- Introduction
- Supported Data Types
- Explanation of Data Types
- Creating Bytes Instances
- Understanding Bytes Capacity, Read/Write Position and Limit
- BytesStore
- bytesForRead() and bytesForWrite()
- Flipping Bytes
- Writing to a Hexadecimal dump
- Writing and reading using offsets
- Working with text
- Reading and Writing Strings
- Compare and Set operation
- Stop bit compression
- BytesMarshallable objects
- Data driven tests
- Utilizing Memory Mapped Files
- Debugging Chronicle-Bytes
Chronicle Bytes is a comprehensive library dedicated to providing low-level memory access wrappers. It is constructed on the foundations of Chronicle Core, taking advantage of its direct memory and Operating System (OS) system call access.
In essence, Chronicle Bytes serves a similar purpose to Java’s Non-blocking I/O (NIO) ByteBuffer, but with several additional features. The API offers:
-
Support for 63-bit sizes.
-
Encoding for UTF-8 and ISO-8859-1 strings.
-
Thread-safe operations for off-heap memory.
-
Deterministic resource release through reference counting.
-
Compression for data types such as stop bit encoding.
-
Elastic ByteBuffer wrappers that resize as needed.
-
Direct parsing and writing of text to off-heap bytes.
The following table outlines the operations and data types supported by Chronicle Bytes:
Operation |
Indexed or Streaming |
Binary |
Text |
Read/Write Binary Primitives |
Both |
float, double, boolean and unsigned/signed byte, short, 24-bit int, int, long, incompleteLong |
double, int, long, char, double with precision |
Read/Write Text |
Both |
8-bit/UTF-8 String with Length or Limit |
8-bit/UTF-8 String |
Read/Write Other |
Streaming |
Histogram, Named Enum |
BigDecimal, BigInteger, Date/Time/Zone, UUID, Hexadecimal |
Data Driven Tests |
From Files |
No |
Yes |
CAS (Compare-and-Swap) |
Indexed |
int, long |
|
Volatile Read/Write |
Indexed |
byte, short, int, long, float, double |
|
Peek |
Both |
unsigned byte |
|
Stop Bit Compression |
Streaming |
int, long, double, float, char |
|
Search |
From Start |
indexOf String, findByte |
|
addAndGet |
Indexed |
float, double, int, long |
|
copy |
From Start |
write, copy |
|
hash |
From Start |
byteSum, fastHash |
|
BytesMarshallable |
Streaming |
Nested Data Structures, Expected Types Only. |
Here is an explanation for each operation supported by Chronicle Bytes:
Read/Write Binary Primitives |
Reading and writing of primitive data structures stored in binary form |
Read/Write Text |
Reading and writing of text data |
Read/Write Other |
Reading and writing of other data types |
Data Driven Tests |
Refer to Data-Driven Testing |
CAS (Compare-and-Swap) |
An atomic instruction used in multithreading for synchronization. It compares the contents of a memory location with a given value and, only if they match, updates the contents of that memory location to a new given value |
Volatile Read/Write |
Refer to Volatile Variables |
Peek |
An operation that retrieves the value of the bytes without affecting its read position |
Stop Bit Compression |
Refer to Stop Bit Encoding |
Search |
Any algorithm that addresses the search problem i.e., retrieving information stored within a data structure |
AddAndGet |
An operation that atomically adds a given value to the current value |
Copy |
Transferring data from one structure to another |
Hash |
Refer to Hash Function |
Bytes Marshallable |
A serialization function |
This section provides examples of how to create Bytes
instances with different types of underlying data structures.
-
Creating a
Bytes
instance which wraps an on heap byte array:
Bytes<byte[]> bytes = Bytes.allocateElasticOnHeap();
byte[] underlyingBytes = bytes.underlyingObject();
-
Creating a
Bytes
instance which wraps a pre-sized on heap byte array:
Bytes<byte[]> bytes = Bytes.allocateElasticOnHeap(64);
byte[] underlyingBytes = bytes.underlyingObject();
-
Creating a
Bytes
instance which wraps an on heap ByteBuffer:
Bytes<ByteBuffer> bytes = Bytes.elasticHeapByteBuffer(64);
ByteBuffer underlyingByteBuffer = bytes.underlyingObject();
-
Creating a
Bytes
instance which wraps a direct ByteBuffer:
Bytes<ByteBuffer> bytes = Bytes.elasticByteBuffer(64);
ByteBuffer underlyingByteBuffer = bytes.underlyingObject();
// The memory can be freed deterministically when it is no longer needed.
