authentication uses two or more factors to achieve authentication.
Factors include:
1) Something you know (e.g., password/PIN);
2) Something you have (e.g., cryptographic identification device, token); and
3) Something you are (e.g., biometric).
A non-privileged account is any information system account with authorizations of a non-privileged user.
Network access is any access to an application by a user (or process acting on behalf of a user) where said access is obtained through a network connection.
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system uses multifactor authentication for network access to non-privileged accounts. If it does not, this is a finding.",,Configure the operating system to use multifactor authentication for network access to non-privileged accounts.,"<VulnDiscussion>To assure accountability and prevent unauthenticated access, non-privileged users must utilize multifactor authentication to prevent potential misuse and compromise of the system.
Multifactor authentication uses two or more factors to achieve authentication.
Factors include:
1) Something you know (e.g., password/PIN);
2) Something you have (e.g., cryptographic identification device, token); and
3) Something you are (e.g., biometric).
A non-privileged account is any information system account with authorizations of a non-privileged user.
Network access is any access to an application by a user (or process acting on behalf of a user) where said access is obtained through a network connection.
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56759,SRG-OS-000107-GPOS-00054,TBD - Assigned by DISA after STIG release,The operating system must use multifactor authentication for local access to privileged accounts.,V-56759:The operating system must use multifactor authentication for local access to privileged accounts.,"To assure accountability and prevent unauthenticated access, privileged users must utilize multifactor authentication to prevent potential misuse and compromise of the system.
Multifactor authentication is defined as using two or more factors to achieve authentication.
Factors include:
1) Something you know (e.g., password/PIN);
2) Something you have (e.g., cryptographic identification device, token); and
3) Something you are (e.g., biometric).
A privileged account is defined as an operating system account with authorizations of a privileged user.
Local access is defined as access to an organizational information system by a user (or process acting on behalf of a user) communicating through a direct connection without the use of a network.
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.","<VulnDiscussion>To assure accountability and prevent unauthenticated access, privileged users must utilize multifactor authentication to prevent potential misuse and compromise of the system.
Multifactor authentication is defined as using two or more factors to achieve authentication.
Factors include:
1) Something you know (e.g., password/PIN);
2) Something you have (e.g., cryptographic identification device, token); and
3) Something you are (e.g., biometric).
A privileged account is defined as an operating system account with authorizations of a privileged user.
Local access is defined as access to an organizational information system by a user (or process acting on behalf of a user) communicating through a direct connection without the use of a network.
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system uses multifactor authentication for local access to privileged accounts. If it does not, this is a finding.",,Configure the operating system to use multifactor authentication for local access to privileged accounts.,"<VulnDiscussion>To assure accountability and prevent unauthenticated access, privileged users must utilize multifactor authentication to prevent potential misuse and compromise of the system.
Multifactor authentication is defined as using two or more factors to achieve authentication.
Factors include:
1) Something you know (e.g., password/PIN);
2) Something you have (e.g., cryptographic identification device, token); and
3) Something you are (e.g., biometric).
A privileged account is defined as an operating system account with authorizations of a privileged user.
Local access is defined as access to an organizational information system by a user (or process acting on behalf of a user) communicating through a direct connection without the use of a network.
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56761,SRG-OS-000108-GPOS-00055,TBD - Assigned by DISA after STIG release,The operating system must use multifactor authentication for local access to non-privileged accounts.,V-56761:The operating system must use multifactor authentication for local access to non-privileged accounts.,"To assure accountability, prevent unauthenticated access, and prevent misuse of the system, non-privileged users must utilize multifactor authentication for local access.
Multifactor authentication is defined as using two or more factors to achieve authentication.
Factors include:
1) Something you know (e.g., password/PIN);
2) Something you have (e.g., cryptographic identification device or token); and
3) Something you are (e.g., biometric).
A non-privileged account is defined as an operating system account with authorizations of a regular or non-privileged user.
Local access is defined as access to an organizational information system by a user (or process acting on behalf of a user) communicating through a direct connection without the use of a network.
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.","<VulnDiscussion>To assure accountability, prevent unauthenticated access, and prevent misuse of the system, non-privileged users must utilize multifactor authentication for local access.
Multifactor authentication is defined as using two or more factors to achieve authentication.
Factors include:
1) Something you know (e.g., password/PIN);
2) Something you have (e.g., cryptographic identification device or token); and
3) Something you are (e.g., biometric).
A non-privileged account is defined as an operating system account with authorizations of a regular or non-privileged user.
