forked from thuhcsi/NeuCoSVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
372 lines (308 loc) · 13.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import logging
import os
from collections import defaultdict
import matplotlib
import numpy as np
import soundfile as sf
import torch
from tensorboardX import SummaryWriter
from tqdm import tqdm
from utils.tools import save_checkpoint, load_checkpoint
# set to avoid matplotlib error in CLI environment
matplotlib.use("Agg")
class Trainer(object):
"""Customized trainer module for FastSVC training."""
def __init__(
self,
steps,
epochs,
data_loader,
sampler,
model,
criterion,
optimizer,
scheduler,
config,
device=torch.device("cpu"),
):
"""Initialize trainer.
Args:
steps (int): Initial global steps.
epochs (int): Initial global epochs.
data_loader (dict): Dict of data loaders. It must contrain "train" and "dev" loaders.
model (dict): Dict of models. It must contrain "generator" and "discriminator" models.
criterion (dict): Dict of criterions. It must contrain "stft" and "mse" criterions.
optimizer (dict): Dict of optimizers. It must contrain "generator" and "discriminator" optimizers.
scheduler (dict): Dict of schedulers. It must contrain "generator" and "discriminator" schedulers.
config (dict): Config dict loaded from yaml format configuration file.
device (torch.deive): Pytorch device instance.
"""
self.steps = steps
self.epochs = epochs
self.data_loader = data_loader
self.sampler = sampler
self.model = model
self.criterion = criterion
self.optimizer = optimizer
self.scheduler = scheduler
self.config = config
self.device = device
tensorboard_dir = os.path.join(config.interval_config.out_dir, 'logs')
os.makedirs(tensorboard_dir, exist_ok=True)
self.writer = SummaryWriter(tensorboard_dir)
self.finish_train = False
self.total_train_loss = defaultdict(float)
self.total_eval_loss = defaultdict(float)
def run(self):
"""Run training."""
self.tqdm = tqdm(
initial=self.steps, total=self.config.training_config.train_max_steps, desc="[train]"
)
while True:
# train one epoch
self._train_epoch()
# check whether training is finished
if self.finish_train:
break
self.tqdm.close()
logging.info("Finished training.")
def _train_step(self, batch):
"""Train model one step."""
# parse batch
x, y = batch # x: (mels, pitch, ld, spk_index), y: audio
x = tuple([x_.to(self.device) for x_ in x])
y = y.to(self.device)
#######################
# Generator #
#######################
if self.steps > 0:
y_ = self.model["generator"](*x)
# initialize
gen_loss = 0.0
# multi-resolution sfft loss
sc_loss, mag_loss = self.criterion["stft"](y_, y)
gen_loss += sc_loss + mag_loss
self.total_train_loss[
"train/spectral_convergence_loss"
] += sc_loss.item()
self.total_train_loss[
"train/log_stft_magnitude_loss"
] += mag_loss.item()
# weighting aux loss
gen_loss *= self.config.loss_config.lambda_aux
# adversarial loss
if self.steps > self.config.training_config.discriminator_train_start_steps:
p_ = self.model["discriminator"](y_.unsqueeze(1))
adv_loss = self.criterion["gen_adv"](p_)
self.total_train_loss["train/adversarial_loss"] += adv_loss.item()
# add adversarial loss to generator loss
gen_loss += self.config.loss_config.lambda_adv * adv_loss
self.total_train_loss["train/generator_loss"] += gen_loss.item()
# update generator
self.optimizer["generator"].zero_grad()
self.optimizer["discriminator"].zero_grad()
gen_loss.backward()
if self.config.training_config.generator_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(
self.model["generator"].parameters(),
self.config.training_config.generator_grad_norm,
)
self.optimizer["generator"].step()
self.scheduler["generator"].step()
#######################
# Discriminator #
#######################
if self.steps > self.config.training_config.discriminator_train_start_steps:
# re-compute y_ which leads better quality
with torch.no_grad():
y_ = self.model["generator"](*x)
# discriminator loss
p = self.model["discriminator"](y.unsqueeze(1))
p_ = self.model["discriminator"](y_.unsqueeze(1).detach())
real_loss, fake_loss = self.criterion["dis_adv"](p_, p)
dis_loss = real_loss + fake_loss
self.total_train_loss["train/real_loss"] += real_loss.item()
self.total_train_loss["train/fake_loss"] += fake_loss.item()
self.total_train_loss["train/discriminator_loss"] += dis_loss.item()
# update discriminator
self.optimizer["discriminator"].zero_grad()
dis_loss.backward()
if self.config.training_config.discriminator_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(
self.model["discriminator"].parameters(),
self.config.training_config.discriminator_grad_norm,
)
self.optimizer["discriminator"].step()
self.scheduler["discriminator"].step()
# update counts
self.steps += 1
self.tqdm.update(1)
self._check_train_finish()
def _train_epoch(self):
"""Train model one epoch."""