bytes.releaseLast();
-
Creating a
Bytes
instance which wraps some native memory:
Bytes bytes = Bytes.allocateElasticDirect(64);
long memoryAddress = bytes.address();
// The memory can be freed when it is no longer needed.
bytes.releaseLast();
-
Creating a
Bytes
instance which will wrap some native memory when used:
Bytes bytes = Bytes.allocateElasticDirect();
// use the bytes
// The memory can be freed when it is no longer needed.
bytes.releaseLast();
A Bytes
buffer provides the following properties:
-
start: The smallest index in the buffer. This is always '0L' for most implementations. For Memory Mappings it is the offset within the file.
-
capacity: The maximum possible capacity for the buffer, which is usually 2147483632 (or more) for a
Bytes
buffer. -
realCapacity: The current capacity of the buffer. This value is dynamically extended as required.
-
readLimit: The maximum index that can be read from.
-
writeLimit: The maximum index that can be written to.
-
readPosition: The index from which to read. This value should always be less than
writePosition
. -
writePosition: The index at which to write.
In the illustration above, note that readPosition()
should always be less than or equals to writePosition()
and greater than or equal to start()
.
Also, readLimit()
should always be less than or equals to writeLimit()
and greater than or equal to start()
.
BytesStore is a block of memory with fixed size into which you can write data and later read. You can create a BytesStore using the bytes in a CharSequence, String, ByteBuffer or another BytesStore.
//Create a BytesStore bs using bytes in a String. This gives you a BytesStore with
//fixed size 18.
BytesStore bs = BytesStore.from("This is an example");
//or
//Create a BytesStore from ByteBuffer
ByteBuffer buf = ByteBuffer.allocate(20);
BytesStore bs2 = BytesStore.wrap(buf);
You can see the buffer cursors of bs.
//Print cursors of bs.
System.out.println("readLimit " + bs.readLimit());
System.out.println("writeLimit " + bs.writeLimit());
System.out.println("readPosition " + bs.readPosition());
System.out.println("writePosition " + bs.writePosition());
System.out.println("capacity " + bs.capacity());
System.out.println("realCapacity " + bs.realCapacity());
System.out.println("start " + bs.start());
prints
readLimit 18
writeLimit 18
readPosition 0
writePosition 0
capacity 18
realCapacity 18
start 0
You can write into a BytesStore from an offset, however if your data is larger than the capacity of BytesStore, the ByteStore will not extend.
Note
|
The returned object (BytesStore) is unchecked in terms of memory access, therefore the user code must make every effort not to exceed the underlying memory segment limit. Otherwise, the result is unspecified side effects including silently writing over other memory segments, and crashing the JVM. |
//Write String "Another example.." into bs starting from offset 0.
bs.writeUtf8(0,"Another example..");
//Prints out: "�Another example.."
System.out.println( bs.to8bitString());
-
In contrast to a BytesStore, a Bytes extends if you write data into it which is larger than the realCapacity of the Bytes.
//Create a Bytes with initial capacity 14 and write into it "This is an example" that
//needs 18 bytes.
Bytes<byte[]> bb = Bytes.allocateElasticOnHeap(14);
bb.write("This is an example");
The realCapacity of bb extends to 4096. Now, the cursors of bb Bytes are:
readLimit 18
writeLimit 2147483632
readPosition 0
writePosition 18
capacity 2147483632
realCapacity 4096
start 0
-
Bytes gives you access to the cursors, thus you can use them to read/write from/into a desired index. In contrast, you cannot use the cursors with a BytesStore.
//Write another data starting from index 5 which needs more bytes therefore bb extends.
bb.writePosition(5);
bb.write("sentence was overwritten from index 5 using writePosition cursor");
//Prints out: "This sentence was overwritten from index 5 using writePosition cursor"
System.out.println(bb.toString());
//Read bb from index 43
bb.readPosition(43);
String st = bb.to8bitString();
//Prints out: "using writePosition cursor"
System.out.println(st);
-
In contrast to Bytes, BytesStore can be shared safely across threads provided that the referenced data is accessed in a thread-safe manner.