Local access is defined as access to an organizational information system by a user (or process acting on behalf of a user) communicating through a direct connection without the use of a network.
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system uses multifactor authentication for local access to non-privileged accounts. If it does not, this is a finding.",,Configure the operating system to use multifactor authentication for local access to non-privileged accounts.,"<VulnDiscussion>To assure accountability, prevent unauthenticated access, and prevent misuse of the system, non-privileged users must utilize multifactor authentication for local access.
Multifactor authentication is defined as using two or more factors to achieve authentication.
Factors include:
1) Something you know (e.g., password/PIN);
2) Something you have (e.g., cryptographic identification device or token); and
3) Something you are (e.g., biometric).
A non-privileged account is defined as an operating system account with authorizations of a regular or non-privileged user.
Local access is defined as access to an organizational information system by a user (or process acting on behalf of a user) communicating through a direct connection without the use of a network.
The DoD CAC with DoD-approved PKI is an example of multifactor authentication.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-71023,SRG-OS-000109-GPOS-00056,TBD - Assigned by DISA after STIG release,The operating system must require individuals to be authenticated with an individual authenticator prior to using a group authenticator.,SV-71023:The operating system must require individuals to be authenticated with an individual authenticator prior to using a group authenticator.,"To assure individual accountability and prevent unauthorized access, organizational users must be individually identified and authenticated.
A group authenticator is a generic account used by multiple individuals. Use of a group authenticator alone does not uniquely identify individual users. Examples of the group authenticator is the UNIX OS ""root"" user account, the Windows ""Administrator"" account, the ""sa"" account, or a ""helpdesk"" account.
For example, the UNIX and Windows operating systems offer a 'switch user' capability allowing users to authenticate with their individual credentials and, when needed, 'switch' to the administrator role. This method provides for unique individual authentication prior to using a group authenticator.
Users (and any processes acting on behalf of users) need to be uniquely identified and authenticated for all accesses other than those accesses explicitly identified and documented by the organization, which outlines specific user actions that can be performed on the operating system without identification or authentication.
Requiring individuals to be authenticated with an individual authenticator prior to using a group authenticator allows for traceability of actions, as well as adding an additional level of protection of the actions that can be taken with group account knowledge.","<VulnDiscussion>To assure individual accountability and prevent unauthorized access, organizational users must be individually identified and authenticated.
A group authenticator is a generic account used by multiple individuals. Use of a group authenticator alone does not uniquely identify individual users. Examples of the group authenticator is the UNIX OS ""root"" user account, the Windows ""Administrator"" account, the ""sa"" account, or a ""helpdesk"" account.
For example, the UNIX and Windows operating systems offer a 'switch user' capability allowing users to authenticate with their individual credentials and, when needed, 'switch' to the administrator role. This method provides for unique individual authentication prior to using a group authenticator.
Users (and any processes acting on behalf of users) need to be uniquely identified and authenticated for all accesses other than those accesses explicitly identified and documented by the organization, which outlines specific user actions that can be performed on the operating system without identification or authentication.
Requiring individuals to be authenticated with an individual authenticator prior to using a group authenticator allows for traceability of actions, as well as adding an additional level of protection of the actions that can be taken with group account knowledge.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system requires individuals to be authenticated with an individual authenticator prior to using a group authenticator. If it does not, this is a finding.",,Configure the operating system to require individuals to be authenticated with an individual authenticator prior to using a group authenticator.,"<VulnDiscussion>To assure individual accountability and prevent unauthorized access, organizational users must be individually identified and authenticated.
A group authenticator is a generic account used by multiple individuals. Use of a group authenticator alone does not uniquely identify individual users. Examples of the group authenticator is the UNIX OS ""root"" user account, the Windows ""Administrator"" account, the ""sa"" account, or a ""helpdesk"" account.
For example, the UNIX and Windows operating systems offer a 'switch user' capability allowing users to authenticate with their individual credentials and, when needed, 'switch' to the administrator role. This method provides for unique individual authentication prior to using a group authenticator.
Users (and any processes acting on behalf of users) need to be uniquely identified and authenticated for all accesses other than those accesses explicitly identified and documented by the organization, which outlines specific user actions that can be performed on the operating system without identification or authentication.
Requiring individuals to be authenticated with an individual authenticator prior to using a group authenticator allows for traceability of actions, as well as adding an additional level of protection of the actions that can be taken with group account knowledge.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56765,SRG-OS-000112-GPOS-00057,TBD - Assigned by DISA after STIG release,The operating system must implement replay-resistant authentication mechanisms for network access to privileged accounts.,V-56765:The operating system must implement replay-resistant authentication mechanisms for network access to privileged accounts.,"A replay attack may enable an unauthorized user to gain access to the operating system. Authentication sessions between the authenticator and the operating system validating the user credentials must not be vulnerable to a replay attack.