for train_steps_per_epoch, batch in enumerate(self.data_loader["train"], 1):
# train one step
self._train_step(batch)
# check interval
if self.config.training_config.rank == 0:
self._check_log_interval()
self._check_eval_interval()
self._check_save_interval()
# check whether training is finished
if self.finish_train:
return
# update
self.epochs += 1
self.train_steps_per_epoch = train_steps_per_epoch
logging.info(
f"(Steps: {self.steps}) Finished {self.epochs} epoch training "
f"({self.train_steps_per_epoch} steps per epoch)."
)
# needed for shuffle in distributed training
if self.config.training_config.distributed:
self.sampler["train"].set_epoch(self.epochs)
@torch.no_grad()
def _eval_step(self, batch):
"""Evaluate model one step."""
# parse batch
x, y = batch
x = tuple([x_.to(self.device) for x_ in x])
y = y.to(self.device)
#######################
# Generator #
#######################
y_ = self.model["generator"](*x)
# initialize
aux_loss = 0.0
# multi-resolution stft loss
sc_loss, mag_loss = self.criterion["stft"](y_, y)
aux_loss += sc_loss + mag_loss
self.total_eval_loss["eval/spectral_convergence_loss"] += sc_loss.item()
self.total_eval_loss["eval/log_stft_magnitude_loss"] += mag_loss.item()
# weighting stft loss
aux_loss *= self.config.loss_config.lambda_aux
# adversarial loss
p_ = self.model["discriminator"](y_.unsqueeze(1))
adv_loss = self.criterion["gen_adv"](p_)
gen_loss = aux_loss + self.config.loss_config.lambda_adv * adv_loss
#######################
# Discriminator #
#######################
p = self.model["discriminator"](y.unsqueeze(1))
p_ = self.model["discriminator"](y_.unsqueeze(1))
# discriminator loss
real_loss, fake_loss = self.criterion["dis_adv"](p_, p)
dis_loss = real_loss + fake_loss
# add to total eval loss
self.total_eval_loss["eval/adversarial_loss"] += adv_loss.item()
self.total_eval_loss["eval/generator_loss"] += gen_loss.item()
self.total_eval_loss["eval/real_loss"] += real_loss.item()
self.total_eval_loss["eval/fake_loss"] += fake_loss.item()
self.total_eval_loss["eval/discriminator_loss"] += dis_loss.item()
def _eval_epoch(self):
"""Evaluate model one epoch."""
logging.info(f"(Steps: {self.steps}) Start evaluation.")
# change mode
for key in self.model.keys():
self.model[key].eval()
# calculate loss for each batch
for eval_steps_per_epoch, batch in enumerate(
tqdm(self.data_loader["dev"], desc="[eval]"), 1
):
# eval one step
self._eval_step(batch)
# save intermediate result
if eval_steps_per_epoch == 1:
self._genearete_and_save_intermediate_result(batch)
logging.info(
f"(Steps: {self.steps}) Finished evaluation "
f"({eval_steps_per_epoch} steps per epoch)."
