-
Notifications
You must be signed in to change notification settings - Fork 170
/
platform_utils.py
265 lines (230 loc) · 9.72 KB
/
platform_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Shared utils among inference plugins that are platform-specific."""
import csv
from glob import glob
from grpc.beta import implementations
import os
import random
from six.moves.urllib.parse import urlparse
import tensorflow as tf
from utils import common_utils
from tensorflow.core.framework import types_pb2
from tensorflow_serving.apis import classification_pb2
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2
from tensorflow_serving.apis import regression_pb2
def filepath_to_filepath_list(file_path):
"""Returns a list of files given by a filepath.
Args:
file_path: A path, possibly representing a single file, or containing a
wildcard or sharded path.
Returns:
A list of files represented by the provided path.
"""
file_path = file_path.strip()
if '*' in file_path:
return glob(file_path)
else:
return [file_path]
def path_is_parent(parent_path, child_path):
"""Returns if the provided parent path is a parent of the provided child path.
Args:
parent_path: File path to check as parent.
child_path: File path to check as child.
Returns:
True if parent_path is a parent of the child_path.
"""
# Smooth out relative path names.
parent_path = os.path.normpath(parent_path)
child_path = os.path.normpath(child_path)
# Compare the common path of the parent and child path with the common path of
# just the parent path. Using the commonpath method on just the parent path
# will regularise the path name in the same way as the comparison that deals
# with both paths, removing any trailing path separator.
return os.path.commonpath([parent_path]) == os.path.commonpath(
[parent_path, child_path])
def throw_if_file_access_not_allowed(file_path, logdir, allowed_dir=None):
"""Throws an error if a file cannot be loaded for inference.
Args:
file_path: A file path.
logdir: The path to the logdir of the TensorBoard context.
allowed_dir: An optional path to allow loading files from, outside of
the logdir.
Raises:
InvalidUserInputError: If the file is not in the logdir and is not globally
readable.
"""
file_paths = filepath_to_filepath_list(file_path)
if not file_paths:
raise common_utils.InvalidUserInputError(file_path + ' contains no files')
for path in file_paths:
# Check if the file is inside the logdir or allowed dir.
if not (path_is_parent(logdir, path) or
(allowed_dir and path_is_parent(allowed_dir, path))):
raise common_utils.InvalidUserInputError(
path + ' is not inside the TensorBoard logdir or '
'--whatif-data-dir argument directory.'
)
def example_protos_from_path(path,
num_examples=10,
start_index=0,
parse_examples=True,
sampling_odds=1,
example_class=tf.train.Example):
"""Returns a number of examples from the provided path.
Args:
path: A string path to the examples.
num_examples: The maximum number of examples to return from the path.
parse_examples: If true then parses the serialized proto from the path into
proto objects. Defaults to True.
sampling_odds: Odds of loading an example, used for sampling. When >= 1
(the default), then all examples are loaded.
example_class: tf.train.Example or tf.train.SequenceExample class to load.
Defaults to tf.train.Example.
Returns:
A list of Example protos or serialized proto strings at the path.
Raises:
InvalidUserInputError: If examples cannot be procured from the path.
"""
def append_examples_from_iterable(iterable, examples):
for value in iterable:
if sampling_odds >= 1 or random.random() < sampling_odds:
examples.append(
example_class.FromString(value) if parse_examples else value)
if len(examples) >= num_examples:
return
examples = []
if path.endswith('.csv'):
def are_floats(values):
for value in values:
try:
float(value)
except ValueError:
return False
return True
csv.register_dialect('CsvDialect', skipinitialspace=True)
rows = csv.DictReader(open(path), dialect='CsvDialect')
for row in rows:
if sampling_odds < 1 and random.random() > sampling_odds:
continue
example = tf.train.Example()
for col in row.keys():
# Parse out individual values from vertical-bar-delimited lists
values = [val.strip() for val in row[col].split('|')]
if are_floats(values):
example.features.feature[col].float_list.value.extend(
[float(val) for val in values])
else:
example.features.feature[col].bytes_list.value.extend(
[val.encode('utf-8') for val in values])
examples.append(
example if parse_examples else example.SerializeToString())
if len(examples) >= num_examples:
break
return examples
filenames = filepath_to_filepath_list(path)
compression_types = [
'', # no compression (distinct from `None`!)