An authentication process resists replay attacks if it is impractical to achieve a successful authentication by recording and replaying a previous authentication message.
A privileged account is any information system account with authorizations of a privileged user.
Techniques used to address this include protocols using nonces (e.g., numbers generated for a specific one-time use) or challenges (e.g., TLS, WS_Security). Additional techniques include time-synchronous or challenge-response one-time authenticators.","<VulnDiscussion>A replay attack may enable an unauthorized user to gain access to the operating system. Authentication sessions between the authenticator and the operating system validating the user credentials must not be vulnerable to a replay attack.
An authentication process resists replay attacks if it is impractical to achieve a successful authentication by recording and replaying a previous authentication message.
A privileged account is any information system account with authorizations of a privileged user.
Techniques used to address this include protocols using nonces (e.g., numbers generated for a specific one-time use) or challenges (e.g., TLS, WS_Security). Additional techniques include time-synchronous or challenge-response one-time authenticators.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system implements replay-resistant authentication mechanisms for network access to privileged accounts. If it does not, this is a finding.",,Configure the operating system to implement replay-resistant authentication mechanisms for network access to privileged accounts.,"<VulnDiscussion>A replay attack may enable an unauthorized user to gain access to the operating system. Authentication sessions between the authenticator and the operating system validating the user credentials must not be vulnerable to a replay attack.
An authentication process resists replay attacks if it is impractical to achieve a successful authentication by recording and replaying a previous authentication message.
A privileged account is any information system account with authorizations of a privileged user.
Techniques used to address this include protocols using nonces (e.g., numbers generated for a specific one-time use) or challenges (e.g., TLS, WS_Security). Additional techniques include time-synchronous or challenge-response one-time authenticators.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56767,SRG-OS-000113-GPOS-00058,TBD - Assigned by DISA after STIG release,The operating system must implement replay-resistant authentication mechanisms for network access to non-privileged accounts.,V-56767:The operating system must implement replay-resistant authentication mechanisms for network access to non-privileged accounts.,"A replay attack may enable an unauthorized user to gain access to the operating system. Authentication sessions between the authenticator and the operating system validating the user credentials must not be vulnerable to a replay attack.
An authentication process resists replay attacks if it is impractical to achieve a successful authentication by recording and replaying a previous authentication message.
A non-privileged account is any operating system account with authorizations of a non-privileged user.
Techniques used to address this include protocols using nonces (e.g., numbers generated for a specific one-time use) or challenges (e.g., TLS, WS_Security). Additional techniques include time-synchronous or challenge-response one-time authenticators.","<VulnDiscussion>A replay attack may enable an unauthorized user to gain access to the operating system. Authentication sessions between the authenticator and the operating system validating the user credentials must not be vulnerable to a replay attack.
An authentication process resists replay attacks if it is impractical to achieve a successful authentication by recording and replaying a previous authentication message.
A non-privileged account is any operating system account with authorizations of a non-privileged user.
Techniques used to address this include protocols using nonces (e.g., numbers generated for a specific one-time use) or challenges (e.g., TLS, WS_Security). Additional techniques include time-synchronous or challenge-response one-time authenticators.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system implements replay-resistant authentication mechanisms for network access to non-privileged accounts. If it does not, this is a finding.",,Configure the operating system to implement replay-resistant authentication mechanisms for network access to non-privileged accounts.,"<VulnDiscussion>A replay attack may enable an unauthorized user to gain access to the operating system. Authentication sessions between the authenticator and the operating system validating the user credentials must not be vulnerable to a replay attack.
An authentication process resists replay attacks if it is impractical to achieve a successful authentication by recording and replaying a previous authentication message.
A non-privileged account is any operating system account with authorizations of a non-privileged user.
Techniques used to address this include protocols using nonces (e.g., numbers generated for a specific one-time use) or challenges (e.g., TLS, WS_Security). Additional techniques include time-synchronous or challenge-response one-time authenticators.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
SV-71029,SRG-OS-000114-GPOS-00059,TBD - Assigned by DISA after STIG release,The operating system must uniquely identify peripherals before establishing a connection.,SV-71029:The operating system must uniquely identify peripherals before establishing a connection.,"Without identifying devices, unidentified or unknown devices may be introduced, thereby facilitating malicious activity.