The bytesForRead()
and bytesForWrite()
methods can be used to create Bytes from a section of a BytesStore or a Bytes.
The size of the new Bytes depends on the limit
and position
cursors of the original Object.
-
Create bytesForRead/Write From BytesStore:
-
When you use bytesForWrite()
readLimit
andwritePosition
cursors are set tostart
. -
When you use bytesForRead(),
readPosition
is set tostart
, andreadLimit
andwritePosition
cursors are set torealCapacity
.
-
The new Bytes is not elastic and whether you use bytesForRead() or bytesForWrite() you can read and write from/into the new Bytes using cursors.
//Create a BytesStore bs using bytes in a String.
BytesStore bs = BytesStore.from("This is an example");
//Create a Bytes from bs using bytesForRead().
Bytes bfr = bs.bytesForRead();
//Create a Bytes from bs using bytesForwrite().
Bytes bfw = bs.bytesForWrite();
The cursors of bs:
readLimit 18
writeLimit 18
readPosition 0
writePosition 0
capacity 18
realCapacity 18
start 0
The cursors of bfr:
readLimit 18
writeLimit 18
readPosition 0
writePosition 18
capacity 18
realCapacity 18
start 0
The cursors of bfw:
readLimit 0
writeLimit 18
readPosition 0
writePosition 0
capacity 18
realCapacity 18
start 0
-
Create bytesForRead/Write from a Bytes:
-
When you use bytesForWrite()
writeLimit
is set tocapacity
and the new Bytes is elastic. -
When you use bytesForRead()
readPosition
is set tostart
, andwriteLimit
is set torealCapacity
and the new Bytes is not elastic.
-
Regardless if bytesForRead() or bytesForWrite() is used, you can both read and write from/into the new Bytes using cursors.
//Create a Bytes bb with default size (256 bytes) and write a text into it.
Bytes<ByteBuffer> bb = Bytes.elasticByteBuffer();
bb.write("This is an example");
//Create a Bytes bfr2 from bb using bytesForRead().
Bytes bfr2 = bb.bytesForRead();
//Create a Bytes bfw2 from bb using bytesForWrite().
Bytes bfw2 = bb.bytesForWrite();
The cursors of bb:
readLimit 18
writeLimit 2147483632
readPosition 0
writePosition 18
capacity 2147483632
realCapacity 256
start 0
The cursors of bfr2:
readLimit 18
writeLimit 256
readPosition 0
writePosition 18
capacity 2147483632
realCapacity 256
start 0
The cursors of bfw2:
readLimit 18
writeLimit 2147483632
readPosition 0
writePosition 18
capacity 2147483632
realCapacity 256
start 0
The standard Java ByteBuffer
needs to be flipped to switch between reading and writing.
Bytes
holds a read position and a write position allowing you to write and immediately read without flipping.
Note
|
The writePosition is the readLimit. |
Writing to a hexadecimal dump is useful for documenting the format for messages written. We have used the hexadecimal dump here.
// only used for documentation
HexDumpBytes bytes = new HexDumpBytes();
bytes.comment("true").writeBoolean(true);
bytes.comment("s8").writeByte((byte) 1);
bytes.comment("u8").writeUnsignedByte(2);
bytes.comment("s16").writeShort((short) 3);
bytes.comment("u16").writeUnsignedShort(4);
bytes.comment("char").writeUnsignedShort('5'); // char
bytes.comment("s24").writeInt24(-6_666_666);
bytes.comment("u24").writeUnsignedInt24(16_666_666);
bytes.comment("s32").writeInt(6);
bytes.comment("u32").writeUnsignedShort(7);
bytes.comment("s64").writeLong(8);
bytes.comment("f32").writeFloat(9);
bytes.comment("f64").writeDouble(10);
System.out.println(bytes.toHexString());
prints
59 # true 01 # s8 02 # u8 03 00 # s16 04 00 # u16 35 # char 56 46 9a # s24 2a 50 fe # u24 06 00 00 00 # s32 07 00 00 00 # u32 08 00 00 00 00 00 00 00 # s64 00 00 10 41 # f32 00 00 00 00 00 00 24 40 # f64
to read this data you can use
boolean flag = bytes.readBoolean();
byte s8 = bytes.readByte();
int u8 = bytes.readUnsignedByte();
short s16 = bytes.readShort();
int u16 = bytes.readUnsignedShort();
char ch = bytes.readStopBitChar();
int s24 = bytes.readInt24();
long u24 = bytes.readUnsignedInt24();
int s32 = bytes.readInt();
long u32 = bytes.readUnsignedInt();
long s64 = bytes.readLong();
float f32 = bytes.readFloat();
double f64 = bytes.readDouble();
Instead of streaming the data, sometimes you need to control the placement of data, possibly at random.