'GZIP',
'ZLIB',
]
current_compression_idx = 0
current_file_index = 0
while (current_file_index < len(filenames) and
current_compression_idx < len(compression_types)):
try:
record_iterator = tf.compat.v1.python_io.tf_record_iterator(
path=filenames[current_file_index],
options=tf.io.TFRecordOptions(
compression_types[current_compression_idx]))
append_examples_from_iterable(record_iterator, examples)
current_file_index += 1
if len(examples) >= num_examples:
break
except tf.errors.DataLossError:
current_compression_idx += 1
except (IOError, tf.errors.NotFoundError) as e:
raise common_utils.InvalidUserInputError(e)
if examples:
return examples
else:
raise common_utils.InvalidUserInputError(
'No examples found at ' + path +
'. Valid formats are TFRecord files.')
def call_servo(examples, serving_bundle):
"""Send an RPC request to the Servomatic prediction service.
Args:
examples: A list of examples that matches the model spec.
serving_bundle: A `ServingBundle` object that contains the information to
make the serving request.
Returns:
A ClassificationResponse or RegressionResponse proto.
"""
# Batch size for number of examples to send to servo in a single RPC.
batch_size = 100000
parsed_url = urlparse('http://' + serving_bundle.inference_address)
channel = implementations.insecure_channel(parsed_url.hostname,
parsed_url.port)
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
def batch_call(batch_examples):
if serving_bundle.use_predict:
request = predict_pb2.PredictRequest()
elif serving_bundle.model_type == 'classification':
request = classification_pb2.ClassificationRequest()
else:
request = regression_pb2.RegressionRequest()
request.model_spec.name = serving_bundle.model_name
if serving_bundle.model_version is not None:
request.model_spec.version.value = serving_bundle.model_version
if serving_bundle.signature is not None:
request.model_spec.signature_name = serving_bundle.signature
if serving_bundle.use_predict:
# tf.compat.v1 API used here to convert tf.example into proto. This
# utility file is bundled in the witwidget pip package which has a dep
# on TensorFlow.
request.inputs[serving_bundle.predict_input_tensor].CopyFrom(
tf.compat.v1.make_tensor_proto(
values=[ex.SerializeToString() for ex in batch_examples],
dtype=types_pb2.DT_STRING))
else:
request.input.example_list.examples.extend(batch_examples)
if serving_bundle.use_predict:
return common_utils.convert_predict_response(
stub.Predict(request, 30.0), serving_bundle) # 30 secs timeout
elif serving_bundle.model_type == 'classification':
return stub.Classify(request, 30.0) # 30 secs timeout
else:
return stub.Regress(request, 30.0) # 30 secs timeout
start_example = 0
results = []
first_loop = True
while start_example < len(examples) or first_loop:
first_loop = False
end_example = start_example + batch_size
batch_examples = examples[start_example:end_example]
results.append(batch_call(batch_examples))
start_example = end_example
return combine_results(results, serving_bundle.model_type == 'classification')
def combine_results(result_protos, is_classification):
"""Combine results protos from batches into single proto."""
for i in range(1, len(result_protos)):
if is_classification:
for j in range(len(result_protos[i].result.classifications)):
result_protos[0].result.classifications.add(classes=result_protos[i].result.classifications[j].classes)
else:
for j in range(len(result_protos[i].result.regressions)):
result_protos[0].result.regressions.add(value=result_protos[i].result.regressions[j].value)
return result_protos[0]