Peripherals include, but are not limited to, such devices as flash drives, external storage, and printers.","<VulnDiscussion>Without identifying devices, unidentified or unknown devices may be introduced, thereby facilitating malicious activity.
Peripherals include, but are not limited to, such devices as flash drives, external storage, and printers.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system uniquely identifies peripherals before establishing a connection. If it does not, this is a finding.",,Configure the operating system to uniquely identify peripherals before establishing a connection.,"<VulnDiscussion>Without identifying devices, unidentified or unknown devices may be introduced, thereby facilitating malicious activity.
Peripherals include, but are not limited to, such devices as flash drives, external storage, and printers.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56771,SRG-OS-000118-GPOS-00060,TBD - Assigned by DISA after STIG release,"The operating system must disable account identifiers (individuals, groups, roles, and devices) after 35 days of inactivity.","V-56771:The operating system must disable account identifiers (individuals, groups, roles, and devices) after 35 days of inactivity.","Inactive identifiers pose a risk to systems and applications because attackers may exploit an inactive identifier and potentially obtain undetected access to the system. Owners of inactive accounts will not notice if unauthorized access to their user account has been obtained.
Operating systems need to track periods of inactivity and disable application identifiers after 35 days of inactivity.","<VulnDiscussion>Inactive identifiers pose a risk to systems and applications because attackers may exploit an inactive identifier and potentially obtain undetected access to the system. Owners of inactive accounts will not notice if unauthorized access to their user account has been obtained.
Operating systems need to track periods of inactivity and disable application identifiers after 35 days of inactivity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system disables account identifiers (individuals, groups, roles, and devices) after 35 days of inactivity. If it does not, this is a finding.",,"Configure the operating system to disable account identifiers (individuals, groups, roles, and devices) after 35 days of inactivity.","<VulnDiscussion>Inactive identifiers pose a risk to systems and applications because attackers may exploit an inactive identifier and potentially obtain undetected access to the system. Owners of inactive accounts will not notice if unauthorized access to their user account has been obtained.
Operating systems need to track periods of inactivity and disable application identifiers after 35 days of inactivity.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,
V-56785,SRG-OS-000120-GPOS-00061,TBD - Assigned by DISA after STIG release,"The operating system must use mechanisms meeting the requirements of applicable federal laws, Executive orders, directives, policies, regulations, standards, and guidance for authentication to a cryptographic module.","V-56785:The operating system must use mechanisms meeting the requirements of applicable federal laws, Executive orders, directives, policies, regulations, standards, and guidance for authentication to a cryptographic module.","Unapproved mechanisms that are used for authentication to the cryptographic module are not verified and therefore cannot be relied upon to provide confidentiality or integrity, and DoD data may be compromised.
Operating systems utilizing encryption are required to use FIPS-compliant mechanisms for authenticating to cryptographic modules.
FIPS 140-2 is the current standard for validating that mechanisms used to access cryptographic modules utilize authentication that meets DoD requirements. This allows for Security Levels 1, 2, 3, or 4 for use on a general purpose computing system.","<VulnDiscussion>Unapproved mechanisms that are used for authentication to the cryptographic module are not verified and therefore cannot be relied upon to provide confidentiality or integrity, and DoD data may be compromised.
Operating systems utilizing encryption are required to use FIPS-compliant mechanisms for authenticating to cryptographic modules.
FIPS 140-2 is the current standard for validating that mechanisms used to access cryptographic modules utilize authentication that meets DoD requirements. This allows for Security Levels 1, 2, 3, or 4 for use on a general purpose computing system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>","
Applicable - Configurable
","Verify the operating system uses mechanisms meeting the requirements of applicable federal laws, Executive orders, directives, policies, regulations, standards, and guidance for authentication to a cryptographic module. If it does not, this is a finding.",,"Configure the operating system to use mechanisms meeting the requirements of applicable federal laws, Executive orders, directives, policies, regulations, standards, and guidance for authentication to a cryptographic module.","<VulnDiscussion>Unapproved mechanisms that are used for authentication to the cryptographic module are not verified and therefore cannot be relied upon to provide confidentiality or integrity, and DoD data may be compromised.
Operating systems utilizing encryption are required to use FIPS-compliant mechanisms for authenticating to cryptographic modules.
FIPS 140-2 is the current standard for validating that mechanisms used to access cryptographic modules utilize authentication that meets DoD requirements. This allows for Security Levels 1, 2, 3, or 4 for use on a general purpose computing system.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>",,,,