Bytes<ByteBuffer> bytes = Bytes.elasticHeapByteBuffer(64);
bytes.writeBoolean(0, true);
bytes.writeByte(1, (byte) 1);
bytes.writeUnsignedByte(2, 2);
bytes.writeShort(3, (short) 3);
bytes.writeUnsignedShort(5, 4);
bytes.writeInt(7, 6);
bytes.writeUnsignedInt(11, 7);
bytes.writeLong(15, 8);
bytes.writeFloat(23, 9);
bytes.writeDouble(27, 10);
bytes.writePosition(35);
System.out.println(bytes.toHexString());
boolean flag = bytes.readBoolean(0);
byte s8 = bytes.readByte(1);
int u8 = bytes.readUnsignedByte(2);
short s16 = bytes.readShort(3);
int u16 = bytes.readUnsignedShort(5);
int s32 = bytes.readInt(7);
long u32 = bytes.readUnsignedInt(11);
long s64 = bytes.readLong(15);
float f32 = bytes.readFloat(23);
double f64 = bytes.readDouble(27);
prints
00000000 59 01 02 03 00 04 00 06 00 00 00 07 00 00 00 08 Y······· ········ 00000010 00 00 00 00 00 00 00 00 00 10 41 00 00 00 00 00 ········ ··A····· 00000020 00 24 40 ·$@
Note
|
While HexDumpBytes supports the offset methods, you need to provide the offset in binary and the dump making it more complex to use. |
Chronicle Bytes supports variants of the write primitives which have a store barrier writeOrderedXxxx
, and reads with a load barrier readVolatileXxxx
Note
|
write ordered doesn’t stall the pipeline to wait for the write to occur, making it possible for a single thread to read an old value after the ordered write. |
You can also write and read text to Bytes for low level, direct to native memory text processing.
Bytes<ByteBuffer> bytes = Bytes.elasticHeapByteBuffer(64);
bytes.append(true).append('\n');
bytes.append(1).append('\n');
bytes.append(2L).append('\n');
bytes.append('3').append('\n');
bytes.append(4.1f).append('\n');
bytes.append(5.2).append('\n');
bytes.append(6.2999999, 3).append('\n');
System.out.println(bytes.toHexString());
prints
00000000 54 0a 31 0a 32 0a 33 0a 34 2e 31 0a 35 2e 32 0a T·1·2·3· 4.1·5.2· 00000010 36 2e 33 30 30 0a 6.300·
boolean flag = bytes.parseBoolean();
int s32 = bytes.parseInt();
long s64 = bytes.parseLong();
String ch = bytes.parseUtf8(StopCharTesters.SPACE_STOP);
float f32 = bytes.parseFloat();
double f64 = bytes.parseDouble();
double f64b = bytes.parseDouble();
Note
|
There are fewer methods for text as 8, 16 and 24 bit can use methods for int , Unsigned int can use the long method.
|
Chronicle Bytes supports two encodings, ISO-8859-1 and UTF-8. It also supports writing these as binary with a length prefix, and a string which should be terminated. Bytes expects Strings to be read to a buffer for further processing, possibly with a String pool.