)
# average loss
for key in self.total_eval_loss.keys():
self.total_eval_loss[key] /= eval_steps_per_epoch
logging.info(
f"(Steps: {self.steps}) {key} = {self.total_eval_loss[key]:.4f}."
)
# record
self._write_to_tensorboard(self.total_eval_loss)
# reset
self.total_eval_loss = defaultdict(float)
# restore mode
for key in self.model.keys():
self.model[key].train()
@torch.no_grad()
def _genearete_and_save_intermediate_result(self, batch):
"""Generate and save intermediate result."""
# delayed import to avoid error related backend error
import matplotlib.pyplot as plt
# generate
x_batch, y_batch = batch
x_batch = tuple([x.to(self.device) for x in x_batch])
y_batch = y_batch.to(self.device)
y_batch_ = self.model["generator"](*x_batch)
# check directory
dirname = os.path.join(self.config.interval_config.out_dir, f"predictions/{self.steps}steps")
if not os.path.exists(dirname):
os.makedirs(dirname)
for idx, (y, y_) in enumerate(zip(y_batch, y_batch_), 1):
# convert to ndarray
y, y_ = y.view(-1).cpu().numpy(), y_.view(-1).cpu().numpy()
# plot figure and save it
figname = os.path.join(dirname, f"{idx}.png")
plt.subplot(2, 1, 1)
plt.plot(y)
plt.title("groundtruth speech")
plt.subplot(2, 1, 2)
plt.plot(y_)
plt.title(f"generated speech @ {self.steps} steps")
plt.tight_layout()
plt.savefig(figname)
plt.close()
# save as wavfile
y = np.clip(y, -1, 1)
y_ = np.clip(y_, -1, 1)
sf.write(
figname.replace(".png", "_ref.wav"),
y,
self.config.data_config.sampling_rate,
"PCM_16",
)
sf.write(
figname.replace(".png", "_gen.wav"),
y_,
self.config.data_config.sampling_rate,
"PCM_16",
)
if idx >= self.config.interval_config.num_save_intermediate_results:
break
def _write_to_tensorboard(self, loss):
"""Write to tensorboard."""
for key, value in loss.items():
self.writer.add_scalar(key, value, self.steps)
def _check_save_interval(self):
if self.steps % self.config.interval_config.save_interval_steps == 0:
self.save_checkpoint(
os.path.join(self.config.interval_config.out_dir, f"checkpoint-{self.steps}steps.pkl"), self.config.training_config.distributed
)
logging.info(f"Successfully saved checkpoint @ {self.steps} steps.")
def _check_eval_interval(self):
if self.steps % self.config.interval_config.eval_interval_steps == 0:
self._eval_epoch()
def _check_log_interval(self):
if self.steps % self.config.interval_config.log_interval_steps == 0:
for key in self.total_train_loss.keys():
self.total_train_loss[key] /= self.config.interval_config.log_interval_steps
logging.info(
f"(Steps: {self.steps}) {key} = {self.total_train_loss[key]:.4f}."
)
self._write_to_tensorboard(self.total_train_loss)
# reset
self.total_train_loss = defaultdict(float)
def _check_train_finish(self):
if self.steps >= self.config.training_config.train_max_steps:
self.finish_train = True
def load_checkpoint(self, cp_path, load_only_params, dst_train):
self.steps, self.epochs = load_checkpoint(model=self.model, optimizer=self.optimizer, scheduler=self.scheduler, checkpoint_path=cp_path, load_only_params=load_only_params, dst_train=dst_train)
def save_checkpoint(self, cp_path, dst_train):
save_checkpoint(steps=self.steps, epochs=self.epochs, model=self.model, optimizer=self.optimizer, scheduler=self.scheduler, checkpoint_path=cp_path, dst_train=dst_train)