HexDumpBytes bytes = new HexDumpBytes();
bytes.comment("write8bit").write8bit("£ 1");
bytes.comment("writeUtf8").writeUtf8("£ 1");
bytes.comment("append8bit").append8bit("£ 1").append('\n');
bytes.comment("appendUtf8").appendUtf8("£ 1").append('\n');
System.out.println(bytes.toHexString());
prints
03 a3 20 31 # write8bit 04 c2 a3 20 31 # writeUtf8 a3 20 31 0a # append8bit c2 a3 20 31 0a # appendUtf8
String a = bytes.read8bit();
String b = bytes.readUtf8();
String c = bytes.parse8bit(StopCharTesters.CONTROL_STOP);
String d = bytes.parseUtf8(StopCharTesters.CONTROL_STOP);
Binary strings are prefixed with a Stop Bit Encoded length.
HexDumpBytes bytes = new HexDumpBytes();
bytes.comment("write8bit").write8bit((String) null);
bytes.comment("writeUtf8").writeUtf8(null);
System.out.println(bytes.toHexString());
String a = bytes.read8bit();
String b = bytes.readUtf8();
assertEquals(null, a);
assertEquals(null, b);
prints
80 00 # write8bit 80 00 # writeUtf8
Note
|
80 00 is the stop bit encoding for -1 or ~0
|
In binary, you can atomically replace an int
or long
on condition that it is an expected value.
int
and long
areHexDumpBytes bytes = new HexDumpBytes();
bytes.comment("s32").writeUtf8("s32");
long s32 = bytes.writePosition();
bytes.writeInt(0);
bytes.comment("s64").writeUtf8("s64");
long s64 = bytes.writePosition();
bytes.writeLong(0);
System.out.println(bytes.toHexString());
prints
03 73 33 32 00 00 00 00 # s32 03 73 36 34 00 00 00 00 00 00 00 00 # s64
assertTrue(bytes.compareAndSwapInt(s32, 0, Integer.MAX_VALUE));
assertTrue(bytes.compareAndSwapLong(s64, 0, Long.MAX_VALUE));
System.out.println(bytes.toHexString());
prints
03 73 33 32 ff ff ff 7f # s32 03 73 36 34 ff ff ff ff ff ff ff 7f # s64
INFO: You might wonder, how is the hex dump updated as well as the binary?
The readPosition
actually holds the write position for both, which is why it has to be computed in this case.
Stop Bit encoding is one form of simple compression. For each 7 bits set, a byte is used with the high bit set when there is another byte to write.
See Stop Bit Encoding RFC for more details
HexDumpBytes bytes = new HexDumpBytes();
for (long i : new long[]{
0, -1,
127, -127,
128, -128,
1 << 14, 1 << 21,
1 << 28, 1L << 35,
1L << 42, 1L << 49,
1L << 56, Long.MAX_VALUE,
Long.MIN_VALUE}) {
bytes.comment(i + "L").writeStopBit(i);
}
for (double d : new double[]{
0.0,
-0.0,
1.0,
1.0625,
-128,
-Double.MIN_NORMAL,
Double.NEGATIVE_INFINITY,
Double.NaN,
Double.POSITIVE_INFINITY}) {
bytes.comment(d + "").writeStopBit(d);
}
System.out.println(bytes.toHexString());
prints
00 # 0L 80 00 # -1L 7f # 127L fe 00 # -127L 80 01 # 128L ff 00 # -128L 80 80 01 # 16384L 80 80 80 01 # 2097152L 80 80 80 80 01 # 268435456L 80 80 80 80 80 01 # 34359738368L 80 80 80 80 80 80 01 # 4398046511104L 80 80 80 80 80 80 80 01 # 562949953421312L 80 80 80 80 80 80 80 80 01 # 72057594037927936L ff ff ff ff ff ff ff ff 7f # 9223372036854775807L ff ff ff ff ff ff ff ff ff 00 # -9223372036854775808L 00 # 0.0 40 # -0.0 9f 7c # 1.0 9f fc 20 # 1.0625 e0 18 # -128.0 c0 04 # -2.2250738585072014E-308 ff 7c # -Infinity bf 7e # NaN bf 7c # Infinity
To read these you need either long x = bytes.readStopBit()
or double d = bytes.readStopBitDouble()
Chronicle Bytes supports serializing simple objects where the type is not stored. This is similar to`RawWire` in Chronicle Wire.
@NotNull MyByteable mb1 = new MyByteable(false, (byte) 1, (short) 2, '3', 4, 5.5f, 6, 7.7);
@NotNull MyByteable mb2 = new MyByteable(true, (byte) 11, (short) 22, 'T', 44, 5.555f, 66, 77.77);
ZonedDateTime zdt1 = ZonedDateTime.parse("2017-11-06T12:35:56.775Z[Europe/London]");
ZonedDateTime zdt2 = ZonedDateTime.parse("2016-10-05T01:34:56.775Z[Europe/London]");
UUID uuid1 = new UUID(0x123456789L, 0xABCDEF);
UUID uuid2 = new UUID(0x1111111111111111L, 0x2222222222222222L);
@NotNull MyScalars ms1 = new MyScalars("Hello", BigInteger.ONE, BigDecimal.TEN, zdt1.toLocalDate(), zdt1.toLocalTime(), zdt1.toLocalDateTime(), zdt1, uuid1);
@NotNull MyScalars ms2 = new MyScalars("World", BigInteger.ZERO, BigDecimal.ZERO, zdt2.toLocalDate(), zdt2.toLocalTime(), zdt2.toLocalDateTime(), zdt2, uuid2);
@NotNull MyNested mn1 = new MyNested(mb1, ms1);
@NotNull MyNested mn2 = new MyNested(mb2, ms2);
bytes.comment("mn1").writeUnsignedByte(1);
mn1.writeMarshallable(bytes);
bytes.comment("mn2").writeUnsignedByte(2);
mn2.writeMarshallable(bytes);
class MyByteable implements BytesMarshallable {
boolean flag;
byte b;
short s;
char c;
int i;
float f;
long l;
double d;
public MyByteable(boolean flag, byte b, short s, char c, int i, float f, long l, double d) {
this.flag = flag;
this.b = b;
this.s = s;
this.c = c;
this.i = i;
this.f = f;
this.l = l;
this.d = d;
}
class MyScalars implements BytesMarshallable {
String s;
BigInteger bi;
BigDecimal bd;
LocalDate date;
LocalTime time;
LocalDateTime dateTime;
ZonedDateTime zonedDateTime;
UUID uuid;
public MyScalars(String s, BigInteger bi, BigDecimal bd, LocalDate date, LocalTime time, LocalDateTime dateTime, ZonedDateTime zonedDateTime, UUID uuid) {
this.s = s;
this.bi = bi;
this.bd = bd;
this.date = date;
this.time = time;
this.dateTime = dateTime;
this.zonedDateTime = zonedDateTime;
this.uuid = uuid;
}
prints
01 # mn1 # byteable 4e # flag 01 # b 02 00 # s 33 # c 04 00 00 00 # i 00 00 b0 40 # f 06 00 00 00 00 00 00 00 # l cd cc cc cc cc cc 1e 40 # d # scalars 05 48 65 6c 6c 6f # s 01 31 # bi 02 31 30 # bd 0a 32 30 31 37 2d 31 31 2d 30 36 # date 0c 31 32 3a 33 35 3a 35 36 2e 37 37 35 # time 17 32 30 31 37 2d 31 31 2d 30 36 54 31 32 3a 33 # dateTime 35 3a 35 36 2e 37 37 35 27 32 30 31 37 2d 31 31 # zonedDateTime 2d 30 36 54 31 32 3a 33 35 3a 35 36 2e 37 37 35 5a 5b 45 75 72 6f 70 65 2f 4c 6f 6e 64 6f 6e 5d # uuid 24 30 30 30 30 30 30 30 31 2d 32 33 34 35 2d 36 37 38 39 2d 30 30 30 30 2d 30 30 30 30 30 30 61 62 63 64 65 66 02 # mn2 # byteable 59 # flag 0b # b 16 00 # s 54 # c 2c 00 00 00 # i 8f c2 b1 40 # f 42 00 00 00 00 00 00 00 # l e1 7a 14 ae 47 71 53 40 # d # scalars 05 57 6f 72 6c 64 # s 01 30 # bi 01 30 # bd 0a 32 30 31 36 2d 31 30 2d 30 35 # date 0c 30 31 3a 33 34 3a 35 36 2e 37 37 35 # time 17 32 30 31 36 2d 31 30 2d 30 35 54 30 31 3a 33 # dateTime 34 3a 35 36 2e 37 37 35 2c 32 30 31 36 2d 31 30 # zonedDateTime 2d 30 35 54 30 31 3a 33 34 3a 35 36 2e 37 37 35 2b 30 31 3a 30 30 5b 45 75 72 6f 70 65 2f 4c 6f 6e 64 6f 6e 5d 24 31 31 31 31 31 31 31 31 2d 31 # uuid 31 31 31 2d 31 31 31 31 2d 32 32 32 32 2d 32 32 32 32 32 32 32 32 32 32 32 32
The purpose of a Lambda function is to create a simple, highly reproducible, easily testable component.
Once you have your data dumped as hexadecimal, you can create tests using that data, and make variations of those tests.
In this context a Lambda function is one which is entirely input driven and produces a list of messages (one or more outputs).
The simplest Lambda function is stateless, however this has limited application. They are useful for message translation.
If you need a stateful Lambda function, you can consider the input to the function to be every message it has ever consumed. Obviously this is inefficient, however with appropriate caches in your lamdba function, you can process and produce result incrementally.
We module a Lambda function as having an interface for inputs and another for outputs. These interfaces can be the same.
interface IBytesMethod {
@MethodId(0x81L) // (1)
void myByteable(MyByteable byteable);
@MethodId(0x82L)
void myScalars(MyScalars scalars);
@MethodId(0x83L)
void myNested(MyNested nested);
}
-
assign a unique id to each method to simplify decoding/encoding.
Each method needs a DTO to describe the data for that message.
class MyByteable implements BytesMarshallable {
boolean flag;
byte b;
short s;
char c;
int i;
float f;
long l;
double d;
// rest of class
}
class MyScalars implements BytesMarshallable {
String s;
BigInteger bi;
BigDecimal bd;
LocalDate date;
LocalTime time;
LocalDateTime dateTime;
ZonedDateTime zonedDateTime;
UUID uuid;
// rest of class
}
class MyNested implements BytesMarshallable {
MyByteable byteable;
MyScalars scalars;
// rest of class
}
The implementation needs to take it’s output interface and implement the input interface
static class IBMImpl implements IBytesMethod {
final IBytesMethod out;
IBMImpl(IBytesMethod out) { this.out = out; }
@Override
public void myByteable(MyByteable byteable) { out.myByteable(byteable); }
@Override
public void myScalars(MyScalars scalars) { out.myScalars(scalars); }
@Override
public void myNested(MyNested nested) { out.myNested(nested); }
}
Once we have interfaces, DTOs, and an implementation we can setup a test harness
protected void btmttTest(String input, String output)
throws IOException {
BytesTextMethodTester tester = new BytesTextMethodTester<>(
input,
IBMImpl::new,
IBytesMethod.class,
output);
tester.run();
assertEquals(tester.expected(), tester.actual());
}
This allows us to give two files, one for expected inputs and one for expected outputs.
@Test
public void run()
throws IOException {
btmttTest("btmtt/prim-input.txt", "btmtt/prim-output.txt");
}
Note
|
In this case the input and outputs are expected to be the same. |
81 01 # myByteable
4e # flag
01 # b
02 00 # s
33 # c
04 00 00 00 # i
00 00 b0 40 # f
06 00 00 00 00 00 00 00 # l
cd cc cc cc cc cc 1e 40 # d
### End Of Block
81 01 # myByteable
59 # flag
0b # b
16 00 # s
54 # c
2c 00 00 00 # i
8f c2 b1 40 # f
42 00 00 00 00 00 00 00 # l
e1 7a 14 ae 47 71 53 40 # d
### End Of Block
82 01 # myScalars
05 48 65 6c 6c 6f # s
01 31 # bi
02 31 30 # bd
0a 32 30 31 37 2d 31 31 2d 30 36 # date
0c 31 32 3a 33 35 3a 35 36 2e 37 37 35 # time
17 32 30 31 37 2d 31 31 2d 30 36 54 31 32 3a 33 # dateTime
35 3a 35 36 2e 37 37 35 27 32 30 31 37 2d 31 31 # zonedDateTime
2d 30 36 54 31 32 3a 33 35 3a 35 36 2e 37 37 35
5a 5b 45 75 72 6f 70 65 2f 4c 6f 6e 64 6f 6e 5d # uuid
24 30 30 30 30 30 30 30 31 2d 32 33 34 35 2d 36
37 38 39 2d 30 30 30 30 2d 30 30 30 30 30 30 61
62 63 64 65 66
### End Of Block
83 01 # myNested
# byteable
59 # flag
0b # b
16 00 # s
54 # c
2c 00 00 00 # i
8f c2 b1 40 # f
42 00 00 00 00 00 00 00 # l
e1 7a 14 ae 47 71 53 40 # d
# scalars
05 57 6f 72 6c 64 # s
01 30 # bi
01 30 # bd
0a 32 30 31 36 2d 31 30 2d 30 35 # date
0c 30 31 3a 33 34 3a 35 36 2e 37 37 35 # time
17 32 30 31 36 2d 31 30 2d 30 35 54 30 31 3a 33 # dateTime
34 3a 35 36 2e 37 37 35 2c 32 30 31 36 2d 31 30 # zonedDateTime
2d 30 35 54 30 31 3a 33 34 3a 35 36 2e 37 37 35
2b 30 31 3a 30 30 5b 45 75 72 6f 70 65 2f 4c 6f
6e 64 6f 6e 5d 24 31 31 31 31 31 31 31 31 2d 31 # uuid
31 31 31 2d 31 31 31 31 2d 32 32 32 32 2d 32 32
32 32 32 32 32 32 32 32 32 32
### End Of Block
### End Of Test
In this case, the test calls the methods with the matching method ids which in turn uses the same ids to encode the output.
Note
|
Creating and maintain such tests can be an overhead you don’t need. In this case, you can use Chronicle Wire’s YAML testing format to check functionality. Wire can be used for most of the tests even if you intend to use Bytes for production. |
Feature | ByteBuffer | Netty IOBuffer | Aeron UnsafeBuffer | Chronicle Bytes |
---|---|---|---|---|
Read/write primitives in native memory |
Yes |
Yes |
Yes |
Yes |
Separate mutable interfaces |
Runtime check |
Runtime check |
Yes |
Yes |
Read/Write UTF-8 strings |
No |
No |
Limited to Strings |
Supports any CharSequence + Appendable |
Read/Write ISO-8859-1 strings |
No |
No |
? |
Supports any CharSequence + Appendable |
Support Endianness |
Supports both Big and Little |
Supports both Big and Little |
Supports both Big and Little |
Supports Native only |
Size of buffer |
Limited to 31-bit |
Limited to 31-bit |
Limited to 31-bit |
Supports up to 63-bit |
Elastic ByteBuffers |
No |
Yes |
No |
Yes |
Disable bounds checks |
No |
No |
Can be set globally |
Can be set per buffer |
Wrap an address |
No |
No |
Yes |
Yes |
Thread-safe read/write, CAS, and atomic add operations |
No |
No |
Supports int and long |
Supports int, long, float, and double |
Streaming access |
Yes |
Yes |
No |
Yes |
Deterministic release of memory |
Via internal API |
Via internal API |
Caller’s responsibility |
Yes, supported natively |
Separate read and write position |
No |
Yes |
Not applicable |
Yes |
Sync to disk of memory-mapped files |
No |
No |
No |
Supports both MS_ASYNC and MS_SYNC |
The above table provides a clear comparison of the various memory access features supported by ByteBuffer, Netty IOBuffer, Aeron UnsafeBuffer, and Chronicle Bytes.
Memory mapped files function like Bytes instances, expanding as required.
A specific chunk size determines the growth rate as more Bytes are employed.
A syncMode
can be set to ensure data is flushed as each chunk is released.
Below is an example of opening two MappedBytes for the same memory region:
// Specify the file name, chunk size, and overlap size of each chunk
try (MappedBytes bytesW = MappedBytes.mappedBytes(file, 64 << 10, 16 << 10);
MappedBytes bytesR = MappedBytes.mappedBytes(file, 64 << 10, 16 << 10)) {
bytesW.syncMode(SyncMode.ASYNC); // Asynchronously flush each chunk to disk
}
Memory mapped files are commonly used by Chronicle Map and Chronicle Queue.
When utilizing IntelliJ IDEA, you can configure a custom renderer to view the bytes. Please refer to the images below for guidance on setting this up: