diff --git a/.github/workflows/ci-integration.yml b/.github/workflows/ci-integration.yml index 36e1d380..a91229af 100644 --- a/.github/workflows/ci-integration.yml +++ b/.github/workflows/ci-integration.yml @@ -27,8 +27,9 @@ jobs: matrix: os: ['ubuntu'] python-version: - - "3.9" - "3.10" + - "3.11" + - "3.12" steps: - uses: actions/checkout@v2 @@ -52,10 +53,11 @@ jobs: pytest -v --cov=alchemiscale --cov-report=xml alchemiscale/tests - name: codecov - if: ${{ github.repository == 'openforcefield/alchemiscale' + if: ${{ github.repository == 'OpenFreeEnergy/alchemiscale' && github.event != 'schedule' }} - uses: codecov/codecov-action@v2 + uses: codecov/codecov-action@v4 with: + token: ${{ secrets.CODECOV_TOKEN }} file: coverage.xml fail_ci_if_error: False verbose: True diff --git a/.github/workflows/deploy-conda-envs.yml b/.github/workflows/deploy-conda-envs.yml deleted file mode 100644 index 15964545..00000000 --- a/.github/workflows/deploy-conda-envs.yml +++ /dev/null @@ -1,75 +0,0 @@ ---- - -name: Deployment - conda environments - -on: - push: - branches: - - master - paths: - - 'devtools/conda-envs/alchemiscale-*.yml' - workflow_dispatch: - -jobs: - deploy-conda-env: - runs-on: ubuntu-latest - strategy: - fail-fast: false - matrix: - env-name: - - alchemiscale-client - - alchemiscale-server - - alchemiscale-compute - steps: - - name: Checkout code - uses: actions/checkout@v2 - - - name: ensure we only have one instance running - uses: softprops/turnstyle@v1 - env: - GITHUB_TOKEN: ${{ secrets.GH_DANGERBOT_TOKEN_LIMITED }} - with: - abort-after-seconds: 60 - - #- name: Cache conda - # uses: actions/cache@v2 - # env: - # CACHE_NUMBER: 0 - # with: - # path: ~/conda_pkgs_dir - # key: - # ${{ runner.os }}-conda-${{ env.CACHE_NUMBER }}-${{ - # hashFiles('devtools/conda-envs/${{ matrix.env-name }}.yml') }} - - - name: Additional info about the build - shell: bash - run: | - uname -a - df -h - ulimit -a - - - name: Configure conda; test creation of environment - uses: conda-incubator/setup-miniconda@v2 - with: - #python-version: 3.9 - auto-update-conda: true - use-mamba: true - miniforge-variant: Mambaforge - activate-environment: ${{ matrix.env-name }} - environment-file: devtools/conda-envs/${{ matrix.env-name }}.yml - #use-only-tar-bz2: true # IMPORTANT: This needs to be set for caching to work properly! - #auto-activate-base: false - - - name: Environment Information - shell: bash -l {0} - run: | - conda info - conda list - - - name: Deploy conda env - shell: bash -l {0} - env: - ANACONDA_TOKEN: ${{ secrets.ANACONDA_TOKEN }} - run: | - mamba install -y anaconda-client - anaconda -t ${ANACONDA_TOKEN} upload --user openforcefield devtools/conda-envs/${{ matrix.env-name }}.yml diff --git a/.github/workflows/deploy-docker.yml b/.github/workflows/deploy-docker.yml index f79e29cb..a060d8a5 100644 --- a/.github/workflows/deploy-docker.yml +++ b/.github/workflows/deploy-docker.yml @@ -16,7 +16,7 @@ on: env: REGISTRY: ghcr.io - NAMESPACE: openforcefield + NAMESPACE: OpenFreeEnergy jobs: build-and-push-image: @@ -39,7 +39,7 @@ jobs: uses: actions/checkout@v3 - name: Log in to the Container registry - uses: docker/login-action@f054a8b539a109f9f41c372932f1ae047eff08c9 + uses: docker/login-action@v3 with: registry: ${{ env.REGISTRY }} username: ${{ github.actor }} @@ -47,7 +47,7 @@ jobs: - name: Extract metadata (tags, labels) for Docker id: meta - uses: docker/metadata-action@98669ae865ea3cffbcbaa878cf57c20bbf1c6c38 + uses: docker/metadata-action@v5 with: images: ${{ env.REGISTRY }}/${{ env.NAMESPACE }}/${{ matrix.image }} tags: | diff --git a/README.md b/README.md index c83ade3d..fef337aa 100644 --- a/README.md +++ b/README.md @@ -2,13 +2,15 @@ --- -[![build](https://github.com/openforcefield/alchemiscale/actions/workflows/ci-integration.yml/badge.svg)](https://github.com/openforcefield/alchemiscale/actions/workflows/ci-integration.yml) -[![coverage](https://codecov.io/gh/openforcefield/alchemiscale/branch/main/graph/badge.svg)](https://codecov.io/gh/openforcefield/alchemiscale) +[![build](https://github.com/OpenFreeEnergy/alchemiscale/actions/workflows/ci-integration.yml/badge.svg)](https://github.com/OpenFreeEnergy/alchemiscale/actions/workflows/ci-integration.yml) +[![coverage](https://codecov.io/gh/OpenFreeEnergy/alchemiscale/branch/main/graph/badge.svg)](https://codecov.io/gh/OpenFreeEnergy/alchemiscale) [![Documentation Status](https://readthedocs.org/projects/alchemiscale/badge/?version=latest)](https://alchemiscale.readthedocs.io/en/latest/?badge=latest) **alchemiscale**: a high-throughput alchemical free energy execution system for use with HPC, cloud, bare metal, and Folding@Home +Learn more about the project, including how to get involved at: https://alchemiscale.org + ---

alchemiscale logo by Jenke Scheen is marked with CC0 1.0

diff --git a/alchemiscale/cli.py b/alchemiscale/cli.py index 1999ef57..c6d096ae 100644 --- a/alchemiscale/cli.py +++ b/alchemiscale/cli.py @@ -362,6 +362,7 @@ def get_settings_override(): def synchronous(config_file): from alchemiscale.models import Scope from alchemiscale.compute.service import SynchronousComputeService + from alchemiscale.compute.settings import ComputeServiceSettings params = yaml.safe_load(config_file) @@ -373,7 +374,7 @@ def synchronous(config_file): Scope.from_str(scope) for scope in params_init["scopes"] ] - service = SynchronousComputeService(**params_init) + service = SynchronousComputeService(ComputeServiceSettings(**params_init)) # add signal handling for signame in {"SIGHUP", "SIGINT", "SIGTERM"}: diff --git a/alchemiscale/compute/api.py b/alchemiscale/compute/api.py index f3bff55c..c1f1a7f4 100644 --- a/alchemiscale/compute/api.py +++ b/alchemiscale/compute/api.py @@ -8,6 +8,7 @@ import os import json from datetime import datetime, timedelta +import random from fastapi import FastAPI, APIRouter, Body, Depends from fastapi.middleware.gzip import GZipMiddleware @@ -24,6 +25,7 @@ get_cred_entity, validate_scopes, validate_scopes_query, + minimize_scope_space, _check_store_connectivity, gufe_to_json, GzipRoute, @@ -178,6 +180,7 @@ def claim_taskhub_tasks( *, compute_service_id: str = Body(), count: int = Body(), + protocols: Optional[List[str]] = Body(None, embed=True), n4js: Neo4jStore = Depends(get_n4js_depends), token: TokenData = Depends(get_token_data_depends), ): @@ -188,13 +191,91 @@ def claim_taskhub_tasks( taskhub=taskhub_scoped_key, compute_service_id=ComputeServiceID(compute_service_id), count=count, + protocols=protocols, ) return [str(t) if t is not None else None for t in tasks] +@router.post("/claim") +def claim_tasks( + scopes: List[Scope] = Body(), + compute_service_id: str = Body(), + count: int = Body(), + protocols: Optional[List[str]] = Body(None, embed=True), + n4js: Neo4jStore = Depends(get_n4js_depends), + token: TokenData = Depends(get_token_data_depends), +): + # intersect query scopes with accessible scopes in the token + scopes_reduced = minimize_scope_space(scopes) + query_scopes = [] + for scope in scopes_reduced: + query_scopes.extend(validate_scopes_query(scope, token)) + + taskhubs = dict() + # query each scope for available taskhubs + # loop might be more removable in the future with a Union like operator on scopes + for single_query_scope in set(query_scopes): + taskhubs.update(n4js.query_taskhubs(scope=single_query_scope, return_gufe=True)) + + # list of tasks to return + tasks = [] + + if len(taskhubs) == 0: + return [] + + # claim tasks from taskhubs based on weight; keep going till we hit our + # total desired task count, or we run out of taskhubs to draw from + while len(tasks) < count and len(taskhubs) > 0: + weights = [th.weight for th in taskhubs.values()] + + if sum(weights) == 0: + break + + # based on weights, choose taskhub to draw from + taskhub: ScopedKey = random.choices(list(taskhubs.keys()), weights=weights)[0] + + # claim tasks from the taskhub + claimed_tasks = n4js.claim_taskhub_tasks( + taskhub, + compute_service_id=ComputeServiceID(compute_service_id), + count=(count - len(tasks)), + protocols=protocols, + ) + + # gather up claimed tasks, if present + for t in claimed_tasks: + if t is not None: + tasks.append(t) + + # remove this taskhub from the options available; repeat + taskhubs.pop(taskhub) + + return [str(t) for t in tasks] + [None] * (count - len(tasks)) + + @router.get("/tasks/{task_scoped_key}/transformation") def get_task_transformation( + task_scoped_key, + *, + n4js: Neo4jStore = Depends(get_n4js_depends), + token: TokenData = Depends(get_token_data_depends), +): + sk = ScopedKey.from_str(task_scoped_key) + validate_scopes(sk.scope, token) + + transformation: ScopedKey + + transformation, _ = n4js.get_task_transformation( + task=task_scoped_key, + return_gufe=False, + ) + + return str(transformation) + + +@router.get("/tasks/{task_scoped_key}/transformation/gufe") +def retrieve_task_transformation( task_scoped_key, *, n4js: Neo4jStore = Depends(get_n4js_depends), diff --git a/alchemiscale/compute/client.py b/alchemiscale/compute/client.py index fcc870ca..901a7516 100644 --- a/alchemiscale/compute/client.py +++ b/alchemiscale/compute/client.py @@ -35,15 +35,17 @@ class AlchemiscaleComputeClient(AlchemiscaleBaseClient): _exception = AlchemiscaleComputeClientError def register(self, compute_service_id: ComputeServiceID): - res = self._post_resource(f"computeservice/{compute_service_id}/register", {}) + res = self._post_resource(f"/computeservice/{compute_service_id}/register", {}) return ComputeServiceID(res) def deregister(self, compute_service_id: ComputeServiceID): - res = self._post_resource(f"computeservice/{compute_service_id}/deregister", {}) + res = self._post_resource( + f"/computeservice/{compute_service_id}/deregister", {} + ) return ComputeServiceID(res) def heartbeat(self, compute_service_id: ComputeServiceID): - res = self._post_resource(f"computeservice/{compute_service_id}/heartbeat", {}) + res = self._post_resource(f"/computeservice/{compute_service_id}/heartbeat", {}) return ComputeServiceID(res) def list_scopes(self) -> List[Scope]: @@ -71,19 +73,48 @@ def query_taskhubs( return taskhubs def claim_taskhub_tasks( - self, taskhub: ScopedKey, compute_service_id: ComputeServiceID, count: int = 1 + self, + taskhub: ScopedKey, + compute_service_id: ComputeServiceID, + count: int = 1, + protocols: Optional[List[str]] = None, ) -> Task: """Claim a `Task` from the specified `TaskHub`""" - data = dict(compute_service_id=str(compute_service_id), count=count) - tasks = self._post_resource(f"taskhubs/{taskhub}/claim", data) + data = dict( + compute_service_id=str(compute_service_id), count=count, protocols=protocols + ) + tasks = self._post_resource(f"/taskhubs/{taskhub}/claim", data) + + return [ScopedKey.from_str(t) if t is not None else None for t in tasks] + + def claim_tasks( + self, + scopes: List[Scope], + compute_service_id: ComputeServiceID, + count: int = 1, + protocols: Optional[List[str]] = None, + ): + """Claim Tasks from TaskHubs within a list of Scopes.""" + data = dict( + scopes=[scope.dict() for scope in scopes], + compute_service_id=str(compute_service_id), + count=count, + protocols=protocols, + ) + tasks = self._post_resource("/claim", data) return [ScopedKey.from_str(t) if t is not None else None for t in tasks] - def get_task_transformation( + def get_task_transformation(self, task: ScopedKey) -> ScopedKey: + """Get the Transformation associated with the given Task.""" + transformation = self._get_resource(f"/tasks/{task}/transformation") + return ScopedKey.from_str(transformation) + + def retrieve_task_transformation( self, task: ScopedKey ) -> Tuple[Transformation, Optional[ProtocolDAGResult]]: transformation, protocoldagresult = self._get_resource( - f"tasks/{task}/transformation" + f"/tasks/{task}/transformation/gufe" ) return ( @@ -104,6 +135,6 @@ def set_task_result( compute_service_id=str(compute_service_id), ) - pdr_sk = self._post_resource(f"tasks/{task}/results", data) + pdr_sk = self._post_resource(f"/tasks/{task}/results", data) return ScopedKey.from_dict(pdr_sk) diff --git a/alchemiscale/compute/service.py b/alchemiscale/compute/service.py index 50897ce1..2955555d 100644 --- a/alchemiscale/compute/service.py +++ b/alchemiscale/compute/service.py @@ -24,6 +24,7 @@ from gufe.protocols.protocoldag import execute_DAG, ProtocolDAG, ProtocolDAGResult from .client import AlchemiscaleComputeClient +from .settings import ComputeServiceSettings from ..storage.models import Task, TaskHub, ComputeServiceID from ..models import Scope, ScopedKey @@ -73,114 +74,38 @@ class SynchronousComputeService: """ - def __init__( - self, - api_url: str, - identifier: str, - key: str, - name: str, - shared_basedir: os.PathLike, - scratch_basedir: os.PathLike, - keep_shared: bool = False, - keep_scratch: bool = False, - n_retries: int = 3, - sleep_interval: int = 30, - heartbeat_interval: int = 300, - scopes: Optional[List[Scope]] = None, - claim_limit: int = 1, - loglevel="WARN", - logfile: Optional[Path] = None, - client_max_retries=5, - client_retry_base_seconds=2.0, - client_retry_max_seconds=60.0, - client_verify=True, - ): - """Create a `SynchronousComputeService` instance. + def __init__(self, settings: ComputeServiceSettings): + """Create a `SynchronousComputeService` instance.""" + self.settings = settings - Parameters - ---------- - api_url - URL of the compute API to execute Tasks for. - identifier - Identifier for the compute identity used for authentication. - key - Credential for the compute identity used for authentication. - name - The name to give this compute service; used for Task provenance, so - typically set to a distinct value to distinguish different compute - resources, e.g. different hosts or HPC clusters. - shared_basedir - Filesystem path to use for `ProtocolDAG` `shared` space. - scratch_basedir - Filesystem path to use for `ProtocolUnit` `scratch` space. - keep_shared - If True, don't remove shared directories for `ProtocolDAG`s after - completion. - keep_scratch - If True, don't remove scratch directories for `ProtocolUnit`s after - completion. - n_retries - Number of times to attempt a given Task on failure. - sleep_interval - Time in seconds to sleep if no Tasks claimed from compute API. - heartbeat_interval - Frequency at which to send heartbeats to compute API. - scopes - Scopes to limit Task claiming to; defaults to all Scopes accessible - by compute identity. - claim_limit - Maximum number of Tasks to claim at a time from a TaskHub. - loglevel - The loglevel at which to report; see the :mod:`logging` docs for - available levels. - logfile - Path to file for logging output; if not set, logging will only go - to STDOUT. - client_max_retries - Maximum number of times to retry a request. In the case the API - service is unresponsive an expoenential backoff is applied with - retries until this number is reached. If set to -1, retries will - continue indefinitely until success. - client_retry_base_seconds - The base number of seconds to use for exponential backoff. - Must be greater than 1.0. - client_retry_max_seconds - Maximum number of seconds to sleep between retries; avoids runaway - exponential backoff while allowing for many retries. - client_verify - Whether to verify SSL certificate presented by the API server. - - """ - self.api_url = api_url - self.name = name - self.sleep_interval = sleep_interval - self.heartbeat_interval = heartbeat_interval - self.claim_limit = claim_limit + self.api_url = self.settings.api_url + self.name = self.settings.name + self.sleep_interval = self.settings.sleep_interval + self.heartbeat_interval = self.settings.heartbeat_interval + self.claim_limit = self.settings.claim_limit self.client = AlchemiscaleComputeClient( - api_url, - identifier, - key, - max_retries=client_max_retries, - retry_base_seconds=client_retry_base_seconds, - retry_max_seconds=client_retry_max_seconds, - verify=client_verify, + self.settings.api_url, + self.settings.identifier, + self.settings.key, + max_retries=self.settings.client_max_retries, + retry_base_seconds=self.settings.client_retry_base_seconds, + retry_max_seconds=self.settings.client_retry_max_seconds, + verify=self.settings.client_verify, ) - if scopes is None: + if self.settings.scopes is None: self.scopes = [Scope()] else: - self.scopes = scopes + self.scopes = self.settings.scopes - self.shared_basedir = Path(shared_basedir).absolute() + self.shared_basedir = Path(self.settings.shared_basedir).absolute() self.shared_basedir.mkdir(exist_ok=True) - self.keep_shared = keep_shared + self.keep_shared = self.settings.keep_shared - self.scratch_basedir = Path(scratch_basedir).absolute() + self.scratch_basedir = Path(self.settings.scratch_basedir).absolute() self.scratch_basedir.mkdir(exist_ok=True) - self.keep_scratch = keep_scratch - - self.n_retries = n_retries + self.keep_scratch = self.settings.keep_scratch self.scheduler = sched.scheduler(time.monotonic, time.sleep) @@ -193,7 +118,7 @@ def __init__( # logging extra = {"compute_service_id": str(self.compute_service_id)} logger = logging.getLogger("AlchemiscaleSynchronousComputeService") - logger.setLevel(loglevel) + logger.setLevel(self.settings.loglevel) formatter = logging.Formatter( "[%(asctime)s] [%(compute_service_id)s] [%(levelname)s] %(message)s" @@ -204,8 +129,8 @@ def __init__( sh.setFormatter(formatter) logger.addHandler(sh) - if logfile is not None: - fh = logging.FileHandler(logfile) + if self.settings.logfile is not None: + fh = logging.FileHandler(self.settings.logfile) fh.setFormatter(formatter) logger.addHandler(fh) @@ -232,50 +157,30 @@ def heartbeat(self): self.beat() time.sleep(self.heartbeat_interval) - def claim_tasks(self, count=1) -> List[Optional[ScopedKey]]: + def claim_tasks( + self, count=1, protocols: Optional[List[str]] = None + ) -> List[Optional[ScopedKey]]: """Get a Task to execute from compute API. Returns `None` if no Task was available matching service configuration. + Parameters + ---------- + count + The maximum number of Tasks to claim. + protocols + Protocol names to restrict Task claiming to. `None` means no restriction. + Regex patterns are allowed. + """ - # list of tasks to return - tasks = [] - taskhubs: Dict[ScopedKey, TaskHub] = self.client.query_taskhubs( - scopes=self.scopes, return_gufe=True + tasks = self.client.claim_tasks( + scopes=self.scopes, + compute_service_id=self.compute_service_id, + count=count, + protocols=protocols, ) - if len(taskhubs) == 0: - return [] - - # claim tasks from taskhubs based on weight; keep going till we hit our - # total desired task count, or we run out of taskhubs to draw from - while len(tasks) < count and len(taskhubs) > 0: - weights = [th.weight for th in taskhubs.values()] - - if sum(weights) == 0: - break - - # based on weights, choose taskhub to draw from - taskhub: List[ScopedKey] = random.choices( - list(taskhubs.keys()), weights=weights - )[0] - - # claim tasks from the taskhub - claimed_tasks = self.client.claim_taskhub_tasks( - taskhub, - compute_service_id=self.compute_service_id, - count=(count - len(tasks)), - ) - - # gather up claimed tasks, if present - for t in claimed_tasks: - if t is not None: - tasks.append(t) - - # remove this taskhub from the options available; repeat - taskhubs.pop(taskhub) - return tasks def task_to_protocoldag( @@ -289,9 +194,10 @@ def task_to_protocoldag( """ - transformation, extends_protocoldagresult = self.client.get_task_transformation( - task - ) + ( + transformation, + extends_protocoldagresult, + ) = self.client.retrieve_task_transformation(task) protocoldag = transformation.create( extends=extends_protocoldagresult, @@ -346,7 +252,7 @@ def execute(self, task: ScopedKey) -> ScopedKey: scratch_basedir=scratch, keep_scratch=self.keep_scratch, raise_error=False, - n_retries=self.n_retries, + n_retries=self.settings.n_retries, ) finally: if not self.keep_shared: diff --git a/alchemiscale/compute/settings.py b/alchemiscale/compute/settings.py new file mode 100644 index 00000000..4e97adba --- /dev/null +++ b/alchemiscale/compute/settings.py @@ -0,0 +1,94 @@ +from pathlib import Path +from typing import Union, Optional, List, Dict, Tuple +from pydantic import BaseModel, Field + +from ..models import Scope, ScopedKey + + +class ComputeServiceSettings(BaseModel): + """Core settings schema for a compute service.""" + + class Config: + arbitrary_types_allowed = True + + api_url: str = Field( + ..., description="URL of the compute API to execute Tasks for." + ) + identifier: str = Field( + ..., description="Identifier for the compute identity used for authentication." + ) + key: str = Field( + ..., description="Credential for the compute identity used for authentication." + ) + name: str = Field( + ..., + description=( + "The name to give this compute service; used for Task provenance, so " + "typically set to a distinct value to distinguish different compute " + "resources, e.g. different hosts or HPC clusters." + ), + ) + shared_basedir: Path = Field( + ..., description="Filesystem path to use for `ProtocolDAG` `shared` space." + ) + scratch_basedir: Path = Field( + ..., description="Filesystem path to use for `ProtocolUnit` `scratch` space." + ) + keep_shared: bool = Field( + False, + description="If True, don't remove shared directories for `ProtocolDAG`s after completion.", + ) + keep_scratch: bool = Field( + False, + description="If True, don't remove scratch directories for `ProtocolUnit`s after completion.", + ) + n_retries: int = Field( + 3, + description="Number of times to attempt a given Task on failure.", + ) + sleep_interval: int = Field( + 30, description="Time in seconds to sleep if no Tasks claimed from compute API." + ) + heartbeat_interval: int = Field( + 300, description="Frequency at which to send heartbeats to compute API." + ) + scopes: Optional[List[Scope]] = Field( + None, + description="Scopes to limit Task claiming to; defaults to all Scopes accessible by compute identity.", + ) + protocols: Optional[List[str]] = Field( + None, + description="Names of Protocols to run with this service; `None` means no restriction.", + ) + claim_limit: int = Field( + 1, description="Maximum number of Tasks to claim at a time from a TaskHub." + ) + loglevel: str = Field( + "WARN", + description="The loglevel at which to report; see the :mod:`logging` docs for available levels.", + ) + logfile: Optional[Path] = Field( + None, + description="Path to file for logging output; if not set, logging will only go to STDOUT.", + ) + client_max_retries: int = Field( + 5, + description=( + "Maximum number of times to retry a request. " + "In the case the API service is unresponsive an expoenential backoff " + "is applied with retries until this number is reached. " + "If set to -1, retries will continue indefinitely until success." + ), + ) + client_retry_base_seconds: float = Field( + 2.0, + description="The base number of seconds to use for exponential backoff. Must be greater than 1.0.", + ) + client_retry_max_seconds: float = Field( + 60.0, + description="Maximum number of seconds to sleep between retries; avoids runaway exponential backoff while allowing for many retries.", + ) + client_verify: bool = Field( + True, + description="Whether to verify SSL certificate presented by the API server.", + ) diff --git a/alchemiscale/storage/cypher.py b/alchemiscale/storage/cypher.py index 5fda7b03..91d91152 100644 --- a/alchemiscale/storage/cypher.py +++ b/alchemiscale/storage/cypher.py @@ -24,3 +24,7 @@ def cypher_list_from_scoped_keys(scoped_keys: List[Optional[ScopedKey]]) -> str: if scoped_key: data.append('"' + str(scoped_key) + '"') return "[" + ", ".join(data) + "]" + + +def cypher_or(items): + return "|".join(items) diff --git a/alchemiscale/storage/statestore.py b/alchemiscale/storage/statestore.py index a85d718d..7af7f624 100644 --- a/alchemiscale/storage/statestore.py +++ b/alchemiscale/storage/statestore.py @@ -17,7 +17,13 @@ import numpy as np import networkx as nx -from gufe import AlchemicalNetwork, Transformation, NonTransformation, Settings +from gufe import ( + AlchemicalNetwork, + Transformation, + NonTransformation, + Settings, + Protocol, +) from gufe.tokenization import GufeTokenizable, GufeKey, JSON_HANDLER from gufe.protocols import ProtocolUnitFailure @@ -37,7 +43,7 @@ ) from ..strategies import Strategy from ..models import Scope, ScopedKey -from .cypher import cypher_list_from_scoped_keys +from .cypher import cypher_list_from_scoped_keys, cypher_or from ..security.models import CredentialedEntity from ..settings import Neo4jStoreSettings @@ -1652,33 +1658,32 @@ def cancel_tasks( none at all. """ - canceled_sks = [] - for task in tasks: - query = """ - // get our task hub, as well as the task :ACTIONS relationship we want to remove - MATCH (th:TaskHub {_scoped_key: $taskhub_scoped_key})-[ar:ACTIONS]->(task:Task {_scoped_key: $task_scoped_key}) - DELETE ar + query = """ + UNWIND $task_scoped_keys AS task_scoped_key + MATCH (th:TaskHub {_scoped_key: $taskhub_scoped_key})-[ar:ACTIONS]->(task:Task {_scoped_key: task_scoped_key}) + DELETE ar + WITH task, th + CALL { WITH task, th - CALL { - WITH task, th - MATCH (task)<-[applies:APPLIES]-(:TaskRestartPattern)-[:ENFORCES]->(th) - DELETE applies - } + MATCH (task)<-[applies:APPLIES]-(:TaskRestartPattern)-[:ENFORCES]->(th) + DELETE applies + } - RETURN task - """ - _task = tx.run( - query, taskhub_scoped_key=str(taskhub), task_scoped_key=str(task) - ).to_eager_result() + RETURN task._scoped_key as task_scoped_key + """ + results = tx.run( + query, + task_scoped_keys=list(map(str, tasks)), + taskhub_scoped_key=str(taskhub), + ).to_eager_result() - if _task.records: - sk = _task.records[0].data()["task"]["_scoped_key"] - canceled_sks.append(ScopedKey.from_str(sk)) - else: - canceled_sks.append(None) + returned_keys = {record["task_scoped_key"] for record in results.records} + filtered_tasks = [ + task if str(task) in returned_keys else None for task in tasks + ] - return canceled_sks + return filtered_tasks def get_taskhub_tasks( self, taskhub: ScopedKey, return_gufe=False @@ -1737,7 +1742,11 @@ def get_taskhub_unclaimed_tasks( return [ScopedKey.from_str(t["_scoped_key"]) for t in tasks] def claim_taskhub_tasks( - self, taskhub: ScopedKey, compute_service_id: ComputeServiceID, count: int = 1 + self, + taskhub: ScopedKey, + compute_service_id: ComputeServiceID, + count: int = 1, + protocols: Optional[List[Union[Protocol, str]]] = None, ) -> List[Union[ScopedKey, None]]: """Claim a TaskHub Task. @@ -1758,8 +1767,13 @@ def claim_taskhub_tasks( Unique identifier for the compute service claiming the Tasks for execution. count Claim the given number of Tasks in a single transaction. + protocols + Protocols to restrict Task claiming to. `None` means no restriction. + If an empty list, raises ValueError. """ + if protocols is not None and len(protocols) == 0: + raise ValueError("`protocols` must be either `None` or not empty") q = f""" MATCH (th:TaskHub {{`_scoped_key`: '{taskhub}'}})-[actions:ACTIONS]-(task:Task) @@ -1768,6 +1782,22 @@ def claim_taskhub_tasks( OPTIONAL MATCH (task)-[:EXTENDS]->(other_task:Task) WITH task, other_task, actions + """ + + # filter down to `protocols`, if specified + if protocols is not None: + # need to extract qualnames if given protocol classes + protocols = [ + protocol.__qualname__ if isinstance(protocol, Protocol) else protocol + for protocol in protocols + ] + + q += f""" + MATCH (task)-[:PERFORMS]->(:Transformation|NonTransformation)-[:DEPENDS_ON]->(protocol:{cypher_or(protocols)}) + WITH task, other_task, actions + """ + + q += f""" WHERE other_task.status = '{TaskStatusEnum.complete.value}' OR other_task IS NULL RETURN task.`_scoped_key`, task.priority, actions.weight @@ -2873,7 +2903,7 @@ def add_task_restart_patterns( RETURN th """ results = self.execute_query(q, taskhub=str(taskhub)) - + # raise error if taskhub not found if not results.records: raise KeyError("No such TaskHub in the database") diff --git a/alchemiscale/tests/__init__.py b/alchemiscale/tests/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/alchemiscale/tests/integration/__init__.py b/alchemiscale/tests/integration/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/alchemiscale/tests/integration/compute/__init__.py b/alchemiscale/tests/integration/compute/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/alchemiscale/tests/integration/compute/client/__init__.py b/alchemiscale/tests/integration/compute/client/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/alchemiscale/tests/integration/compute/client/conftest.py b/alchemiscale/tests/integration/compute/client/conftest.py index f4c92f8a..aebc5fe1 100644 --- a/alchemiscale/tests/integration/compute/client/conftest.py +++ b/alchemiscale/tests/integration/compute/client/conftest.py @@ -3,7 +3,6 @@ from time import sleep import uvicorn -import requests from alchemiscale.settings import get_base_api_settings from alchemiscale.base.api import get_n4js_depends, get_s3os_depends diff --git a/alchemiscale/tests/integration/compute/client/test_compute_client.py b/alchemiscale/tests/integration/compute/client/test_compute_client.py index f324a9ec..99777c41 100644 --- a/alchemiscale/tests/integration/compute/client/test_compute_client.py +++ b/alchemiscale/tests/integration/compute/client/test_compute_client.py @@ -189,6 +189,36 @@ def test_claim_taskhub_task( assert task_sks2[0] in remaining_tasks assert task_sks2[1] in remaining_tasks + def test_claim_tasks( + self, + scope_test, + n4js_preloaded, + compute_client: client.AlchemiscaleComputeClient, + compute_service_id, + uvicorn_server, + ): + # register compute service id + compute_client.register(compute_service_id) + + # claim a single task; should get highest priority task + task_sks = compute_client.claim_tasks( + scopes=[scope_test], + compute_service_id=compute_service_id, + ) + all_tasks = n4js_preloaded.query_tasks(scope=scope_test) + priorities = { + task_sk: priority + for task_sk, priority in zip( + all_tasks, n4js_preloaded.get_task_priority(all_tasks) + ) + } + + assert len(task_sks) == 1 + assert task_sks[0] in all_tasks + assert [t.gufe_key for t in task_sks] == [ + t.gufe_key for t in all_tasks if priorities[t] == 1 + ] + def test_get_task_transformation( self, scope_test, @@ -215,7 +245,7 @@ def test_get_task_transformation( ( transformation_, extends_protocoldagresult, - ) = compute_client.get_task_transformation(task_sks[0]) + ) = compute_client.retrieve_task_transformation(task_sks[0]) assert transformation_ == transformation assert extends_protocoldagresult is None @@ -249,7 +279,7 @@ def test_set_task_result( ( transformation_, extends_protocoldagresult, - ) = compute_client.get_task_transformation(task_sks[0]) + ) = compute_client.retrieve_task_transformation(task_sks[0]) assert transformation_ == transformation assert extends_protocoldagresult is None @@ -265,7 +295,7 @@ def test_set_task_result( ( transformation2, extends_protocoldagresult2, - ) = compute_client.get_task_transformation(task_sk2) + ) = compute_client.retrieve_task_transformation(task_sk2) assert transformation2 == transformation_ assert extends_protocoldagresult2 == protocoldagresults[0] diff --git a/alchemiscale/tests/integration/compute/client/test_compute_service.py b/alchemiscale/tests/integration/compute/client/test_compute_service.py index 9ae4d738..bb097257 100644 --- a/alchemiscale/tests/integration/compute/client/test_compute_service.py +++ b/alchemiscale/tests/integration/compute/client/test_compute_service.py @@ -11,6 +11,7 @@ from alchemiscale.storage.statestore import Neo4jStore from alchemiscale.storage.objectstore import S3ObjectStore from alchemiscale.compute.service import SynchronousComputeService +from alchemiscale.compute.settings import ComputeServiceSettings class TestSynchronousComputeService: @@ -20,14 +21,16 @@ class TestSynchronousComputeService: def service(self, n4js_preloaded, compute_client, tmpdir): with tmpdir.as_cwd(): return SynchronousComputeService( - api_url=compute_client.api_url, - identifier=compute_client.identifier, - key=compute_client.key, - name="test_compute_service", - shared_basedir=Path("shared").absolute(), - scratch_basedir=Path("scratch").absolute(), - heartbeat_interval=1, - sleep_interval=1, + ComputeServiceSettings( + api_url=compute_client.api_url, + identifier=compute_client.identifier, + key=compute_client.key, + name="test_compute_service", + shared_basedir=Path("shared").absolute(), + scratch_basedir=Path("scratch").absolute(), + heartbeat_interval=1, + sleep_interval=1, + ) ) def test_heartbeat(self, n4js_preloaded, service): diff --git a/alchemiscale/tests/integration/compute/conftest.py b/alchemiscale/tests/integration/compute/conftest.py index e75a55ab..d66b20c5 100644 --- a/alchemiscale/tests/integration/compute/conftest.py +++ b/alchemiscale/tests/integration/compute/conftest.py @@ -140,7 +140,9 @@ def get_token_data_depends_override(): @pytest.fixture -def compute_api_no_auth(s3os, scope_consistent_token_data_depends_override): +def compute_api_no_auth( + n4js_preloaded, s3os, scope_consistent_token_data_depends_override +): def get_s3os_override(): return s3os diff --git a/alchemiscale/tests/integration/compute/test_compute_api.py b/alchemiscale/tests/integration/compute/test_compute_api.py index 8ab1c7a5..19cda547 100644 --- a/alchemiscale/tests/integration/compute/test_compute_api.py +++ b/alchemiscale/tests/integration/compute/test_compute_api.py @@ -63,13 +63,15 @@ def out_of_scoped_keys(self, n4js_preloaded, network_tyk2, multiple_scopes): assert len(task_sks) > 0 return {"network": network_sk, "taskhub": tq_sk, "tasks": task_sks} - def test_get_task_transformation( + def test_retrieve_task_transformation( self, n4js_preloaded, test_client, scoped_keys, ): - response = test_client.get(f"/tasks/{scoped_keys['tasks'][0]}/transformation") + response = test_client.get( + f"/tasks/{scoped_keys['tasks'][0]}/transformation/gufe" + ) assert response.status_code == 200 data = response.json() assert len(data) == 2 diff --git a/alchemiscale/tests/integration/conftest.py b/alchemiscale/tests/integration/conftest.py index ed9e2b31..d7fb1c96 100644 --- a/alchemiscale/tests/integration/conftest.py +++ b/alchemiscale/tests/integration/conftest.py @@ -264,6 +264,20 @@ def s3os(s3objectstore_settings): # test alchemical networks + +## define varying protocols to simulate protocol variety +class DummyProtocolA(DummyProtocol): + pass + + +class DummyProtocolB(DummyProtocol): + pass + + +class DummyProtocolC(DummyProtocol): + pass + + # TODO: add in atom mapping once `gufe`#35 is settled @@ -294,7 +308,7 @@ def network_tyk2(): Transformation( stateA=complexes[edge[0]], stateB=complexes[edge[1]], - protocol=DummyProtocol(settings=DummyProtocol.default_settings()), + protocol=DummyProtocolA(settings=DummyProtocolA.default_settings()), name=f"{edge[0]}_to_{edge[1]}_complex", ) for edge in tyk2s.connections @@ -303,7 +317,7 @@ def network_tyk2(): Transformation( stateA=solvated[edge[0]], stateB=solvated[edge[1]], - protocol=DummyProtocol(settings=DummyProtocol.default_settings()), + protocol=DummyProtocolB(settings=DummyProtocolB.default_settings()), name=f"{edge[0]}_to_{edge[1]}_solvent", ) for edge in tyk2s.connections @@ -313,7 +327,7 @@ def network_tyk2(): for cs in list(solvated.values()) + list(complexes.values()): nt = NonTransformation( system=cs, - protocol=DummyProtocol(DummyProtocol.default_settings()), + protocol=DummyProtocolC(DummyProtocolC.default_settings()), name=f"f{cs.name}_nt", ) nontransformations.append(nt) diff --git a/alchemiscale/tests/integration/interface/__init__.py b/alchemiscale/tests/integration/interface/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/alchemiscale/tests/integration/interface/client/__init__.py b/alchemiscale/tests/integration/interface/client/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/alchemiscale/tests/integration/storage/__init__.py b/alchemiscale/tests/integration/storage/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/alchemiscale/tests/integration/storage/test_statestore.py b/alchemiscale/tests/integration/storage/test_statestore.py index 9a5e71ef..9d192d6c 100644 --- a/alchemiscale/tests/integration/storage/test_statestore.py +++ b/alchemiscale/tests/integration/storage/test_statestore.py @@ -38,6 +38,7 @@ tasks_are_not_actioned_on_taskhub, tasks_are_waiting, ) +from ..conftest import DummyProtocolA, DummyProtocolB, DummyProtocolC class TestStateStore: ... @@ -1290,17 +1291,18 @@ def test_cancel_task(self, n4js, network_tyk2, scope_test): assert fake_canceled[0] is None # check that the hub has the contents we expect - q = f"""MATCH (tq:TaskHub {{_scoped_key: '{taskhub_sk}'}})-[:ACTIONS]->(task:Task) - return task - """ + q = """ + MATCH (:TaskHub {_scoped_key: $taskhub_scoped_key})-[:ACTIONS]->(task:Task) + RETURN task._scoped_key AS task_scoped_key + """ - tasks = n4js.execute_query(q) - tasks = [record["task"] for record in tasks.records] + tasks = n4js.execute_query(q, taskhub_scoped_key=str(taskhub_sk)) + tasks = [ + ScopedKey.from_str(record["task_scoped_key"]) for record in tasks.records + ] assert len(tasks) == 8 - assert set([ScopedKey.from_str(t["_scoped_key"]) for t in tasks]) == set( - actioned - ) - set(canceled) + assert set(tasks) == set(actioned) - set(canceled) # create a TaskRestartPattern n4js.add_task_restart_patterns(taskhub_sk, ["Test pattern"], 1) @@ -1428,6 +1430,52 @@ def test_claim_taskhub_tasks(self, n4js: Neo4jStore, network_tyk2, scope_test): claimed6 = n4js.claim_taskhub_tasks(taskhub_sk, csid, count=2) assert claimed6 == [None] * 2 + def test_claim_taskhub_tasks_protocol_split( + self, n4js: Neo4jStore, network_tyk2, scope_test + ): + an = network_tyk2 + network_sk, taskhub_sk, _ = n4js.assemble_network(an, scope_test) + + def reducer(collection, transformation): + protocol = transformation.protocol.__class__ + if len(collection[protocol]) >= 3: + return collection + sk = n4js.get_scoped_key(transformation, scope_test) + collection[transformation.protocol.__class__].append(sk) + return collection + + transformations = reduce( + reducer, + an.edges, + {DummyProtocolA: [], DummyProtocolB: [], DummyProtocolC: []}, + ) + + transformation_sks = [ + value for _, values in transformations.items() for value in values + ] + + task_sks = n4js.create_tasks(transformation_sks) + assert len(task_sks) == 9 + + # action the tasks + n4js.action_tasks(task_sks, taskhub_sk) + assert len(n4js.get_taskhub_unclaimed_tasks(taskhub_sk)) == 9 + + csid = ComputeServiceID("another task handler") + n4js.register_computeservice(ComputeServiceRegistration.from_now(csid)) + + claimedA = n4js.claim_taskhub_tasks( + taskhub_sk, csid, protocols=["DummyProtocolA"], count=9 + ) + + assert len([sk for sk in claimedA if sk]) == 3 + + claimedBC = n4js.claim_taskhub_tasks( + taskhub_sk, csid, protocols=["DummyProtocolB", "DummyProtocolC"], count=9 + ) + + assert len([sk for sk in claimedBC if sk]) == 6 + def test_claim_taskhub_tasks_deregister( self, n4js: Neo4jStore, network_tyk2, scope_test ): diff --git a/alchemiscale/tests/unit/__init__.py b/alchemiscale/tests/unit/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/devtools/conda-envs/alchemiscale-client.yml b/devtools/conda-envs/alchemiscale-client.yml index 6f583986..fc462e9c 100644 --- a/devtools/conda-envs/alchemiscale-client.yml +++ b/devtools/conda-envs/alchemiscale-client.yml @@ -2,35 +2,34 @@ name: alchemiscale-client channels: - jaimergp/label/unsupported-cudatoolkit-shim - conda-forge - - openeye dependencies: - pip - - python =3.10 + - python=3.12 # alchemiscale dependencies - - gufe=0.9.5 - - openfe=0.14.0 - - openmmforcefields>=0.12.0 + - gufe=1.0.0 + - openfe=1.1.0 - requests - click - httpx - pydantic<2.0 + - async-lru - ## user client printing + ## user client - rich + - nest-asyncio - # perses dependencies - - openeye-toolkits - - openmoltools - - cloudpathlib - - dask - - distributed - - numba - - pymbar >=3.0.6,<4 + # openmm protocols + - feflow=0.1.0 + + # additional pins + - openmm=8.1.2 + - openmmforcefields>=0.14.1 + + # alchemiscale-fah dependencies + - cryptography + - plyvel - pip: - - nest_asyncio - - async_lru - - git+https://github.com/openforcefield/alchemiscale.git@v0.4.0 - - git+https://github.com/choderalab/perses.git@protocol-neqcyc + - git+https://github.com/OpenFreeEnergy/alchemiscale.git@v0.5.1 diff --git a/devtools/conda-envs/alchemiscale-compute.yml b/devtools/conda-envs/alchemiscale-compute.yml index 56b21cef..eb4dc7b7 100644 --- a/devtools/conda-envs/alchemiscale-compute.yml +++ b/devtools/conda-envs/alchemiscale-compute.yml @@ -1,32 +1,27 @@ name: alchemiscale-compute channels: - conda-forge - - openeye dependencies: - pip - - python =3.10 - - cudatoolkit <=11.7 # many actual compute resources are not yet compatible with cudatoolkit >=11.8 - + - python =3.12 + - cudatoolkit =11.8 + # alchemiscale dependencies - - gufe=0.9.5 - - openfe=0.14.0 - - openmmforcefields>=0.12.0 + - gufe=1.0.0 + - openfe=1.1.0 - requests - click - httpx - pydantic<2.0 + - async-lru + + # openmm protocols + - feflow=0.1.0 - # perses dependencies - - openeye-toolkits - - openmoltools - - cloudpathlib - - dask - - distributed - - numba - - pymbar >=3.0.6,<4 + # additional pins + - openmm=8.1.2 + - openmmforcefields>=0.14.1 - pip: - - async_lru - - git+https://github.com/openforcefield/alchemiscale.git@v0.4.0 - - git+https://github.com/choderalab/perses.git@protocol-neqcyc + - git+https://github.com/OpenFreeEnergy/alchemiscale.git@v0.5.1 diff --git a/devtools/conda-envs/alchemiscale-server.yml b/devtools/conda-envs/alchemiscale-server.yml index f8909d40..e7205497 100644 --- a/devtools/conda-envs/alchemiscale-server.yml +++ b/devtools/conda-envs/alchemiscale-server.yml @@ -2,20 +2,19 @@ name: alchemiscale-server channels: - jaimergp/label/unsupported-cudatoolkit-shim - conda-forge - - openeye dependencies: - pip - - python =3.10 + - python=3.12 # alchemiscale dependencies - - gufe=0.9.5 - - openfe=0.14.0 + - gufe=1.0.0 + - openfe=1.1.0 - - openmmforcefields>=0.12.0 - requests - click - pydantic<2.0 + - async-lru ## state store - neo4j-python-driver @@ -37,16 +36,18 @@ dependencies: - httpx - cryptography - # perses dependencies - - openeye-toolkits - - openmoltools - - cloudpathlib - - dask - - distributed - - numba - - pymbar >=3.0.6,<4 + # openmm protocols + - feflow=0.1.0 + + # additional pins + - openmm=8.1.2 + - openmmforcefields>=0.14.1 + + # deployment + - curl # used in healthchecks for API services + + # alchemiscale-fah dependencies + - plyvel - pip: - - async_lru - - git+https://github.com/openforcefield/alchemiscale.git@v0.4.0 - - git+https://github.com/choderalab/perses.git@protocol-neqcyc + - git+https://github.com/OpenFreeEnergy/alchemiscale.git@v0.5.1 diff --git a/devtools/conda-envs/test.yml b/devtools/conda-envs/test.yml index fdab69d7..ec9a6955 100644 --- a/devtools/conda-envs/test.yml +++ b/devtools/conda-envs/test.yml @@ -8,8 +8,7 @@ dependencies: # alchemiscale dependencies - gufe>=1.0.0 - - openfe>=1.0.1 - - openmmforcefields>=0.12.0 + - openfe>=1.1.0 - pydantic<2.0 ## state store @@ -36,6 +35,9 @@ dependencies: - httpx - cryptography + # openmm protocols + - feflow>=0.1.0 + ## cli - click @@ -46,6 +48,10 @@ dependencies: - coverage - moto + # additional pins + - openmm=8.1.2 + - openmmforcefields>=0.14.1 + - pip: - async_lru - git+https://github.com/datryllic/grolt@neo4j-5.x # neo4j test server deployment diff --git a/devtools/configs/synchronous-compute-settings.yaml b/devtools/configs/synchronous-compute-settings.yaml index a9c29ab5..23a9d9f2 100644 --- a/devtools/configs/synchronous-compute-settings.yaml +++ b/devtools/configs/synchronous-compute-settings.yaml @@ -44,6 +44,9 @@ init: scopes: - '*-*-*' + # Names of Protocols to run with this service; `None` means no restriction + protocols: null + # Maximum number of Tasks to claim at a time from a TaskHub. claim_limit: 1 diff --git a/docker/alchemiscale-compute/Dockerfile b/docker/alchemiscale-compute/Dockerfile index eb023100..cd56ffc9 100644 --- a/docker/alchemiscale-compute/Dockerfile +++ b/docker/alchemiscale-compute/Dockerfile @@ -1,7 +1,7 @@ -FROM mambaorg/micromamba:1.4.1 +FROM mambaorg/micromamba:1.5.10 -LABEL org.opencontainers.image.source=https://github.com/openforcefield/alchemiscale-compute -LABEL org.opencontainers.image.description="deployable compute services for an alchemiscale server" +LABEL org.opencontainers.image.source=https://github.com/OpenFreeEnergy/alchemiscale +LABEL org.opencontainers.image.description="deployable compute services for alchemiscale" LABEL org.opencontainers.image.licenses=MIT # Don't buffer stdout & stderr streams, so if there is a crash no partial buffer output is lost diff --git a/docker/alchemiscale-server/.env.testing b/docker/alchemiscale-server/.env.testing index 67fe7fbf..2cf76a75 100644 --- a/docker/alchemiscale-server/.env.testing +++ b/docker/alchemiscale-server/.env.testing @@ -24,4 +24,4 @@ ACME_EMAIL=foo@bar.com HOST_DOMAIN=localhost # alchemiscale -ALCHEMISCALE_DOCKER_IMAGE=ghcr.io/openforcefield/alchemiscale:feat-add_docker_compose +ALCHEMISCALE_DOCKER_IMAGE=ghcr.io/OpenFreeEnergy/alchemiscale:latest diff --git a/docker/alchemiscale-server/Dockerfile b/docker/alchemiscale-server/Dockerfile index 5882240f..0ca1b2c5 100644 --- a/docker/alchemiscale-server/Dockerfile +++ b/docker/alchemiscale-server/Dockerfile @@ -1,6 +1,6 @@ -FROM mambaorg/micromamba:1.4.1 +FROM mambaorg/micromamba:1.5.10 -LABEL org.opencontainers.image.source=https://github.com/openforcefield/alchemiscale +LABEL org.opencontainers.image.source=https://github.com/OpenFreeEnergy/alchemiscale LABEL org.opencontainers.image.description="a high-throughput alchemical free energy execution system for use with HPC, cloud, bare metal, and Folding@Home" LABEL org.opencontainers.image.licenses=MIT diff --git a/docker/alchemiscale-server/docker-compose.yml b/docker/alchemiscale-server/docker-compose.yml index a9a7e9e6..ee1c3111 100644 --- a/docker/alchemiscale-server/docker-compose.yml +++ b/docker/alchemiscale-server/docker-compose.yml @@ -20,6 +20,7 @@ services: ports: - 7687:7687 - 7474:7474 + restart: unless-stopped # Uncomment the volumes to be mounted to make them accessible from outside the container. volumes: #- ./neo4j.conf:/conf/neo4j.conf # This is the main configuration file. @@ -75,13 +76,14 @@ services: depends_on: - neo4j - alchemiscale-db-init + restart: unless-stopped command: "api --host 0.0.0.0 --port 1840 --workers 2" labels: - "traefik.enable=true" - "traefik.http.routers.alchemiscale-client-API.rule=Host(`api.${HOST_DOMAIN:?err}`)" - "traefik.http.routers.alchemiscale-client-API.entrypoints=websecure" - "traefik.http.routers.alchemiscale-client-API.tls.certresolver=myresolver" - - "traefik.docker.network=docker_internal" + - "traefik.docker.network=alchemiscale-server_internal" healthcheck: test: ["CMD", "/opt/conda/bin/curl", "-f", "http://localhost:1840/ping"] interval: 1m @@ -121,11 +123,12 @@ services: condition: service_healthy alchemiscale-db-init: condition: service_completed_successfully + restart: unless-stopped command: "compute api --host 0.0.0.0 --port 1841 --workers 2" labels: - "traefik.enable=true" - "traefik.http.routers.alchemiscale-compute-API.rule=Host(`compute.${HOST_DOMAIN:?err}`)" - - "traefik.docker.network=docker_internal" + - "traefik.docker.network=alchemiscale-server_internal" - "traefik.http.routers.alchemiscale-compute-API.entrypoints=websecure" - "traefik.http.routers.alchemiscale-compute-API.tls.certresolver=myresolver" healthcheck: @@ -179,6 +182,7 @@ services: depends_on: - alchemiscale-client-API - alchemiscale-compute-API + restart: unless-stopped command: - "--log.level=DEBUG" - "--providers.docker" diff --git a/docs/compute.rst b/docs/compute.rst index d93bca58..29724a41 100644 --- a/docs/compute.rst +++ b/docs/compute.rst @@ -14,7 +14,7 @@ This documentation will expand over time as these variants become available; for In all cases, you will need to define a configuration file for your compute services to consume on startup. A template for this file can be found here; replace ``$ALCHEMISCALE_VERSION`` with the version tag, e.g. ``v0.1.4``, you have deployed for your server:: - https://raw.githubusercontent.com/openforcefield/alchemiscale/$ALCHEMISCALE_VERSION/devtools/configs/synchronous-compute-settings.yaml + https://raw.githubusercontent.com/OpenFreeEnergy/alchemiscale/$ALCHEMISCALE_VERSION/devtools/configs/synchronous-compute-settings.yaml *********** @@ -35,7 +35,7 @@ Deploying with conda/mamba To deploy via ``conda``/``mamba``, first create an environment (we recommend ``mamba`` for its performance):: mamba env create -n alchemiscale-compute-$ALCHEMISCALE_VERSION \ - -f https://raw.githubusercontent.com/openforcefield/alchemiscale/$ALCHEMISCALE_VERSION/devtools/conda-envs/alchemiscale-compute.yml + -f https://raw.githubusercontent.com/OpenFreeEnergy/alchemiscale/$ALCHEMISCALE_VERSION/devtools/conda-envs/alchemiscale-compute.yml Once created, activate the environment in your current shell:: @@ -55,7 +55,7 @@ Assuming your configuration file is in the current working directory, to deploy docker run --gpus all \ --rm \ - -v $(pwd):/mnt ghcr.io/openforcefield/alchemiscale-compute:$ALCHEMISCALE_VERSION \ + -v $(pwd):/mnt ghcr.io/OpenFreeEnergy/alchemiscale-compute:$ALCHEMISCALE_VERSION \ compute synchronous -c /mnt/synchronous-compute-settings.yaml @@ -157,7 +157,7 @@ We define a k8s `Deployment`_ featuring a single container spec as the file ``co spec: containers: - name: alchemiscale-synchronous-container - image: ghcr.io/openforcefield/alchemiscale-compute:$ALCHEMISCALE_VERSION + image: ghcr.io/OpenFreeEnergy/alchemiscale-compute:$ALCHEMISCALE_VERSION args: ["compute", "synchronous", "-c", "/mnt/settings/synchronous-compute-settings.yaml"] resources: limits: diff --git a/docs/deployment.rst b/docs/deployment.rst index c6efb46b..9c6766cb 100644 --- a/docs/deployment.rst +++ b/docs/deployment.rst @@ -36,7 +36,7 @@ First install the `docker engine ,\n", + " 'nonbonded_method': 'PME'},\n", " 'thermo_settings': {'temperature': 298.15 ,\n", " 'pressure': 0.9869232667160129 ,\n", " 'ph': None,\n", " 'redox_potential': None},\n", - " 'system_settings': {'nonbonded_method': 'PME',\n", - " 'nonbonded_cutoff': 1.0 },\n", + " 'protocol_repeats': 3,\n", " 'solvation_settings': {'solvent_model': 'tip3p',\n", " 'solvent_padding': 1.2 },\n", - " 'alchemical_settings': {'lambda_functions': 'default',\n", - " 'lambda_windows': 11,\n", - " 'unsampled_endstates': False,\n", + " 'partial_charge_settings': {'partial_charge_method': 'am1bcc',\n", + " 'off_toolkit_backend': 'ambertools',\n", + " 'number_of_conformers': None,\n", + " 'nagl_model': None},\n", + " 'lambda_settings': {'lambda_functions': 'default', 'lambda_windows': 11},\n", + " 'alchemical_settings': {'softcore_LJ': 'gapsys',\n", + " 'explicit_charge_correction_cutoff': 0.8 ,\n", + " 'endstate_dispersion_correction': False,\n", " 'use_dispersion_correction': False,\n", - " 'softcore_LJ_v2': True,\n", - " 'softcore_electrostatics': True,\n", " 'softcore_alpha': 0.85,\n", - " 'softcore_electrostatics_alpha': 0.3,\n", - " 'softcore_sigma_Q': 1.0,\n", - " 'interpolate_old_and_new_14s': False,\n", - " 'flatten_torsions': False},\n", - " 'alchemical_sampler_settings': {'online_analysis_interval': 250,\n", - " 'n_repeats': 3,\n", + " 'turn_off_core_unique_exceptions': False,\n", + " 'explicit_charge_correction': False},\n", + " 'simulation_settings': {'equilibration_length': 1.0 ,\n", + " 'production_length': 5.0 ,\n", + " 'minimization_steps': 5000,\n", + " 'time_per_iteration': 1 ,\n", + " 'real_time_analysis_interval': 250 ,\n", + " 'early_termination_target_error': 0.0 ,\n", + " 'real_time_analysis_minimum_time': 500 ,\n", " 'sampler_method': 'repex',\n", - " 'online_analysis_target_error': 0.0 ,\n", - " 'online_analysis_minimum_iterations': 500,\n", - " 'flatness_criteria': 'logZ-flatness',\n", - " 'gamma0': 1.0,\n", + " 'sams_flatness_criteria': 'logZ-flatness',\n", + " 'sams_gamma0': 1.0,\n", " 'n_replicas': 11},\n", " 'engine_settings': {'compute_platform': None},\n", " 'integrator_settings': {'timestep': 4 ,\n", - " 'collision_rate': 1.0 ,\n", - " 'n_steps': 250 ,\n", + " 'langevin_collision_rate': 1.0 ,\n", + " 'barostat_frequency': 25 ,\n", + " 'remove_com': False,\n", " 'reassign_velocities': False,\n", " 'n_restart_attempts': 20,\n", - " 'constraint_tolerance': 1e-06,\n", - " 'barostat_frequency': 25 },\n", - " 'simulation_settings': {'equilibration_length': 1.0 ,\n", - " 'production_length': 5.0 ,\n", + " 'constraint_tolerance': 1e-06},\n", + " 'output_settings': {'checkpoint_interval': 250 ,\n", " 'forcefield_cache': 'db.json',\n", - " 'minimization_steps': 5000,\n", - " 'output_filename': 'simulation.nc',\n", - " 'output_structure': 'hybrid_system.pdb',\n", " 'output_indices': 'not water',\n", - " 'checkpoint_interval': 250 ,\n", - " 'checkpoint_storage': 'checkpoint.nc'}}" + " 'checkpoint_storage_filename': 'checkpoint.chk',\n", + " 'output_filename': 'simulation.nc',\n", + " 'output_structure': 'hybrid_system.pdb'}}" ] }, - "execution_count": 15, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -483,21 +469,85 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, + "id": "54d04e3c-7602-4b70-8b34-8a47ec5abb29", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'alchemical_settings': {'endstate_dispersion_correction': False,\n", + " 'explicit_charge_correction': False,\n", + " 'explicit_charge_correction_cutoff': ,\n", + " 'softcore_LJ': 'gapsys',\n", + " 'softcore_alpha': 0.85,\n", + " 'turn_off_core_unique_exceptions': False,\n", + " 'use_dispersion_correction': False},\n", + " 'engine_settings': {'compute_platform': None},\n", + " 'forcefield_settings': {'constraints': 'hbonds',\n", + " 'forcefields': ['amber/ff14SB.xml',\n", + " 'amber/tip3p_standard.xml',\n", + " 'amber/tip3p_HFE_multivalent.xml',\n", + " 'amber/phosaa10.xml'],\n", + " 'hydrogen_mass': 3.0,\n", + " 'nonbonded_cutoff': ,\n", + " 'nonbonded_method': 'PME',\n", + " 'rigid_water': True,\n", + " 'small_molecule_forcefield': 'openff-2.1.1'},\n", + " 'integrator_settings': {'barostat_frequency': ,\n", + " 'constraint_tolerance': 1e-06,\n", + " 'langevin_collision_rate': ,\n", + " 'n_restart_attempts': 20,\n", + " 'reassign_velocities': False,\n", + " 'remove_com': False,\n", + " 'timestep': },\n", + " 'lambda_settings': {'lambda_functions': 'default', 'lambda_windows': 11},\n", + " 'output_settings': {'checkpoint_interval': ,\n", + " 'checkpoint_storage_filename': 'checkpoint.chk',\n", + " 'forcefield_cache': 'db.json',\n", + " 'output_filename': 'simulation.nc',\n", + " 'output_indices': 'not water',\n", + " 'output_structure': 'hybrid_system.pdb'},\n", + " 'partial_charge_settings': {'nagl_model': None,\n", + " 'number_of_conformers': None,\n", + " 'off_toolkit_backend': 'ambertools',\n", + " 'partial_charge_method': 'am1bcc'},\n", + " 'protocol_repeats': 3,\n", + " 'simulation_settings': {'early_termination_target_error': ,\n", + " 'equilibration_length': ,\n", + " 'minimization_steps': 5000,\n", + " 'n_replicas': 11,\n", + " 'production_length': ,\n", + " 'real_time_analysis_interval': ,\n", + " 'real_time_analysis_minimum_time': ,\n", + " 'sampler_method': 'repex',\n", + " 'sams_flatness_criteria': 'logZ-flatness',\n", + " 'sams_gamma0': 1.0,\n", + " 'time_per_iteration': },\n", + " 'solvation_settings': {'solvent_model': 'tip3p',\n", + " 'solvent_padding': },\n", + " 'thermo_settings': {'ph': None,\n", + " 'pressure': ,\n", + " 'redox_potential': None,\n", + " 'temperature': }}\n" + ] + } + ], + "source": [ + "protocol_settings" + ] + }, + { + "cell_type": "code", + "execution_count": 20, "id": "c38305b0-879f-43b3-ba13-b010e478d2eb", "metadata": {}, "outputs": [], "source": [ - "# Here we make it so that each simulation only encompasses a single repeat\n", - "# We then do multiple repeats by running each simulation multiple time\n", - "protocol_settings.alchemical_sampler_settings.n_repeats = 1\n", - "\n", - "# We enforce the compute platform to be CUDA. This ensures that a bad GPU node\n", - "# on alchemiscale will fail automatically rather than trying to default to the CPU kernels\n", - "protocol_settings.engine_settings.compute_platform = \"CUDA\"\n", - "\n", - "# We set the protocol to auto terminate once the MBAR error of the estimate drops below 0.2 kT\n", - "protocol_settings.alchemical_sampler_settings.online_analysis_target_error = 0.2 * unit.boltzmann_constant * unit.kelvin" + "# Here we make it so that each simulation only features a single repeat\n", + "# We then do multiple repeats by running each simulation multiple times\n", + "protocol_settings.protocol_repeats = 1" ] }, { @@ -510,7 +560,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 21, "id": "bd1d0a0d-00c9-44a1-820c-186b4ee05334", "metadata": {}, "outputs": [], @@ -538,7 +588,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 22, "id": "a5bcca4e", "metadata": {}, "outputs": [], @@ -550,19 +600,19 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 23, "id": "cad6ecf6", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "362fce2a1dd548519f4c8e4c7e271e11", + "model_id": "81b932ea9a8d4333951fe37ecc0339fd", "version_major": 2, "version_minor": 0 }, "text/plain": [ - " 29%|##9 | 23/78 [00:01<00:03, 14.34it/s]" + " 88%|########8 | 69/78 [00:01<00:00, 45.56it/s]" ] }, "metadata": {}, @@ -587,7 +637,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAJKCAYAAAC8vvTxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt40lEQVR4nO3dd3RU1d7G8e8kIZAIBEInNEG6IAQCckEFqXavrxelCYZeJIh0lCIQEVCpoiCEroiK5XrxIiBVQERUpF2D9KqgSSAQIHPeP7YhlPR2ZjLPZ62zMjlzym+WkjzZ++y9HZZlWYiIiIiIx/CyuwARERERyVkKgCIiIiIeRgFQRERExMMoAIqIiIh4GAVAEREREQ+jACgiIiLiYRQARURERDyMAqCIiIiIh/FJy0FOp5OTJ09SoEABHA5HdtckIiIiIulkWRYxMTGULl0aL6+U2/jSFABPnjxJ2bJls6Q4EREREck+x44do0yZMikek6YAWKBAgesXLFiwYOYrExEREZEsFR0dTdmyZa/ntpSkKQAmdPsWLFhQAVBERETEhaXlcT0NAhERERHxMAqAIiIiIh5GAVBERETEwygAioiIiHgYBUARERERD6MAKCIiIuJhFABFREREPIwCoIiIiIiHUQAUERER8TAKgCIiIiIeRgFQRERExMMoAIqIiIh4GAVAEREREQ+jACgiIiLiYRQARURERDyMAqCIiIiIh1EAFBEREfEwCoAiIiKZ0LQpDBhgXleoAFOnZt21HQ749NOsu55IAgVAERGRLLJjB/TokXXXO3UKHnoo666XHufPwwsvQNWq4O8P5cpB//4QFXXzcf/7HzzxBBQtCgULQuPG8M039tQsaacAKCIikkWKFTNhKauULAl582bd9dLj5EmzTZkCu3fDggXw1VfQtevNxz3yCFy7BuvWwc6dUKcOPPoonD5tR9WSVgqAIiIiWeTWLuD9+6FJE8iXD2rUgDVr0tete+Oxhw+b7z/8EO67D/z8ICTEtMDt2AH160P+/NCmDfz++83XmT8fatY0YbJUKejXL/V73303fPwxPPYYVKoEDz4IEybAF1+YwAfwxx8QGQnDhkHt2lC5MkycCLGxsGdP2j6j2EMBUEREJBs4nfDkk6ZFcPt2mDMHRo7M/HVHj4aXX4YffgAfH2jXDoYMgWnTYNMmOHgQRo1KPH72bOjb13RN794Nn38Od92VsXtHRZluXh8f832RIlC9OixaBBcvmmD47rtQogTUq5f5zyrZx8fuAkRERHKj1atNGFu/3nTlgmlBa9kyc9cdNAhatzavw8JMAFy71jx7B6aLdsGCxOPHj4eXXjLHJggJSf99z52DceOgZ8/EfQ4HfP21eQawQAHw8jLh76uvoFCh9N9Dco5aAEVERLLBgQNQtmxi+ANo0CDz161dO/F1iRLma61aN+87e9a8PnvWPMfXvHnm7hkdbZ71q1HDtEAmsCzo0weKFzetj999Z8Lgo4+aASziuhQARUREsoFlmRayrJYnT+LrhOvfus/pNK/9/DJ/v5gY81xh/vywcuXN91q3Dv79b/jgA9MCGRwMb79t7rtwYebvLdlHAVBERCQbVKsGR4/CmTOJ+3bsyNkaChQwA1PWrs3Y+dHR0KoV+PqaZwfz5bv5/dhY89XrljTh5ZUYQsU16RlAERGRbNCypRk927kzTJpkWtISBoFkR8tgcsaMgV69TDftQw+ZOrZsMXP8pSQmxoS/2FhYssSEweho816xYuDtDY0aQeHC5jOOGmVa/ubOhUOHTJexuC61AIqIiGQDb28zhcuFC2bQRbduZvQu3N6Slp06dzZT07z9tpkK5tFH4ddfUz9v504zenn3bjNquFSpxO3YMXNM0aJmwMeFC2aamPr1YfNm+OwzuOeebP1YkkkOy7Ks1A6Kjo4mICCAqKgoChYsmBN1iYiI5Dpbtph5ASMjTetgSuLiTFD8+mto0SJn6hP3lp68pi5gERGRbLJypRk8UbmyCX1hYWawRGrhLzoaPvnEPEtXrVrO1CqeRQFQREQkm8TEmEmajx0z3aUtWsAbb5j3wsPNlpSQENi7F15/HcqUyZ7ali69eU6/G5Uvr5U8cjt1AYuIiNjg/HmzJcXPD4KCsvf+MTE3j1C+UZ48JgSKe1EXsIiIiIsLDDSbXQoUMJt4Jo0CFhEREfEwCoAiIiIiHkYBUERERMTDKACKiIiIeBgFQBERkWwwcOBAgoODCQ4OZuPGjdf3T5gwgeDgYN58800bqxNPpwAoIiKSxT744APeeustdu3aRfXq1bn//vuvv/f++++za9cuKlasaGOF4uk0D6CIiEgW+v333ylTpgxXrlyhZMmSnDhxAi8v095y7tw5ihYtCsDZs2cpVqyYnaVKLpOevKYWQBERkSz0wAMPcOXKFby8vNiwYcP18AewZcsWAKpVq6bwJ7ZSABQREckiw4YNY9++fQBMnDiRKlWq3PT+5s2bAbjvvvtyvDaRGykAioiIZIEdO3YwadIkABo0aMDgwYNvO2bTpk0ANGnSJEdrE7mVAqCIiEgmXb16lVatWmFZFv7+/qxZs+a2Y2JjY/n+++8BtQCK/RQARUREMumJJ57gr7/+AuCTTz6hQBKL7H733Xdcu3aNoKAgKlSokLMFitxCAVBERCQTFi5cyKpVqwDo3LkzrVu3TvK4G7t/HQ5HjtUnkhQFQBERkQw6deoU3bt3ByAoKIiIiIhkj00IgOr+FVegACgiIpIBlmVx//33c/XqVby9vdm4cWOyLXvXrl1j69atgAaAiGtQABQREcmAgQMHEhkZCcCbb76Z4soeP/30ExcuXCAgIIC77747p0oUSZYCoIiISDp9++23TJ06FYDGjRvTv3//FI9PmP+vcePGeHt7Z3d5IqlSABQREUmHuLg4HnroIQDuuOMOVq9eneo5mv9PXI0CoIiISDo88sgjREdHA/DFF1/g7++f4vGWZWkAiLgcBUAREZE0mjt3LmvXrgWge/fuNGvWLNVzIiMjOXv2LHnz5iUkJCS7SxRJEwVAERGRNDh27Bh9+vQBoHz58rz77rtpOi+h9S8kJIS8efNmW30i6aEAKCIikoqEKV+uXbuGt7c3GzZsSPNkzur+FVekACgiIpKKvn37cvjwYQBmzpxJ+fLl03xuwghgBUBxJQqAIiIiKdiwYQOzZ88GoGnTpvTq1SvN554+fZrIyEgcDgeNGjXKrhJF0k0BUEREJBmXLl3i0UcfBaBAgQLX1/xNq4Tu39q1a1OoUKGsLk8kwxQARUREktG6dWsuXLgAwJdffkm+fPnSdX5C96/m/xNXowAoIiKShJkzZ15vwevXr1+GnuHTABBxVQ7LsqzUDoqOjiYgIICoqCgKFiyYE3WJiIjY5tChQ1SuXJn4+HgqVqx4/Tm+9IiOjqZw4cI4nU6OHz9OUFBQNlUrYqQnr6kFUERE5AaWZfHAAw8QHx+Pj48PGzduTHf4A9i6dStOp5M777xT4U9cjgKgiIjIDbp168axY8cAePfddzMc3tT9K65MAVBERORvq1evZv78+QC0bNmS0NDQDF9L8/+JK1MAFBERAS5cuMA///lPAAICAvjiiy8yfK24uDi2b98OaASwuCYFQBEREUyLX2xsLA6Hg//+97+ZWrd3586dXL58mWLFilG1atUsrFIkaygAioiIx3vjjTfYtm0bAC+++CINGzbM1PVunP8vIwNIRLKbAqCIiHi0X3/9lSFDhgBQpUoVpkyZkulrJgwAUfevuCoFQBER8VhOp5MHHngAp9NJnjx52LBhQ6Zb7JxOJ1u2bAE0AERclwKgiIh4rOeee45Tp04BMG/ePEqWLJnpa+7du5c///wTf39/6tSpk+nriWQHBUAREfFI//73v1m6dCkADz/8MJ06dcqS6yZ0/zZq1Ig8efJkyTVFspoCoIiIeJyoqCjatm0LQOHChVm5cmWWXVvz/4k7UAAUERGP8+CDD3Lp0iUcDgdff/01vr6+WXZtDQARd6AAKCIiHmX8+PH88MMPAAwdOpR69epl2bWPHDnCsWPH8PHx4d57782y64pkNQVAERHxGL/88gujR48GoEaNGoSHh2fp9RO6f4ODg7njjjuy9NoiWUkBUEREPEJ8fDzNmzfH6XTi6+vL+vXrs3ySZnX/irtQABQREY/w7LPPcvbsWQAWL15MsWLFsvweCQFQA0DE1fnYXYCIiEh2W7t2LQcPHqRu3bo0bdr0+gjgrPTXX3+RN29e6tatywMPPJDl1xfJSg7LsqzUDoqOjiYgIICoqCgKFiyYE3WJiIiISDqkJ6+pC1hERETEwygAioiIiHgYBUARERERD6MAKCIiIuJhFABFREREPIwCoIiI2KppUxgwwLyuUAGmTs26azsc8OmnWXc9kdxCAVBERFzGjh3Qo0fWXe/UKXjooay7XnqcPw8vvABVq4K/P5QrB/37Q1RU4jHr15uQmtS2Y4c9dYtn0ETQIiLiMrJ6cY6SJbP2eulx8qTZpkyBGjXgyBHo1cvs++gjc8w//mFC6o1eeQXWrIH69XO+ZvEcagEUERGXcWsX8P790KQJ5MtnQtSaNenr1r3x2MOHzfcffgj33Qd+fhASAv/7n2ltq18f8ueHNm3g999vvs78+VCzJuTNC6VKQb9+qd/77rvh44/hscegUiV48EGYMAG++AKuXTPH+PqakJqwFSkCn38OoaGmVpHsohZAERFxSU4nPPmk6Trdvh1iYuCllzJ/3dGjTcgsV84ErXbtoGBBmDbNdNW2bQujRsHs2eb42bNh4ECYONF0J0dFwZYtGbt3VJS5l08yv30//xz++AO6dMnY9UXSSgFQRERc0urVcPCgeU4uoSt3wgRo2TJz1x00CFq3Nq/DwkwAXLsWGjc2+7p2hQULEo8fP94Ez7CwxH0hIem/77lzMG4c9OyZ/DHz5pnaypZN//VF0kMBUEREXNKBAyYI3fgcX4MGmb9u7dqJr0uUMF9r1bp539mz5vXZs+aZvebNM3fP6Gh45BHTjT16dNLHHD8O//2v6aIWyW56BlBERFySZWXPc3B58iS+Trj+rfucTvPazy/z94uJMc8V5s8PK1fefK8bRUSYZwAffzzz9xRJjQKgiIi4pGrV4OhROHMmcV9OT41SoIAZmLJ2bcbOj46GVq3MYI/PPzeDWZJiWSYAPvdc8gFRJCupC1hERFxSy5Zm9GznzjBpkmlJGznSvJeTI2THjDHTtxQvbgaBxMSYQSAvvJDyeTExJvzFxsKSJSYMRkeb94oVA2/vxGPXrYNDh8zzhyI5QQFQRERckre3mcKlWzcz6KJiRZg82UyrklxLWnbo3BkuX4a33jIDSIoWhaefTv28nTvN6GWAu+66+b1Dh0zLYoJ588ycgNWrZ1nZIilyWJZlpXZQdHQ0AQEBREVFUbBgwZyoS0RE5DZbtph5ASMjTetgSuLiTFD8+mto0SJn6hOxU3rymloARUTEZa1caQZPVK5sQl9YmJmuJbXwFx0Nn3wCXl7mWUIRuZkCoIiIuKyYGBgyBI4dM12vLVrAG2+Y98LDzZaUkBDYuxdefx3KlMme2pYuTX5Ov/LlYc+e7LmvSFZQF7CIiLil8+fNlhQ/PwgKyt77x8TcPEL5RnnymBAokpPUBSwiIrleYKDZ7FKggNlE3JHmARQRERHxMAqAIiIiIh5GAVBERETEwygAioiIiHgYBUAREXFJY8eOJTg4mIceeoioqCi7yxHJVRQARUTE5Xz44YeMGTOGH3/8kWHDhhEQEJAl123aFAYMMK8rVICpU7PksoBZn/jTT7PueiLZSQFQRERcypEjR+jRowcAI0aM4IEHHsiW++zYAX/fJkucOgUPPZR110uP8+fhhRegalXw94dy5aB/f7i14fTxx817+fJBqVLQqROcPGlPzWIvBUAREXEZ8fHxdOzYkaioKBo2bMjo0aOz7V7FipmwlFVKloS8ebPueulx8qTZpkyB3bthwQL46ivo2vXm45o1gw8/hAMH4OOP4eBBePppW0oWmykAioiIywgPD2fz5s0UKFCAZcuWkSdPnmy7161dwPv3Q5MmpnWsRg1YsyZ93bo3Hnv4sPn+ww/hvvvMyiQhIfC//5mWx/r1zRrHbdrA77/ffJ3586FmTRMmS5WCfv1Sv/fdd5tA99hjZp3kBx+ECRPgiy/g2rXE4158Ee6916xS8o9/wLBhsG0bXL2ats8ouYdWAhEREZewdetWxo4dC8Dbb79NxYoVc+zeTic8+aTpHt2+3Szz9tJLmb/u6NEmZJYrB6Gh0K4dFCwI06aZ1se2bWHUKJg92xw/ezYMHAgTJ5ru5Kgo2LIlY/eOijL38knmN/3582Y943/8wyxdJ55FAVBERGwXFRVF+/btiY+Pp0OHDnTs2DFH7796tekOXb/edOWCaUFr2TJz1x00CFq3Nq/DwkwAXLsWGjc2+7p2Nd21CcaPN8EzLCxxX0hI+u977hyMGwc9e97+3tChMHMmxMaa1sB//zv91xf3py5gERGxXd++fTl8+DB33nkns2bNyvH7HzgAZcsmhj+ABg0yf93atRNflyhhvtaqdfO+s2fN67NnzXN8zZtn7p7R0fDII6YbO6lHKAcPhl27TOj19obnngPLytw9xf2oBVBERGy1ZMkSli5dire3N0uXLs2yKV/Sw7LMM3tZ7cau1YTr37rP6TSv/fwyf7+YGPNcYf78sHJl0l27RYuarUoVqF7dBN9t26BRo8zfX9yHWgBFRMQ2Bw8epE+fPgCMGTOGRjalkGrV4OhROHMmcd+OHTlbQ4ECZmDK2rUZOz86Glq1Al9f+PxzM5glNQktf3FxGbunuC+1AIqIiC2uXr1Khw4diImJ4b777mP48OG21dKypRk927kzTJpkWtJGjjTvZUfLYHLGjIFevaB4cTMIJCbGDAJ54YWUz4uJMeEvNhaWLDFhMDravFesmOnq/e47szVpAoULw2+/mQEolSqp9c8TKQCKiIgtxo4dy/bt2ylUqBBLlizB29vbtlq8vc0ULt26mUEXFSvC5MlmWpW0tKRllc6d4fJleOstM4CkaNG0zdO3c6cZvQxw1103v3fokGlZ9PODTz4xzwVevGimmGnTBj74wL75C8U+DstK/dHP6OhoAgICiIqKomDBgjlRl4iI5GIbNmygWbNmWJbFihUreNoFZyPessW0lkVGmlaylMTFmaD49dfQokXO1Cdyq/TkNbUAiohIjjp//jwdO3bEsiy6du3qMuFv5UozeKJyZRP6wsLMdC2phb/oaNOy5uVlniUUcQcKgCIikmMsy6J79+4cP36cKlWqMPXGpThsFhMDQ4bAsWOm67VFC3jjDfNeeLjZkhISAnv3wuuvQ5ky2VPb0qVJz+kHZlWPPXuy576Se6kLWEREcsx7771H9+7dyZMnD1u3bqVevXp2l5Qm58+bLSl+fhAUlL33j4m5eYTyjfLkMSFQRF3AIiLicvbv30/Y30tchIeHu034AwgMNJtdChQwm0hW0TyAIiKS7eLi4mjfvj2xsbG0aNGCgQMH2l2SiEdTABQRkWw3cuRIdu3aRdGiRVm0aBFeXvr1I2In/QsUEZFstXr1at74ezTF/PnzKVWqlM0ViYgCoIiIZJuzZ8/y3HPPAdC3b18ee+wxmysSEVAAFBGRbGJZFqGhoZw5c4aaNWsyefJku0sSkb8pAIqISLaYNWsWX375JXnz5uX999/Hz8/P7pJE5G8KgCIikuV2797NoEGDAJgyZQq1atWyuSIRuZECoIiIZKlLly7Rrl074uLieOSRR+jbt6/dJYnILRQARUQkSw0ePJg9e/ZQsmRJIiIicDgcdpckIrdQABQRkSzzxRdfMGvWLAAWLlxIsWLFbK5IRJKiACgiIlni5MmTPP/88wC89NJLtGrVyuaKRCQ5CoAiIpJpTqeTzp07c+7cOerWrcuECRPsLklEUqAAKCIimfbmm2+yZs0a/P39ef/998mbN6/dJYlIChQARUQkU3bu3MmIESMAmDZtGlWrVrW5IhFJjQKgiIhk2IULF2jXrh1Xr17l//7v/+jatavdJYlIGigAiohIhg0YMIBff/2VMmXKMGfOHE35IuImFABFRCRDVqxYwbx583A4HCxZsoTAwEC7SxKRNFIAFBGRdDt69Cg9evQAYMSIETzwwAM2VyQi6aEAKCIi6RIfH0/Hjh3566+/aNiwIaNHj7a7JBFJJwVAERFJl9dee41NmzZRoEABli1bRp48eewuSUTSSQFQRETSbOvWrYwZMwaAt99+m4oVK9pbkIhkiAKgiIikSVRUFO3btyc+Pp4OHTrQsWNHu0sSkQxSABQRkTTp27cvhw8f5s4772TWrFl2lyMimaAAKCIiqVqyZAlLly7F29ubpUuXEhAQYHdJIpIJCoAiIpKigwcP0qdPHwDGjBlDo0aNbK5IRDJLAVBERJJ19epVOnToQExMDPfddx/Dhw+3uyQRyQIKgCIikqyxY8eyfft2ChUqxJIlS/D29ra7JBHJAgqAIiKSpA0bNhAeHg7A3LlzKVeunM0ViUhWUQAUEZHbnD9/no4dO2JZFl27duXpp5+2uyQRyUIKgCIichPLsujevTvHjx+nSpUqTJ061e6SRCSLKQCKiMhN5s2bxyeffEKePHlYtmwZ+fPnt7skEcliCoAiInLd/v37CQsLAyA8PJx69erZXJGIZAcFQBERASAuLo727dsTGxtLixYtGDhwoN0liUg2UQAUEREARo4cya5duyhSpAgLFy7Ey0u/IkRyK/3rFhERVq9ezRtvvAHA/PnzKV26tM0ViUh2UgAUEfFwZ8+e5bnnngOgT58+PP744zZXJCLZTQFQRMSDWZZFaGgoZ86coUaNGkyZMsXukkQkBygAioh4sFmzZvHll1+SN29e3n//ffz8/OwuSURygAKgiIiH2r17N4MGDQJg8uTJ1K5d2+aKRCSnKACKiHigS5cu0a5dO+Li4nj44Yfp16+f3SWJSA5SABQR8UCDBw9mz549lChRgoiICBwOh90liUgOUgAUEfEwX3zxBbNmzQJg4cKFFC9e3OaKRCSnKQCKiHiQkydP8vzzzwMwcOBAWrdubXNFImIHBUAREQ/hdDrp3Lkz586do06dOoSHh9tdkojYRAFQRMRDvPnmm6xZswY/Pz/ef/998ubNa3dJImITBUAREQ+wc+dORowYAcC0adOoVq2azRWJiJ0UAEVEcrkLFy7Qrl07rl69ylNPPUW3bt3sLklEbKYAKCKSyw0YMIBff/2VoKAg5s6dqylfREQBUEQkN1uxYgXz5s3D4XCwZMkSAgMD7S5JRFyAAqCISC519OhRevToAcDw4cNp2rSpvQWJiMtQABQRyYXi4+Pp2LEjf/31Fw0aNGDMmDF2lyQiLkQBUEQkF3rttdfYtGkT+fPnZ9myZeTJk8fukkTEhSgAiojkMlu3br3e4vf2229TqVIlewsSEZejACgikotERUXRvn174uPjad++PR07drS7JBFxQQqAIiK5SN++fTl8+DAVKlTg7bff1pQvIpIkBUARkVxiyZIlLF26FG9vb5YtW0ZAQIDdJYmIi1IAFBHJBQ4ePEifPn0AGD16NI0aNbK5IhFxZQqAIiJu7urVq3To0IGYmBjuu+++62v+iogkRwFQRMTNjR07lu3btxMQEMCSJUvw9va2uyQRcXEKgCIibmzDhg2Eh4cDMGfOHMqVK2dzRSLiDhQARUTc1Pnz5+nYsSOWZREaGkrbtm3tLklE3IQCoIiIG7Isi+7du3P8+HEqV67MtGnT7C5JRNyIAqCIiBuaN28en3zyCXny5OH9998nf/78dpckIm5EAVBExM3s37+fsLAwACZMmEC9evVsrkhE3I0CoIiIG4mLi6N9+/bExsbSvHlzXnrpJbtLEhE3pAAoIuJGRo4cya5duyhSpAiLFi3Cy0s/xkUk/fSTQ0TETaxevZo33ngDgPnz51O6dGmbKxIRd6UAKCLiBs6ePctzzz0HQJ8+fXj88cdtrkhE3JkCoIiIi0uY5+/MmTPUqFGDKVOm2F2SiLg5BUARERc3a9YsvvzyS/Lmzcv777+Pn5+f3SWJiJtTABQRcWG7d+9m0KBBAEyePJnatWvbXJGI5AYKgCIiLurSpUu0a9eOuLg4Hn74Yfr162d3SSKSSygAioi4qGnTpuHr60uLFi1YvHgxDofD7pJEJJdwWJZlpXZQdHQ0AQEBREVFUbBgwZyoS0RERETSIT15TS2AIiIiIh5GAVBERETEwygAioiIiHgYBUARERERD6MAKCIiIuJhFABFRNKpaVMYMMC8rlABpk7NuXuPGQN16uTc/UQkd1IAFBHJhB07oEePnLvfoEGwdm3O3CsuzoRNhwN+/PH29xcsgNq1IV8+KFkSNE+1iPvwsbsAERF3VqxYzt4vf36z5YQhQ6B0afjpp9vfe/NNeOMNmDwZGjaEy5fht99ypi4RyTy1AIqIZMKtXcD790OTJqZVrEYNWLPGtKB9+mnarnfiBDzzDBQuDEWKwBNPwOHDie/f2gXcpQs8+SSEh0OJElCoEIwdC9euweDBEBgIZcrA/Pnp+1yrVsHq1TBlyu3v/fknvPwyLFoE7dtDpUpQsyY89lj67iEi9lEAFBHJIk6nCWP+/rB9O8yZAyNHpv382Fho1sy08G3cCJs3m9dt2sCVK8mft24dnDxpznnzTRMSH33UhMjt26FXL7MdO5a2Os6cge7dYfFi81lu9fXX5rOeOAHVq5uA2bZt2q8vIvZTABQRySKrV8PBg6Zl7J57TEvghAlpP/+DD8DLC957D2rVMuEqIgKOHoX165M/LzAQpk+HqlUhNNR8jY2FESOgcmUYPhx8fWHLltRrsCzTqtirF9Svn/Qxv/1mAmB4uGn9/OgjOH8eWrZMOaiKiOvQM4AiIlnkwAEoW9YMiEjQoEHaz9+5EyIjoUCBm/dfvmyCZXJq1jTBMUGJEnD33Ynfe3ub7uSzZ1OvYcYMiI42oTE5TidcvWpCZ6tWZt/775vP/c030Lp16vcREXspAIqIZBHLMs/7ZZTTCfXqwdKlt7+X0mCTPHlu/t7hSHqf05l6DevWwbZtkDfvzfvr14cOHWDhQihVyuyrUePm+ooWNa2VIuL6FABFRLJItWomAJ05Y1rhwEwTk1bBwbB8ORQvDgULZk+NqZk+HcaPT/z+5EnTord8uRntC9C4sfl64IB5/g9MF/Aff0D58jlbr4hkjJ4BFBHJIi1bmhGxnTvDzz+bZ+4SBoGkpWWwQwfTivbEE7BpExw6BBs2QFgYHD+evbUnKFfOdB8nbFWqmP2VKiWGvSpVTI1hYfDtt/DLL+YzV6tmBrGIiOtTABQRySLe3ma6lwsXICQEunUz06WAmRYmNf7+ZiRvuXLw1FNmEEhoKFy6ZF+LYHIWLTItgo88Ag88YLqcv/rq9q5nEXFNDsuyrNQOio6OJiAggKioKAq62k8hEREXtmWLGQ0cGWla0TJr+HDTOrh5c+avJSK5S3rymp4BFBHJQitXmrn7Klc2oS8szDwzl9nwZ1lm+pW1a6Fu3aypVUQ8l7qARUSyUEwM9Oljnofr0sV0BX/2mXkvPDxxKbdbt4ceSvm6UVFm1K2vr5nfL6MyU4OI5B7qAhYRySHnz5stKX5+EBTkGTWISPZQF7CIiAsKDDSbp9cgIvZTF7CIiIiIh1EAFBEREfEwCoAiIiIiHkYBUERERMTDKACKiGSR+Ph4unXrRnBwMF26dOHatWt2lyQikiSNAhYRySJTpkxh3rx55M+fnxUrVuDjox+xIuKa1AIoIpIFdu3axSuvvALAtGnTqJQV676JiGQTBUARkUy6dOkSHTp04OrVq/zzn//k+eeft7skEZEUKQCKiGTSsGHD2LdvHyVLlmTOnDk4HA67SxIRSZECoIhIJqxevZrp06cDEBERQdGiRW2uSEQkdQqAIiIZdO7cObp06QJA3759adOmjb0FiYikkQKgiEgGWJZFz549OXXqFNWqVWPSpEl2lyQikmYKgCIiGbBo0SI+/vhjfHx8WLp0Kf7+/naXJCKSZgqAIiLpdOjQIV544QUAXn31VYKDg22uSEQkfRQARUTSIT4+nk6dOhETE0OTJk0YMmSI3SWJiKSbAqCISDq8/vrrbNmyhQIFCrBo0SK8vb3tLklEJN0UAEVE0mjnzp2MHj0agBkzZnDnnXfaXJGISMYoAIqIpEFsbCwdOnTg2rVrPP300zz33HN2lyQikmEKgCIiaTBkyBAOHDhAqVKleOedd7Tah4i4NQVAEZFUrFq1ilmzZgGwYMECihQpYnNFIiKZowAoIpKC33//ndDQUAD69+9Pq1atbK5IRCTzFABFRJJhWRY9evTg9OnT1KhRg4kTJ9pdkohIllAAFBFJRkREBJ9++il58uRh6dKl+Pn52V2SiEiWUAAUEUnCwYMH6d+/PwDjxo2jTp069hYkIpKFFABFRG5x7do1OnXqxMWLF7n//vsZNGiQ3SWJiGQpBUARkVu89tprbN26lYIFC2q1DxHJlRQARURu8N133zF27FgAZs2aRfny5W2uSEQk6ykAioj87eLFi3Ts2JH4+Hjatm1Lhw4d7C5JRCRbKACKiPxt0KBB/PrrrwQFBTF79myt9iEiuZYCoIgI8O9//5t33nkHgIULFxIYGGhzRSIi2UcBUEQ83tmzZ+natSsAL774Is2bN7e5IhGR7KUAKCIezbIsunXrxtmzZ7n77rsJDw+3uyQRkWynACgiHu29997jiy++wNfXlyVLlpAvXz67SxIRyXYKgCLisX799VcGDBgAwIQJE7jnnnvsLUhEJIcoAIqIR7p69SodO3YkNjaWZs2aMXDgQLtLEhHJMQqAIuKRJkyYwHfffUdAQAALFy7Ey0s/DkXEc+gnnoh4nO3btzN+/HgAZs+eTdmyZW2uSEQkZykAiohHuXDhwvXVPtq1a0e7du3sLklEJMcpAIqIRxk4cCCRkZGULVuWWbNm2V2OiIgtFABFxGN8/vnnzJ07F4fDwcKFCylcuLDdJYmI2EIBUEQ8wpkzZ+jWrRsAL730Es2aNbO5IhER+ygAikiuZ1kWXbt25ffff6d27drXB4CIiHgqBUARyfXeffddvvzyS/LmzcuSJUvImzev3SWJiNhKAVBEcrUDBw5cn+T5tddeo1atWjZXJCJiPwVAEcm1Elb7uHTpEs2bNycsLMzukkREXIICoIjkWuPGjeP777+nUKFCLFiwQKt9iIj8TT8NRSRX+vbbb5kwYQJgngEsU6aMzRWJiLgOBUARyXViYmLo1KkTTqeTjh070rZtW7tLEhFxKQqAIpLrDBgwgN9++41y5coxc+ZMu8sREXE5CoAikqusXLmS+fPn43A4WLx4MQEBAXaXJCLichQARSTXOHXqFN27dwdgyJAh3H///TZXJCLimhQARSRXsCyL0NBQzp07R506dXj11VftLklExGUpAIpIrvD222/z1VdfkS9fPpYuXYqvr6/dJYkLaNoUBgwwrytUgKlTc+7eY8ZAnTo5dz+R9FAAFBG3t2/fPgYNGgTA66+/To0aNWyuSFzRjh3Qo0fO3W/QIFi7NnvvUaECOBw3b8OGJX3suXNQpow55q+/srcucX0+dhcgIpIZV65coWPHjly+fJlWrVrRr18/u0sSF1WsWM7eL39+s2W3V1+Fvx99vX7fpHTtCrVrw4kT2V+TuD61AIqIWxs7diw//PADgYGBREREaLUPSdatXcD790OTJpAvH9SoAWvWmNaxTz9N2/VOnIBnnoHChaFIEXjiCTh8OPH9W7uAu3SBJ5+E8HAoUQIKFYKxY+HaNRg8GAIDTQvd/Pnp+1wFCkDJkolbUgFw9mzT6vd3Q7mIAqCIuK/NmzczceJEwKz2Ubp0aZsrEnfhdJow5u8P27fDnDkwcmTaz4+NhWbNTNjauBE2bzav27SBK1eSP2/dOjh50pzz5psmJD76qAmR27dDr15mO3Ys7bW8/roJoHXqwIQJt99/717TSrhoEejvI0mg/xVExC1FR0dfX+2jc+fOPP3003aXJG5k9Wo4eNCEonvuMS2Bf68cmCYffGDC1HvvQa1aUL06RETA0aOwfn3y5wUGwvTpULUqhIaar7GxMGIEVK4Mw4eDry9s2ZK2OsLCTC3ffAP9+pkWzj59Et+Pi4N27WDyZChXLu2fT3I/lw6AGr0lIsnp378/hw8fpkKFCkyfPt3ucsTNHDgAZcuaLtMEDRqk/fydOyEy0nS/JjzrFxgIly+bYJmcmjVvboUrUcIEyATe3qY17+zZtNXx4ovwwAPm2b5u3eCdd2DePDPgA0ygrF4dOnZM+2cTz+DSAfBGnjp66+hReOwxuOMOKFoU+vdPuXtBxBN89NFHLFy4EC8vLxYvXkzBggXtLkncjGWZn7kZ5XRCvXrw4483b//7H7Rvn/x5efLc/L3DkfQ+pzNjdd17r/kaGWm+rlsHK1aAj4/Zmjc3+4sWhdGjM3YPyR3cZhSwJ47eio+HRx4xn33zZvMXXefO5gfXjBnZX5uIKzp58iQ9e/YEYNiwYTRp0sTmisQdVatm/sA+c8a0woFpaEir4GBYvhyKFwdX+vtj1y7ztVQp8/Xjj+HSpcT3d+wwXc+bNkGlSjlfn7gOt2kB9MTRW6tXm4d3lyyBunWhRQt44w2YOxeio9N3H5HcwOl00qVLF86fP09wcDCj1YQhGdSypQlAnTvDzz+bZ+4SBoGkpWWwQwfTivbEEyZMHToEGzaYZ/KOH8/e2hNs3QpvvWVaHg8dgg8/hJ494fHHE5/3q1QJ7r47cbvzTrO/enUTXsVzuU0AvJGnjN7autX8g71xYGPr1uah3p07034Pkdxi5syZfP311/j5+Wm1D8kUb2/TYHDhAoSEmOfnXn7ZvJcvX+rn+/ub3wXlysFTT5lAFRpqWttyqkUwb17TCtm0qWkIGTXK9Ci9/37O3F/cm9t0Ad8oYfTW+vWJD/BOmGD+okuLG0dvJfylFxFhWvXWr4dWrZI+L2H0lpeXGbk1aVLi6C0wD9tOnGj+knz22dTrCAsz3QiFC8N335nzDx0ydQGcPp3YNZGgcGEzQuz06bR9VpHcYs+ePQwdOhSAyZMnU61aNZsrEndw44jcG3t5wHQDb96c+H3CyNu77krbtUuWhIULk38/Lu7mXp0FC1KuL7k6kxMcDNu2pe3YBE2bmseIRNwyAGbl6K0bZWT01t13J36fkdFbCWrXNuHu6acTWwUh6a6IzD68LOJublzto02bNvS5cZ4LkQxaudIEtMqVze+EsDBo3Djzz8ZZFvz2mxlIWLdu1tQqktXcsgvYU0ZvlSx5e0vfn3/C1au3twyK5GajRo3ixx9/pEiRIsyfPx+H/gKSLBATY+bMq1bNPOcdEgKffWbeCw9PHAx46/bQQylfNyrKdMn6+ib2EGVEZmoQSY1btgB6yuitRo1M1/apU4n7Vq82z33Uq2dPjSI5bcOGDUyaNAmAuXPnUirhH4NIJj33nNmS0qsXtG2b9Ht+filft1Ah0/2bWZmpQSQ1bhkAbxy9NWmS+SsuvaO3Jk82o7defdWM3j16FD75xIzoLVMme+sHM8Bj2zYzGCUgwATYF1+8efRWq1bmr8hOnUy958+b+Qm7d3et4CqSXaKionjuueewLIvQ0FD++c9/2l2SeIjAQLN5eg2Se7llF7CnjN7y9oYvvzSfqXFj85fgk0/ClCk5U6OI3fr168fRo0epWLEiU3NyKSARkVzOYVmpjweKjo4mICCAqKgol51xf8sWMy9gZGTWTG45fLiZ2+nGEWIiknOWL1/Os88+i5eXF5s3b6ZRo0Z2lyQi4tLSk9fcsgsYNHpLJDc7fvw4vXr1AmDkyJEKfyIiWcwtu4BBo7dEcquE1T7++usvQkJCeOWVV+wuSUQk18k1XcA3On/ebEnx84OgIM+oQcQdvfXWWwwcOBB/f3927dpFlSpV7C5JJFtcunSJTz/9lMWLF3P67zm/ChQoQNu2bWnXrh2BGgEi6ZSevJYrA6AYgwYNIj4+nvLly9+0BQYGah41cUm7d+8mJCSEuLg4Zs+efb0bWCQ3u3LlCsuWLeP1119n//79AOTLl49u3brx0ksvUaFCBXsLFLehACgABAcHsythcsEb3HHHHZQrV+62YFi+fHnKlStH6dKl8fb2tqFi8WRxcXGEhISwe/duHnnkEb744gv9oSIexel08tlnn/Haa6+x4+/Jbb29vWnfvj1Dhw6lZs2aNlcork4BUAAzivL777/nyJEjHDlyhKNHj17vZkiJj48PZcqUSTIcJnzNl5b5dkTSYfDgwUyZMoVixYqxe/duSmi5G/FQlmWxbt06Jk6cyJo1a67vf+KJJxg2bBj3JiwbJXILBUBJ1uXLlzl27Nj1UHhjODxy5AjHjh3j2rVrqV6nRIkSSYbDhK1QoULZ/2Ek1/jmm29o3rw5lmXx2Wef8fjjj9tdkohL2LFjBxMnTmTlypUk/Lru3r07c+bMsbkycUUKgJJh8fHxnDp16rZgeON28eLFVK9TsGDBJINhwlaiRAm8vNx2ELpkoT///JPatWtz/Phx/WITScb+/fuZNGkSixcvplatWvzwww92lyQuSAEwi0RGRjJmzBj27t0LwH333cfIkSMpXry4zZXZx7Iszp8/n2w4PHLkCH/88Ueq1/H19aVs2bLJPodYtmxZfH19c+ATid3at2/P+++/z1133cWuXbvInz+/3SWJuKxjx46xfPlyBg0aZHcp4oIUALPQtWvXmDJlCqNHj+bKlSsEBAQwdepUOnfurAfUkxEbG5tkOEzYd/z4cZxOZ4rXcDgclCpVKsVu5gIFCuTQJ5LssmzZMjp06IC3tzdbtmyhYcOGdpckIuK2FACzwd69e+nSpcv1kVkPP/wwc+bMIUgT+qXbtWvXOHHiRJLhMGG7fPlyqtcpXLhwit3MxYoVU0h3YUePHqV27dpERUUxZswYRo8ebXdJIrlC06ZQpw5MnQoVKsCAAWbLCWPGwKefwo8/5sz95GYKgNnk2rVrvPHGG4waNep6a+Bbb71Fly5dFDSykGVZ/P777yl2M//555+pXidfvnwpTndTpkwZfHzcdjVEt+Z0OmnevDnr16+nYcOGbN68Wf8tRLLIjQHw99/hjjvA3z9n7n3hAsTFQZEi2XePChXgyJGb9w0dChMnJn6f1K/k2bMht08tqgCYzfbu3cvzzz/Pd999B0CbNm2YO3cuZcqUsbkyzxETE5NsODx69CgnT54ktf+1vby8CAoKSna6m/Lly+OfUz81PcyUKVMYPHgwd9xxB7t27aJy5cp2lySSa9wYAHOjChWga1fo3j1xX8JSqwkcDoiIgDZtEvcFBJiVuHKz9OQ1/cmdATVq1GDLli289dZbvPLKK3z11VfUrFmTt956i+eff16tgTmgQIEC1KxZM9mJUa9cucLx48eT7WY+evQoV65c4dixYxw7dozNmzcneZ2iRYsm+wyiVlXJmJ9++omRI0cCZtk3hT+R7HNrF/D+/dCtG3z/PVSsCNOnQ8uWsHIlPPlk6tc7cQIGDoTVq8HLC5o0gWnTzH3g9i7gLl3gr7+gQQNzXFwcvPgijBwJw4fDvHmmdfLVVyE0NO2fq0ABKFky5WMKFUr9GE+mAJhBPj4+DB48mEcffZTnn3+e7du307VrVz788EPmzp1L2bJl7S7Ro/n6+lKxYkUqVqyY5PtOp5MzZ86kON1NdHQ0f/zxB3/88Qc7d+5M8jpaVSV9Ll++TIcOHbhy5QqPP/443bp1s7skEY/hdJqQV64cbN8OMTHw0ktpPz82Fpo1g/vug40bwccHxo83rWw//wzJTdywbh2UKWPO2bLFtN5t3Qr332/qWL7cdM22bAlp/dX5+uswbpw5/l//gsGDb79/v34m7N55p7lnjx4mtIqhAJhJ1atXv94a+PLLL/Pf//6XmjVr8uabb9K1a1e1DrkoLy8vSpUqRalSpZKdVf+vv/5KsZv59OnTXLx4kX379rFv374kr6FVVW42YsQI9uzZQ/HixZk7d67+fYjkoNWr4eBBWL8+sWVswgQTvNLigw9MgHrvvcRn7CIiTEvb+vXQqlXS5wUGmpZGLy+oWhUmTTJhcsQI8/7w4eb5vS1b4NlnU68jLAyCg6FwYfjuO3P+oUOmrgTjxkHz5qbLd+1aE3T/+ANefjltn9UTKABmAW9vbwYNGsSjjz5KaGgoW7dupXv37qxYsYK5c+dSrlw5u0uUDChUqBCFChWidu3aSb6f1lVVDh8+zOHDh5O9z42rqiTVmphbVlVZs2YNb731FgDz58/36Pk0Rexw4IBpMbuxW7RBg7Sfv3MnREaa7tcbXb5sgmVyata8ueWtRAm4++7E7729zaCRs2fTVseLLya+rl3bBMGnnzatggmDT24MenXqmK+vvqoAeCMFwCxUrVo1Nm3axNSpU3n55ZdZvXo1d999N2+88QbdunVTa0cuky9fPipXrpzsM2xpXVXlzJkznDlz5vqgolvlhlVVzp8/T5cuXQDo1asXjzzyiL0FiXggy0p6dGxaOZ1Qrx4sXXr7e8WKJX9enjw3f+9wJL0vlelhk5XQiRMZmfzo43vvhehoOHPGBFBRAMxy3t7evPTSS9dbA7/99lt69OhxvTWwfPnydpcoOcTb25syZcpQpkwZGjdufNv7aV1VJTo6mt27d7N79+4k7+Pqq6pYlkXv3r05ceIEVapUYcqUKbbVIuLJqlWDo0dvDkF/T22bJsHB5nm94sXBlSYE2bXLfC1VKuVj8uUz3dViKABmk6pVq7Jx40amT5/OiBEj+Prrr6lVqxZTpkyhe/fuag0UHA4HRYoUoUiRIgQHByd5TFpWVbly5QoHDx7kYDJ9MHavqrJ06VI+/PBDfHx8WLJkCXfccUe23UtEkteyJVSqBJ07m+fwYmLMaFxIW8tghw4weTI88YTpTi1TxgTKTz4xgzByYia0rVth2zYzGCUgwATYF1+Exx83g1sAvvgCTp+GRo3MM4DffGM+Z48ekDdv9tfoLhQAs5G3tzcvvvgijzzyCKGhoWzZsoWePXuyYsUK3nvvPbUGSqr8/f2pVq0a1apVS/L9tK6qcvLkSU6ePMnWrVuTvE52rapy5MgR+vbtC8Do0aMJCQlJ9zWSo9UORNLH29v8f9utG4SEmGlgJk+Gxx4zrWOp8fc3I3mHDoWnnjIBMijIDLbIqRbBvHlNK+TYsWZKmfLlzXyAQ4YkHpMnD7z9tpmuxuk0n/PVV+HvH0XyN00EnUPi4+OZMWMGI0aM4NKlS+TPn5/JkyfTs2dPtQZKtrFzVZX4+HgefPBBNm7cSKNGjdi4cWOWrvaR21c7SBAXBw0bwk8/mW6shAfaf/rJjJzcvNmMbqxQwUylERaW/TVJ7rFli5nLLzLStA5m1vDhsGmT+f9Scp4mgnZB3t7eDBgw4Hpr4ObNm+nduzcrVqxg3rx5VEiYRVMkCzkcDooXL07x4sWTbX1LblWVhH0nT57k8uXL/O9//+N///tfktdIalWVffv2sXHjRvz9/ZkzZ062LvWW0gPo2eHWVQey05AhULq0CXw32rnTfO4lS8zIzm+/NV1c3t5m/jORpKxcaf7frVzZhL6wMGjcOPPhz7Lgt9/MlCt162ZNrZLNrDSIioqyACsqKioth0sq4uPjralTp1p+fn4WYN1xxx3W22+/bcXHx9tdmsht4uLirIMHD1rr1q2zIiIirDFjxlihoaFW8+bNrbvuusvy9fW1gFS3okWLWvXq1bOeeuopa8CAAdZbb71lffLJJ9bOnTutP/74w3I6nemq64EHLCsszLwuX96y3nor8b19+yyrcWPLypvXsqpXt6yvv7YssKyVK9N27ePHLattW8sqVMiyAgMt6/HHLevQocT3R4+2rHvuSfy+c2fLeuIJy5owwbKKF7esgADLGjPGsq5etaxBgyyrcGHLCgqyrHnz0vURrf/8x7KqVbOsPXtM/bt2pXx8nz6W1axZ+u4hnmXhQsu66y7zbyMoyPy/+8cf5r0JEyzrjjuS3tq0Sfm6f/5pWb6+5t/d4cMZry8zNUj68ppaAG3g5eVFWFjY9dbATZs20adPn+utgXfeeafdJYpcl95VVQ4ePMiUKVP4888/KViwIJZlERMTk+5VVRo0aEBoetaGul5P7ljt4MwZ82zTp5+mvWs7KspMuiuSnOeeM1tSevWCtm2Tfi+1NXQLFTKPK2RWZmqQ9FEAtNFdd93F+vXrmTVrFsOGDeObb76hVq1aTJo0iV69ern83G4icPuqKmFhYfz555+ULFmS3bt3U7Ro0QytqvLdd99lKADmhtUOLMusodqrF9SvDynMI37d1q3w4Yfw5Zdp+5witwoMtP8PCFeowVMoANrMy8uLF154gYcffpjQ0FA2btxI3759r7cGJtfqIuKKVq9ezfTp0wGIiIigaNGiQMZWVcmo3LDawYwZZtLa4cPTVvOePWZqjlGj0h50RcSzKQC6iEqVKvHNN9/w9ttvM3ToUNavX0+tWrV4/fXX6dOnj1oDxeWdO3fu+mofffv2pU2bNmk+N7VVVdIjN6x2sG6dmevs1jnL6tc3c7EtXJi4b+9eePBB012sZa5EJK2UKlyIl5cX/fr1Y/fu3TzwwAPExsbywgsv8OCDDyY7ya+IK7Asi549e3Lq1CmqVavGpEmTbKvlxtUOEqR3tYNffzWrHdx1181bQEDW15uU6dPNqN8ffzTbf/5j9i9fbrqzE+zZY55X7Nz55v0iIqlRAHRBFStWZN26dcycOZM77riDDRs2ULt2bWbMmIEzo4slimSjRYsW8fHHH+Pj48PSpUvxz6kJ+ZJw42oHP/9snrlL72oHRYuaLtVNm+DQIdiwwUyXcfx49taeoFw5032csFWpYvZXqpS42kJC+GvZ0kx4e/q02X7/PWdqFBH3pgDoory8vOjbty8///wzTZs2JTY2lv79+9OsWTMiIyPtLk/kukOHDvHCCy8A8Oqrrya7rF1OSVjt4MIFs9pBt26JXaPpWe2gXDmz2kH16hAaCpcuudb6pytWmLC3dKlZAzVhy8LFVkQkF9NKIG7A6XTy7rvvMnjwYC5evIifnx8TJ06kX79+ejZQbBUfH88DDzzAli1baNKkCevXr8fb29vusm6j1Q5Ect7PP//M+PHjrzdaNGzYkBEjRlA2LfMgSYakJ68pPbgBLy8vevfuze7du2nWrBmXLl0iLCyMpk2bqjVQbPX666+zZcsWChQowKJFi1wm/K1cCV9/baZPWbPGrJCRVasdHDxoVjuoWTNLShXJtWrXrs3SpUv517/+xb59+3jnnXeoUqUK4eHhXLlyxe7yPJ4CoBu58847WbNmDbNnzyZ//vxs2rSJ2rVrM3XqVD0bKDlu586djB49GoAZM2a41ATmMTHQp48ZENKli+kW/ewz8154eOJSbrduDz2U8nWjoqBGDTMZdML8fhmRmRpE3EmePHkYPnw4v/zyCy1atODy5cuMHDmS4OBgtmzZYnd5Hk1dwG7q8OHDdOvWjbVr1wLQpEkT5s+fnyXTaIikJjY2luDgYA4cOMDTTz/Nhx9+iCMzc6/koPPnzZYUPz8ICvKMGuLi4sh76zwzItnIsiyWLVvGiy++yO9/j1bq2bMnEydOpFChQvYWl0ukJ68pALoxy7KYM2cOgwYN4sKFC+TLl4/w8HD69+/vMl1xkjv169ePWbNmUapUKXbv3k2RIkXsLknSKTg4mJMnT1KuXLnrS/AlvE7YihYt6jbBXtzHuXPnGDJkCPPnzwegZMmSTJs2jX/961/6/y2TFAA9zJEjR+jWrRtr1qwB4B//+AcRERFUSZg7QiQLrVq1iocffhiA//73v7RKbm00cWnBwcHs2rUrxWP8/PxuC4U3BsUyZcqoFVEybMOGDfTs2ZMDBw4A8PDDDzNr1iwqVKhgb2FuTAHQA1mWxXvvvcdLL71ETEwM+fLlY8KECYSFhak1ULLM77//Tu3atTl9+jT9+/dn2rRpdpckGRQVFcVvv/3G0aNHr28JazMfPXqUU6dOpek6JUuWvK318MbvAwMD1aojyYqLi+O1117jtdde48qVK/j7+zN27FgGDBiAj48WK0svBUAPdvToUbp168bXX38NQKNGjYiIiKBq1ao2VybuzrIsnnrqKT799FNq1KjB999/j5+fn91lSTaJi4vjxIkTN4XCW4PipUuXUr2Ov79/sl3M5cuXJygoCF9f3xz4ROLK9u/fT69evdiwYQMAderUYc6cOYRoYst0UQD0cJZlMW/ePAYOHHi9NXDcuHG8+OKLag2UDJs/fz5du3YlT548fPfdd9SpU8fuksRGlmVx7ty521oOb/z+zI3r8SXD4XBQqlSpFENioUKF1IroASzLIiIigkGDBvHnn39eXx51/PjxFChQwO7y3IICoACmNbBHjx7897//BeDee+8lIiKCatWq2VyZuJuDBw9yzz33cPHiRV5//XWGDBlid0niBi5fvszx48eTDIkJ2+XLl1O9Tv78+ZPtYi5XrhxBQUHkyZMnBz6R5ISzZ88ycOBAli5dCkBQUBAzZ87kySeftLcwN6AAKNdZlsX8+fMZOHAg0dHR5M2bl3HjxjFw4EC1BkqaXLt2jfvvv5+tW7dy//33s27dOv2/I1nCsix+//33JJ9BTNjOnj2b6nW8vLwoXbp0iiFR04y4n6+//ppevXrx22+/AfDkk08yY8YMyiQsiC23UQCU2xw7dowePXrw1VdfAWZJnoiICKpXr25zZeLqxo0bx6hRoyhYsCA///wz5cuXt7sk8SCXLl3i2LFjyQ5WOXr0aJpWlShYsGCKI5pLly6tQQcu6NKlS4wbN47Jkydz7do1ChQowIQJE+jTp4/+EE2CAqAkybIsFixYwIABA663Br766qsMHDhQP/gkSd999x3/+Mc/iI+PZ/HixXTs2NHukkRu4nQ6OXv2bLIDVY4ePcoff/yR6nW8vLwICgpKcUSzfv/ZZ/fu3fTs2ZOtW7cC0KBBA9599109i3wLBUBJ0fHjx+nRowerVq0CzD+kiIgIatSoYXNl4kouXrxI3bp1+fXXX3nmmWd4//339SC+uKXY2Ngknz9MCInHjh3j6tWrqV4nICAgxcEqpUqVUqtUNnI6nbz77rsMGzaM6OhoKlSoQFhYGD179tSMBH+7cOECBQoUUACU5FmWxcKFCxkwYABRUVH4+voyduxYBg0apNZAAaB379688847BAUFsXv3bgoXLmx3SSLZwul0cubMmRRHNJ9Pbu2+G3h7e1OmTJkUV1fRaNbMO3nyJOPGjePNN99U8EuCw+FQAJTUnThxgh49evCf//wHgJCQECIiIqhZs6bNlYmd/v3vf/PYY48BsGbNGpo3b25zRSL2unDhwvVnEZMKicePH+fatWupXqdw4cIpDlYpWbKkWhElUxQAJc0sy2LRokWEhYVdbw0cM2YMgwcPVmugBzp79iy1atXi7NmzvPjii7z55pt2lyTi8uLj4zl9+nSKI5r//PPPVK+TJ0+em1oRkwqKd9xxRw58InFXCoCSbidOnKBnz558+eWXANSvX5+IiAjuvvtumyuTnGJZFk888QRffPEFd999Nzt27CBfvnx2lyWSK0RHR980ovnWkHj8+HHi4+NTvU5gYGCyzyGWK1eOEiVK4OXllQOfSFyRAqBkiGVZLFmyhP79+/PXX3/h6+vL6NGjGTJkiFoDPcDcuXPp0aMHvr6+7Nixg9q1a9tdkojHiI+P5+TJkylOeRMVFZXqdfLkyUPZsmWT7GIuX748ZcuWxd/fPwc+kdhBAVAy5eTJk/Ts2ZN///vfANSrV4+IiAhq1aplc2WSXX799Vfq1KlDbGwsU6ZM4aWXXrK7JBG5RVRUVIpT3pw4cQKn05nqdYoWLZriYJXixYurFdFNKQBKplmWxdKlS+nfvz9//vknefLkYdSoUQwdOlTLLuUyV69epUmTJnz33Xc0a9aMNWvW6Ie/iBu6du0aJ0+eTPIZxCNHjnDkyBEuXLiQ6nXy5s17vRUxqZBYtmxZlx6B27Qp1KkDU6dChQowYIDZcsKYMfDpp/Djjzlzv1spAEqWOXXqFL169eLzzz8HIDg4mIiICHUP5iJjxoxh7NixBAQEsHv3bsqWLWt3SSKSDSzLut6KmFxIPHnyJGmIBhQvXjzFwSrFihWzbe7QGwPg77/DHXdATvV6X7gAcXFQpEj23ysuDho2hJ9+gl27zGdWAJQsZVkWy5Yt44UXXrjeGvjKK68wbNgwtQa6uW3bttGkSRPi4+NZtmwZ7dq1s7skEbHR1atXOXHiRLLPIR45coSLFy+mep18+fJRtmzZZFdXKVOmTLYNMrsxAOZmYWHw66+wapUCoGSz06dP06tXLz777DMA6tatS0REBPfcc4/NlUlGXLhwgTp16nDw4EHat2/P0qVL7S5JRFycZVn8+eefKQ5WOXXqVJpaEUuUKJHi6ipFihTJUCtiSl3A+/dDt27w/fdQsSJMnw4tW8LKlfDkk6lf+8QJGDgQVq8GLy9o0gSmTTP3gdu7gLt0gb/+ggYNzHFxcfDiizByJAwfDvPmmdbJV1+F0NC0f8ZVq0wdH38MNWumPwBqWKekS8mSJVm5ciUffPAB/fr1Y9euXdSvX59XXnmF4cOHqzXQzQwcOJCDBw9StmxZZs2aZXc5IuIGHA4HgYGBBAYGJrsW75UrVzh+/HiyIfHIkSNcunSJM2fOcObMGXbs2JHkdfz8/JLsXq5RowYhISHprt3pNCGvXDnYvh1iYiA9491iY6FZM7jvPti4EXx8YPx4aNMGfv4ZfH2TPm/dOihTxpyzZQt07Qpbt8L995s6li+HXr1MEE3LEzhnzkD37iZoZrRrWwFQ0s3hcNCuXTuaNWtG7969+fTTTxk9ejQrV64kIiJCi3O7ic8//5y5c+ficDhYuHAhhQoVsrskEcklfH19qVixIhUrVkzyfcuyOH/+fLJL7x09epTTp09z6dIlDhw4wIEDB246v27duvzwww/prmv1ajh4ENavh5Ilzb4JE0zwSosPPjCtfu+9BwkNkxERUKiQuWarVkmfFxhoWhq9vKBqVZg0yYTJESPM+8OHw8SJJhw++2zKNViWaVXs1Qvq14fDh9NW+60UACXDSpYsySeffMLy5cvp168fP/74IyEhIYwcOZIRI0bgm9yfQmK706dP07VrVwBeeuklmjVrZnNFIuJJHA4HRYoUoUiRIgQHByd5TFxcHMePH08yJObPnz9D9z1wwLSwJYQ/MF2zabVzJ0RGwq1LOl++bIJlcmrWNOEvQYkScOMaC97eZtDI2bOp1zBjBkRHm9CYGQqAkikOh4Nnn32WZs2a0adPHz755BPGjh3Lp59+yoIFC9Qa6IIsy6Jr16788ccf1K5dm/Hjx9tdkojIbfLmzUulSpWoVKlSll3TshJb7jLC6YR69SCpx6WLFUv+vFufjnI4kt6XhikcWbcOtm2DvHlv3l+/PnTokPr5CTTRl2SJEiVK8NFHH/HBBx9QpEgRfvrpJ0JCQhg9ejRXrlyxuzy5wbvvvst//vMf8ubNy9KlS8l7608REZFcqlo1OHrUPEOXIJnHD5MUHGxG3RYvDnfddfMWEJD19SZl+nQz7cuPP5rtP/8x+5cvN93ZaaUAKFnG4XDwzDPPsHfvXv7v//6Pa9eu8eqrrxISEsKuXbvsLk+AAwcOMHDgQAAmTpyodZ5FxKO0bAmVKkHnzmbQxpYtZjQupK1lsEMHKFoUnngCNm2CQ4dgwwYzHcvx49lbe4Jy5Uz3ccJWpYrZX6mSGWiSVgqAkuWKFy/ORx99xIcffkjRokX5+eefCQkJYdSoUWoNtNHVq1fp2LEjly5donnz5vTv39/ukkREcpS3txk5e+EChISY6WBeftm8l5YpCf39zUjecuXgqaegenUzdculS+Bus+RpHkDJVmfPnqVfv36sWLECgFq1ahEREUG9evVsrszzvPLKK4wfP57ChQvz888/UyY9fyqKiORSW7aYufwiI00rWmYNH25aBzdvzvy1MiKt8wCqBVCyVfHixfnwww/58MMPKVasGLt376Zhw4a8/PLLxMXF2V2ex/j2228JDw8H4J133lH4ExGPtXIlfP21mT5lzRro0QMaN858+LMsMxJ47Voz6tfVKQBKjvjXv/7Fnj17aNu2LfHx8UyYMIH69evz/fff211arhcTE0OnTp1wOp106tSJtm3b2l2SiIhtYmKgTx8zIKRLF9MV/PfiVoSHQ/78SW8PPZTydaOioEYNMxl0wvx+GZGZGtJDXcCS4z766CP69OnD77//jre3N0OHDmXUqFEajZpNunbtyvz58ylfvjw//fQTATk1VE1ExM2cP2+2pPj5QVCQ69egtYDFpf3xxx+88MILfPDBBwDUrFmTBQsWUL9+fZsry10++eQT/u///g+Hw8H69eu5//777S5JRESykZ4BFJdWtGhR3n//fT7++GOKFy/Onj17uPfeexkxYoSeDcwip06dokePHgAMGTJE4U9ERK5TABRbPfXUU+zZs4d27doRHx/Pa6+9RnBwMN99953dpbk1y7IIDQ3l3Llz1KlTh1dffdXukkRExIUoAIrtihYtyrJly/jkk08oUaIEe/fupVGjRgwbNozLly/bXZ5bevvtt/nqq6/Ily8fS5cu1brMIiJyEwVAcRn//Oc/2bNnD+3bt8fpdPL6668THBzM9u3b7S7Nrezbt49BgwYB8Prrr1OjRg2bKxIREVejACgupUiRIixdupSVK1dSokQJ9u3bxz/+8Q+GDh2q1sA0uHLlCh07duTy5cu0atWKfv362V2SiIjkkAsXLqT5WAVAcUlPPvkke/fupWPHjjidTiZNmkTdunXZtm2b3aW5tDFjxvDDDz8QGBhIREQEXl76Jy4i4imcTmeaj9VvB3FZgYGBLF68mM8++4ySJUuyf/9+GjduzJAhQ7h06ZLd5bmcTZs2MXHiRADeffddSpcubXNFIiLiqhQAxeU9/vjj7Nmz5/pqFpMnT6Zu3bps3brV7tJcRnR0NJ06dcKyLDp37szTTz9td0kiIuLCFADFLQQGBrJo0SI+//xzSpUqxYEDB2jcuDGDBg1SayDQv39/jhw5QoUKFZg+fbrd5YiIiItTABS38thjj7Fnzx6ee+45LMvijTfeoE6dOnz77bd2l2abjz76iIULF+Ll5cXixYu1Wo+IiKRKAVDcTuHChVm4cCFffPEFpUuX5n//+x9NmjThpZdeIjY21u7yctSJEyfo2bMnAMOGDaNJkyY2VyQiIu5AAVDc1qOPPsovv/xCly5dsCyLN998kzp16rBlyxa7S8sRTqeT559/nvPnzxMcHMzo0aPtLklERNyEAqC4tcKFCxMREcGXX35J6dKl+fXXX7nvvvsYOHBgrm8NnDlzJl9//TV+fn5a7UNERNJFAVByhYcffpg9e/bw/PPPY1kWb731Fvfccw+bN2+2u7RssWfPHoYMGQLA5MmTqVatms0ViYiIO1EAlFyjUKFCzJ8/n//85z8EBQURGRnJ/fffz4ABA3JVa2DCah9xcXG0adOGPn362F2SiIi4GQVAyXUeeugh9uzZQ2hoKJZlMW3aNGrXrs2mTZvsLi1LjBo1ih9//JEiRYowf/58HA6H3SWJiIibUQCUXCkgIIB58+axatUqypQpw8GDB3nggQcICwvj4sWLdpeXYRs2bGDSpEkAzJ07l1KlStlckYiIuCMFQMnV2rRpwy+//EK3bt2wLIvp06dzzz33sHHjRrtLS7eoqKjr8x+Ghobyz3/+0+6SRETETSkASq4XEBDA3Llz+eqrryhbtuz11sD+/fu7VWtgv379OHr0KBUrVmTq1Kl2lyMiIm5MAVA8RuvWrdm9ezfdu3cHYMaMGdSuXZv169fbW1gaLF++nCVLluDl5cWSJUsoUKCA3SWJiIgbUwAUjxIQEMCcOXP473//S9myZfntt99o1qwZ/fr148KFC3aXl6Tjx4/Tq1cvAEaOHEmjRo1srkhERNydAqB4pFatWvHLL7/Qo0cPAGbNmkXt2rX55ptvbK7sZk6nky5duvDXX38REhLCK6+8YndJIiKSCygAiscqWLAg7777Ll9//TXlypXj0KFDPPjgg/Tt29dlWgOnTZvG2rVr8ff3Z8mSJeTJk8fukkREJBdQABSP16JFC3755Zfr3axvv/02tWrVYt26dbbWtXv3boYPHw7AG2+8QZUqVWytR8ROTZvCgAHmdYUKkJPjoMaMgTp1cu5+IjlBAVAEKFCgALNnz2bNmjWUL1+e+Ph4Bg0axGuvvWbLSOErV64wfvx4atSoQf/+/enZs2eO1yDiqnbsgL+f3sgRgwbB2rU5c6+4OBM2HQ748ceb33M4bt/eeSdn6pLcx8fuAkRcSfPmzfnll1/Imzevrd2tvr6+LF++3Lb7i7iyYsVy9n7585stJwwZAqVLw08/Jf1+RAS0aZP4fUBAztQluY9aAEVukT9/fj1rJ+LCbu0C3r8fmjSBfPmgRg1Ys8a0jn36adqud+IEPPMMFC4MRYrAE0/A4cOJ79/aBdylCzz5JISHQ4kSUKgQjB0L167B4MEQGAhlysD8+en7XKtWwerVMGVK8scUKgQlSyZufn7pu4dIAgVAERFxW06nCWP+/rB9O8yZAyNHpv382Fho1sy08G3cCJs3m9dt2sCVK8mft24dnDxpznnzTRMSH33UhMjt26FXL7MdO5a2Os6cge7dYfFi81mS068fFC0KISGm+9fpTPtnFbmRAqCIiLit1avh4EFYtAjuuce0BE6YkPbzP/gAvLzgvfegVi2oXt10sx49CinNER8YCNOnQ9WqEBpqvsbGwogRULkyDB8Ovr6wZUvqNViWaVXs1Qvq10/+uHHjYMUK08L57LPw0kumFVIkI/QMoIiIuK0DB6BsWdMdmqBBg7Sfv3MnREbCrYvrXL5sgmVyatY0wTFBiRJw992J33t7m+7ks2dTr2HGDIiONqExJS+/nPg6oUv61Vdv3i+SVgqAIiJiO8uycDgcGTjPPO+XUU4n1KsHS5fe/l5Kg01ufUzY4Uh6X1q6aNetg23bIG/em/fXrw8dOsDChUmfd++9JjieOWMCqEh6KACKpFPTpuav76lTzcPoAwYkzk+W3caMMQ+23zo9hEh2unbtGrGxsdm6Va1alZ07d6a7tmrVTHftjSFox460nx8cDMuXQ/HiULBgum+fJaZPh/HjE78/eRJatzZ1NWyY/Hm7dpmBL4UKZXuJkgspAIpkwo4dcMcdOXe/QYPghRey9x6PP24C5tmz5oH2Fi3g9dfN1BQJwsLMw/K//GKemVIgtYfT6eTy5cvZHs6uXr2a7Z/FsqwMndeyJVSqBJ07w6RJEBOTOAgkLS2DHTrA5Mlm5O+rr5rRu0ePwiefmBG9ZcpkqKx0KVfu5u8TppypVCnx/l98AadPQ6NGZuTvN9+Yz9mjx+0thyJpoQAokgm5cT6yZs3Mg+ylSpnpMQYNgqefhm+/TTzGssyD79u3w88/Z2897siyLK5evZrtwezSpUs5+rkcDgf+/v7ZshXMYPObt7dpFe/WzYyMrVjRBLrHHjOtY6nx9zcjeYcOhaeeMgEyKAiaN7evRTApefLA22/DwIGmW7liRRNY+/a1uzJxVw4rDX92RUdHExAQQFRUVIb/kYrkFil1Ae/fb34Rff+9+QE9fbppoVi50kxVkZoTJ8wP+NWrzQPmTZrAtGnmPnB7F3CXLvDXX+ah92nTzCoCL75oWgaGD4d588wvuFdfNYEtIz7/3NQeF3f7M07u2CUdHx+fZJDK6nAWHx+fo58rb9682RbOEra8efNm6Dm9nLZli/m3ExlpWtEya/hw2LTJtHqLuLL05DW1AIpkkYT5yMqVMy1jMTFmmoa0SpiP7L77TIuEj495LqhNG9PK5uub9Hnr1pluoo0bzS++rl1h61a4/35Tx/LlZnqJli3NaMn0OH/ePBz/j3/cHv6ymmVZOdKdeSWlyd2ygbe3N3fccQf+/v74+fllSzDz8/PD29s7Rz+XK1m50rSMV65sQl9YGDRunPnwZ1nw229mGbi6dbOmVhFXoQAokkUS5iNbvz5xSooJE0zwSosb5yNLaGSJiDAPeK9fD61aJX1ewnxkXl5mLrJJkxLnIwPTejFxogmHzz6btlqGDoWZM8117r0X/v3vtJ2XFl27duXHH39MshUuo8+BZVR2t5j5+/trVZkcEBNjllA7dsxMktyiBbzxhnkvPDz5ufLuu8+svpGcqCizskhISOK/p4zITA0i2UUBUCSL5Ib5yBIMHmxaEo8cMUtcPfecCYFZ0fu3a9cudu3aleIxvr6+2R7M8uXL5xbdmZK6554zW1J69YK2bZN+L7Vl1AoVMo8+ZFZmahDJLgqAIlkkN8xHlqBoUbNVqWJG+ZYta+Ypa9Qo7ddIzuTJk7ly5UqK3Zk+PvrRJFkjMNBsnl6DyK30U1Yki+SG+ciSktArmxUtIQDNmzfPmguJiEiGaS1gkSxy43xkP/9snrlL73xkRYua+cg2bYJDh2DDBvNA+/Hj2Vt7gu++M8/+/fij6f795hto3958rhtb/yIjzTGnT8OlS+b1jz9CDo+vEBGRDFIAFMkiCfORXbhgHhrv1i1xjc70zEdWrpyZj6x6dTN1y6VLOdci6OdnJsBt3jxxkfu77zZB9MbJZrt1M6Mi330X/vc/87puXbOCgYiIuD7NAyiSjTQfmYiI5BTNAyhiE81HJiIi7kBdwCJZKCYG+vQxA0K6dDFdwZ99Zt4LD09cyu3W7aGHUr5uwnxkvr6Zn48sozWIiEjuoS5gkRxy/rzZkuLnZ9Yf9YQaREQke6gLWMQFucJcYK5Qg4iI2E9dwCIiIiIeRgFQRERExMMoAIqIiIh4GAVAEREREQ+jACgiIiLiYRQARURERDyMAqCIiIiIh1EAlFyhaVMYMMC8rlABpk7NuXuPGQN16uTc/URERDJLAVBynR07oEePnLvfoEFmjd6cEBdnwqbDAT/+mLh/wQKzL6nt7NmcqU1ERNyHVgKRXKdYsZy9X8JaujlhyBAoXRp++unm/c88A23a3LyvSxe4fBmKF8+Z2kRExH2oBVBynVu7gPfvhyZNIF8+qFED1qwxLWOffpq26504YQJW4cJQpAg88QQcPpz4/q1dwF26wJNPQng4lCgBhQrB2LFw7RoMHmyWYitTBubPT9/nWrUKVq+GKVNuf8/PD0qWTNy8vWHdOujaNX33EBERz6AAKLma02nCmL8/bN8Oc+bAyJFpPz82Fpo1My18GzfC5s3mdZs2cOVK8uetWwcnT5pz3nzThMRHHzUhcvt26NXLbMeOpa2OM2ege3dYvNh8ltQsWmSOe/rptF1fREQ8iwKg5GqrV8PBgyYQ3XOPaQmcMCHt53/wAXh5wXvvQa1aUL06RETA0aOwfn3y5wUGwvTpULUqhIaar7GxMGIEVK4Mw4eDry9s2ZJ6DZZlWhV79YL69dNW9/z50L69aRkUERG5lZ4BlFztwAEoW9Z0iyZo0CDt5+/cCZGRUKDAzfsvXzbBMjk1a5rgmKBECbj77sTvvb1Nd3JaBmjMmAHR0SY0psXWrbB3rwm9IiIiSVEAlFzNsszzfhnldEK9erB06e3vpTTYJE+em793OJLe53SmXsO6dbBtG+TNe/P++vWhQwdYuPDm/e+9Z55JrFcv9WuLiIhnUgCUXK1aNdNde+aMaYUDM01MWgUHw/LlZiRtwYLZU2Nqpk+H8eMTvz95Elq3NnU1bHjzsRcuwIcfwmuv5WyNIiLiXvQMoORqLVtCpUrQuTP8/LN55i5hEEhaWgY7dICiRc3I302b4NAh2LABwsLg+PHsrT1BuXKm+zhhq1LF7K9UyYwmvtHy5Wa0cYcOOVObiIi4JwVAydW8vc10LxcuQEgIdOsGL79s3suXL/Xz/f3NSN5y5eCpp8wgkNBQuHTJvhbBlMybZ+osXNjuSkRExJU5LMuyUjsoOjqagIAAoqKiKOiKv/VE0mHLFjMaODLStKJl1vDhpnVw8+bMX0tERCSj0pPX9Ayg5HorV5q5+ypXNqEvLAwaN858+LMs+O03swxc3bpZU6uIiEhOUBew5HoxMdCnjxkQ0qWL6Qr+7DPzXnh44lJut24PPZTydaOizMoivr5mfr+MykwNIiIiGaEuYPFo58+bLSl+fhAU5Bk1iIiI+1MXsEgaBQaazdNrEBERz6IuYBEREREPowAoIiIi4mEUAEVEREQ8jAKgiIiIiIdRABS5QXh4OMHBwTz00EPExMTYXY6IiEi20Chgkb+tWrWKkX8vFLxmzRoKFChgc0UiIiLZQy2AIsC5c+cIDQ0FICwsjObNm9tckYiISPZRABSPZ1kWvXr14vTp01SvXp3XXnvN7pJERESylQKgeLylS5fy0Ucf4ePjw+LFi/Hz87O7JBERkWylACge7dixY/Tr1w+AUaNGUa9ePZsrEhERyX4KgOKxnE4nXbp0ISoqioYNGzJ8+HC7SxIREckRCoDisWbMmMG6devw9/dn8eLF+PhoULyIiHgGBUDxSHv37mXo0KEATJkyhcqVK9tckYiISM5RABSPc+XKFTp16kRcXBxt2rShV69edpckIiKSoxQAxeOMGzeOH374gcDAQObNm4fD4bC7JBERkRylACgeZdu2bYSHhwPwzjvvULp0aZsrEhERyXkKgOIxLl68SKdOnXA6nXTo0IF//etfdpckIiJiCwVA8RiDBg0iMjKSMmXKMHPmTLvLERERsY0CoHiEVatW8c477wCwYMECChUqZG9BIiIiNlIAlFzv3LlzhIaGAtC/f3+aN29uc0UiIiL2UgCUXM2yLHr37s3p06epVq0aEydOtLskERER2ykASq62bNkyVqxYgY+PD0uWLMHPz8/ukkRERGynACi51rFjx+jbty8Ao0aNol69ejZXJCIi4hoUACVXcjqddOnShaioKBo2bMjw4cPtLklERMRlKABKrjRjxgzWrVuHn58fixYtwsfHx+6SREREXIYCoOQ6e/fuZdiwYQC88cYbVKlSxeaKREREXIsCoOQqV65coVOnTly+fJk2bdrQq1cvu0sSERFxOQqAkquMGzeOH374gcDAQObNm4fD4bC7JBEREZejACi5xrZt2wgPDwdg9uzZlC5d2uaKREREXJMCoOQKFy9epFOnTjidTjp06EDbtm3tLklERMRlKQBKrjB48GAiIyMpU6YMM2fOtLscERERl6YAKG5v1apVzJ49G4AFCxZQqFAhewsSERFxcQqA4tbOnTtHaGgoAP3796d58+Y2VyQiIuL6FADFbVmWRe/evTl9+jTVqlVj4sSJdpckIiLiFhQAxW0tW7aMFStW4OPjw+LFi/Hz87O7JBEREbegAChu6dixY/Tt2xeAUaNGUb9+fZsrEhERcR8KgOJ2nE4nXbp0ISoqioYNGzJ8+HC7SxIREXErCoDidmbMmMG6devw8/Nj0aJF+Pj42F2SiIiIW1EAFLeyb98+hg0bBsCUKVOoUqWKzRWJiIi4HwVAcRtXrlyhY8eOXL58mdatW9O7d2+7SxIREXFLCoDiNsaNG8cPP/xAYGAg8+fPx+Fw2F2SiIiIW1IAFLewbds2wsPDAZg9ezalS5e2uSIRERH3pQAoLu/ixYt06tQJp9NJ+/btadu2rd0liYiIuDUFQHF5gwcPJjIykqCgIGbOnGl3OSIiIm5PAVBc2qpVq5g9ezYACxYsoHDhwjZXJCIi4v4UAMVlnTt3jtDQUAD69+9PixYtbK5IREQkd1AAFJdkWRa9e/fm9OnTVKtWjYkTJ9pdkoiISK6hACguadmyZaxYsQIfHx8WL16Mn5+f3SWJiIjkGgqA4nKOHTtG3759AXjllVeoX7++zRWJiIjkLgqA4lKcTifPP/88UVFRNGjQgBEjRthdkoiISK6jACguZcaMGaxduxY/Pz8WL16Mj4+P3SWJiIjkOgqA4jL27dvHsGHDAJgyZQpVqlSxuSIREZHcSQFQXMLVq1fp1KkTly9fpnXr1vTu3dvukkRERHItBUBxCePGjWPnzp0ULlyY+fPn43A47C5JREQk11IAFNtt27aNCRMmAPDOO+9QunRpmysSERHJ3RQAxVYXL16kU6dOOJ1O2rdvT9u2be0uSUREJNdTABRbDR48mMjISIKCgpg5c6bd5YiIiHgEBUCxzVdffcXs2bMBWLBgAYULF7a5IhEREc+gACi2OHfuHKGhoQD079+fFi1a2FyRiIiI51AAlBxnWRa9e/fm1KlTVKtWjYkTJ9pdkoiIiEdRAJQct2zZMlasWIGPjw+LFy/Gz8/P7pJEREQ8igKg5Khjx47Rt29fAF555RXq169vc0UiIiKeRwFQcozT6eT5558nKiqKBg0aMGLECLtLEhER8UgKgJJjZs6cydq1a/Hz82Px4sX4+PjYXZKIiIhHUgCUHLFv3z6GDh0KwJQpU6hSpYrNFYmIiHguBUDJdlevXqVTp05cvnyZ1q1b07t3b7tLEhER8WgKgJLtxo0bx86dOylcuDDz58/H4XDYXZKIiIhHUwCUbLVt2zbCw8MBmD17NqVLl7a5IhEREVEAlGxz8eJFOnXqRHx8PO3bt+eZZ56xuyQRERFBAVCy0eDBg4mMjCQoKIiZM2faXY6IiIj8TQFQssVXX33F7NmzAViwYAGFCxe2uSIRERFJoAAoWe7cuXOEhoYC8MILL9CiRQubKxIREZEbKQBKlrIsi969e3Pq1CmqVq3KxIkT7S5JREREbqEAKFlq2bJlrFixAh8fH5YsWYK/v7/dJYmIiMgtFAAlyxw7doy+ffsC8Morr1C/fn2bKxIREZGkKABKlnA6nTz//PNERUXRoEEDRowYYXdJIiIikgwFQMkSM2fOZO3atfj5+bF48WJ8fHzsLklERESSoQAombZv3z6GDh0KwJQpU6hSpYrNFYmIiEhKFAAlU65evUqnTp24fPkyrVu3pnfv3naXJCIiIqlQAJRMGTduHDt37qRw4cLMnz8fh8Nhd0kiIiKSCgVAybDt27cTHh4OwOzZsyldurTNFYmIiEhaKABKhly8eJFOnToRHx9Pu3bteOaZZ+wuSURERNJIAVAyZPDgwfz6668EBQUxa9Ysu8sRERGRdFAAlHT76quvmD17NgALFiygcOHCNlckIiIi6aEAKOly7tw5QkNDAXjhhRdo0aKFzRWJiIhIeikASppZlkWfPn04deoUVatWZeLEiXaXJCIiIhmgAChp9v777/Phhx/i7e3N4sWL8ff3t7skERERyQAFQEmTY8eO0adPHwBGjRpFSEiIzRWJiIhIRikASqqcTifPP/88UVFRNGjQgBEjRthdkoiIiGSCAqCkaubMmaxduxY/Pz8WL16Mj4+P3SWJiIhIJigASor27dvH0KFDAZg8eTJVqlSxuSIRERHJLAVASdbVq1fp1KkTly9fplWrVtefARQRERH3pgAoyRo3bhw7d+6kcOHCzJ8/H4fDYXdJIiIikgUUACVJ27dvJzw8HIDZs2cTFBRkc0UiIiKSVRQA5TYXL16kU6dOxMfH065dO5555hm7SxIREZEspAAot5kxYwb58+endevWvPPOO3aXIyIiIlnMYVmWldpB0dHRBAQEEBUVRcGCBXOiLhERERFJh/TkNbUAioiIiHgYBUARERERD6MAKCIiIuJhFABFREREPIwCoIiIiIiHUQB0I02bwoAB5nWFCjB1as7de8wYqFMn5+4nIiIi2UcB0E3t2AE9euTc/QYNgrVrc+ZecXEmbDoc8OOPN7+3Ywc0bw6FCkHhwtCq1e3HiIiISMoUAN1UsWLg759z98ufH4oUyZl7DRkCpUvfvj8mBlq3hnLlYPt22LwZChY0+65ezZnaREREcgMFQDd1axfw/v3QpAnkywc1asCaNaYF7dNP03a9EyfgmWdMq1qRIvDEE3D4cOL7t3YBd+kCTz4J4eFQooRpkRs7Fq5dg8GDITAQypSB+fPT97lWrYLVq2HKlNvfO3AA/vwTXn0VqlaFmjVh9Gg4exaOHk3ffURERDyZAmAu4HSaMObvb1rG5syBkSPTfn5sLDRrZlr5Nm40LWv580ObNnDlSvLnrVsHJ0+ac95804TERx81IXL7dujVy2zHjqWtjjNnoHt3WLw46dbNqlWhaFGYN8/UdemSeV2zJpQvn/bPKyIi4ukUAHOB1avh4EFYtAjuuce0BE6YkPbzP/gAvLzgvfegVi2oXh0iIkyr2vr1yZ8XGAjTp5tgFhpqvsbGwogRULkyDB8Ovr6wZUvqNViWaVXs1Qvq10/6mAIFTD1LloCfnwmp//0v/Oc/4OOT9s8rIiLi6RQAc4EDB6BsWShZMnFfgwZpP3/nToiMNAErf36zBQbC5csmWCanZk0THBOUKGECZAJvb9OdfPZs6jXMmAHR0SY0JufSJRM0GzeGbdtMsKxZEx5+2LwnIiIiaaN2k1zAsszzfhnldEK9erB06e3vFSuW/Hl58tz8vcOR9D6nM/Ua1q0zoS5v3pv3168PHTrAwoWwbJl5LnHr1sTguWyZ6XL+7DN49tnU7yMiIiIKgLlCtWqmu/bMGdMKB2a6lLQKDobly6F4cTOq1g7Tp8P48YnfnzxpRvcuXw4NG5p9sbEm+N0YdhO+T0vIFBEREUNdwLlAy5ZQqRJ07gw//2y6RhMGgaSlZbBDBzO44oknYNMmOHQINmyAsDA4fjx7a09QrhzcfXfiVqWK2V+pkhlNDOZz/vkn9O0L+/bBnj3w/PPm+b9mzXKmThERkdxAATAX8PY2071cuAAhIdCtG7z8snkvX77Uz/f3NyN5y5WDp54yg0BCQ81zdXa1CCalWjX44gsTchs1gvvuMy2FX30FpUrZXZ2IiIj7cFiWZaV2UHR0NAEBAURFRVHQlRKBJGvLFjMaODLStKJl1vDhpnVw8+bMX0tERESyXnrymp4BzCVWrjSjdytXNqEvLMyMls1s+LMs+O03swxc3bpZU6uIiIjYS13AuURMDPTpY7pJu3QxXcGffWbeCw9PnN7l1u2hh1K+blSUWVnE19fM75dRmalBREREspa6gD3A+fNmS4qfHwQFeUYNIiIiuZm6gOUmgYFm8/QaRERExFAXsIiIiIiHUQAUERER8TAKgCIiIiIeRgFQRERExMMoAIqIiIh4GAVAEREREQ+jACgiIiLiYRQARURERDyMAqCIiIiIh1EAFBEREfEwCoAiIiIiHkYBUERERMTDKACKiIiIeBgFQBEREREPowAoIiIi4mEUAEVEREQ8jAKgiIiIiIdRABQRERHxMAqAIiIiIh5GAVBERETEwygAioiIiHgYn7QcZFkWANHR0dlajIiIiIhkTEJOS8htKUlTAIyJiQGgbNmymShLRERERLJbTEwMAQEBKR7jsNIQE51OJydPnqRAgQI4HI4sK1BEREREsoZlWcTExFC6dGm8vFJ+yi9NAVBEREREcg8NAhERERHxMAqAIiIiIh5GAVBERETEwygAioiIiHgYBUARERERD6MAKCIiIuJhFABFREREPMz/A5d59ICzAH8VAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFPCAYAAADdm3/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABFCElEQVR4nO3deVyVdd7/8dcRWSQQxAVXsozcU8ktl1LLJSX1pzZW2ugQIjVO6qQV6lQ6yaSVmd3TmJqWjZOapY2ZE+4KJXKbS+VokTmaFM5EsbjrOb8/vsN9REEOB84C5/18PK4HcJ3zva7PaRx8+90ui81msyEiIiIiPqOapwsQEREREfdSABQRERHxMQqAIiIiIj5GAVBERETExygAioiIiPgYBUARERERH6MAKCIiIuJjFABFREREfEx1R95ktVrJysoiNDQUi8Xi6ppEREREpIxsNhv5+fk0bNiQatWu38fnUADMysqiSZMmFVLc1Tp06MDnn3/ukmv7upiYGPbt2+fpMkRERMSNTpw4QePGja/7Hosjj4LLzc0lPDycEydOULNmzQorEKBatWqEhIRU6DXFKCgowGq1eroMERERcYO8vDyaNGnCL7/8QlhY2HXf61APYOGwb82aNSs8AIrrKFiLiIj4Hkem63n1IpBevWDSJPN906Ywf7777v3cc9C+vfvuJyIiIuIuXh0Ar5SRAQkJ7rvflCmwZYtr79G0KVgsRY+nny7+vT/9BI0bm/f88otr6xIREZGqzaEhYG9Qt6577xcSYg5XmzULxo0ret/iPPII3HYbnDzp+ppERESkaqs0PYBXDwEfPgw9ekBQELRqBZs3m96xdescu97JkzByJNSqBbVrw5AhcOyY/fWrh4DHjoWhQyE5GSIjITwcZs6ES5dg6lSIiDA9dEuXlu1zhYZC/fr2o7gA+Je/mF6/KVPKdm0RERGR4lSaAHglq9WEseBgSE+HRYtg+nTH2585A717m7C1cyekpprvBwyACxdKbrd1K2RlmTbz5pmQGBtrQmR6OiQmmuPECcdrmTPHBND27WH27Gvvf+iQ6SVcvhxK2dJHRERExCGVMlKkpMC335pQ1K6d6QmcPdvx9itXmjC1ZAm0bQstW8KyZXD8OGzfXnK7iAhYsACaN4e4OPP1zBmYNg2ioyEpCQICIC3NsTomTjS1bNsGEyaYHs7HHrO/fv48PPggvPgiREU5/vlERERErqfSzAG80pEj0KSJGTIt1Lmz4+337oXMTDP8eqVz50ywLEnr1kV74SIjoU0b+89+fqY379Qpx+qYPNn+/W23mZ7EESPsvYJJSSacjh7t2PVEREREHFEpA6DNZub7OctqhdtvhxUrrn3teotN/P2L/myxFH/O2b2Xu3Y1XzMzTQDcuhW++ALWrDHnC7fsrlPHDHnPnOncfURERMS3VcoA2KKFGa7Nzja9cGC2iXFUTAysWgX16oE37Wtd+NS2Bg3M1/ffh7Nn7a9nZJih5127oFkz99cnIiIiVUOlnAPYt68JQGPGwMGDZs5d4SIQR3oGR40yvWhDhpgw9d13sGOHmZP3/feurb3QZ5/BK6/A/v3m/qtXw/jxMHiwfb5fs2ZmiLnwuOkmc75lSxNeRURERJxRKQOgn5/Z7qWgADp1gvh4mDHDvBYUVHr74GCzkjcqCoYNM4EqLs70trmrRzAw0PRC9upltrF55hmzH+C777rn/iIiIuK7LDZb4cyykuXl5REWFkZubq7XPgs4Lc2sBs7MrJjh0aQk0zuYmlr+a4mIiIi4WlnyWqWcAwiwdq3Zuy862oS+iROhe/fyhz+bDY4eNY+B69ChYmoVERER8SaVcggYID/f7JnXooV5SkenTvDhh+a15GT7o9yuPu699/rXzc01Q7IBAWZ/P2eVpwYRERERV6oyQ8BXyskxR3Fq1IBGjXyjBhEREfEdPjEEfD0REebw9RpEREREilNph4BFRERExDkKgCIiIiI+RgFQRERExMcoAIqIiIj4GAVAERERER9T6QPgxYsX+dOf/kRMTAwxMTFMmTKF06dPe7osEREREa9V6QOgv78/SUlJ/Pa3v+Wrr77i5ZdfpnPnznzzzTeeLk1ERETEK1X6AFjokUceYceOHTRs2JBDhw7RqVMnPv74Y0+XJSIiIuJ1qkwABOjatSt79+6le/fu5ObmEhsby+zZs3HgYSciIiIiPqNKBUCA+vXrs3XrVhITE7HZbMyYMYMRI0aQn5/v6dJEREREvEKVC4AAAQEB/OUvf2Hx4sUEBATwwQcf0LVrV80LFBEREaGKBsBC8fHx7NixgwYNGmheoIiIiMh/VekACPZ5gd26ddO8QBERERF8IAACNGjQgG3btmleoIiIiAg+EgBB8wJFRERECvlMACykeYEiIiLi63wuAELx8wKTk5M1L1BERER8gk8GQLh2XuD06dM1L1BERER8gs8GQNC8QBEREfFNPh0ACxU3L3Djxo2eLktERETEJRQA/+vqeYGDBg3SvEARERGpkhQAr6B5gSIiIuILFACvUjgvcNGiRfj7+2teoIiIiFQ5CoAlGDdunOYFioiISJWkAHgdd9xxh+YFioiISJWjAFiKwnmB48eP/795gffffz8FBQWeLk1ERETEKQqADggICGDhwoX/Ny/w/fffp2vXrmRmZnq6NBEREZEyUwAsgyvnBX711VdOzQvs1QsmTTLfN20K8+dXcJHX8dxz0L69++4nIiIi3kkBsIyunBf4yy+/lGteYEYGJCS4oMgSTJkCW7a49h5Nm4LFUvR4+umi77n6dYsFFi50bV0iIiJipwDohIqaF1i3LgQHu6jIYoSEQO3arr/PrFnwww/2Y8aMa9+zbFnR94wZ4/q6RERExFAAdFJJ8wJPnDjh8DWuHgI+fBh69ICgIGjVCjZvNr1j69Y5dr2TJ2HkSKhVywS9IUPg2DH761cPAY8dC0OHQnIyREZCeDjMnAmXLsHUqRARAY0bw9KlDn8kAEJDoX59+xEScu17wsOLvqdGjbLdQ0RERJynAFhOV88LHD16tFPXsVpNGAsOhvR0WLQIpk93vP2ZM9C7twlbO3dCaqr5fsAAuHCh5HZbt0JWlmkzb54JibGxJkSmp0NiojnKkGuZM8cE0PbtYfbs4u8/YQLUqQOdOpnhX6vV8euLiIhI+VT3dAFVQeG8wOHDhzv92LiUFPj2W9i+3fSIgQlPffs61n7lSqhWDZYsMb2GYIZZw8PNNfv1K75dRAQsWGDaNm8Oc+eaMDltmnk9KQleeAHS0uCBB0qvY+JEiIkxAXLPHtP+u+9MXYX++Ee4+27T67dlCzzxBPznP8UPFYuIiEjFUwCsIIXzAl988UWn2h85Ak2a2MMfQOfOjrffuxcyM83w65XOnTPBsiStW5vwVygyEtq0sf/s52d6806dcqyOyZPt3992mwmCI0bYewWhaNArHJKeNUsBUERExF0UACtQYGAgM5xMMTabvefOGVYr3H47rFhx7Wt165bczt+/6M8WS/HnnB2i7drVfM3MLHkBSteukJcH2dkmgIqIiIhrKQB6iRYt4PjxoiEoI8Px9jExsGoV1KsHNWu6pkZn7NtnvjZocP33BAWZ4WoRERFxPS0C8RJ9+0KzZmY7lIMHzZy7wkUgjvQMjhplFlUMGQK7dpl5dzt2mDl533/v2toLffYZvPIK7N9v7r96NYwfD4MHQ1SUec/69bB4MXz5pRmaXrLEfM6EBAgMdE+dIiIivk4B0Ev4+ZntXgoKzMrY+Hj7nLigoNLbBweblbxRUTBsGLRsCXFxcPas+3oEAwNNL2SvXmYbm2eegXHj4N137e/x94fXX4c77jBzBF991cz/e/ll99QoIiIiYLE58AiLvLw8wsLCyM3NpaY3jS9WcWlpZl/AzEzTO1heSUmmdzA1tfzXEhEREe9SlrymOYBeZO1as3dfdLQJfRMnQvfu5Q9/NhscPWq2XOnQoWJqFRERkcpLQ8BeJD8fHnvMLAgZO9YMBX/4oXktOdmEw+KOe++9/nVzc82QbECAfX8/Z5SnBhEREfEeGgKuJHJyzFGcGjWgUSPfqEFERESKpyHgKigiwhy+XoOIiIiUn4aARURERHyMAqCIiIiIj1EAFBEREfExCoAiIiIiPkYBsBK4fPkya9eupW/fvsTExBATE0NiYiJff/21p0sTERGRSkgBsBLw8/Pj//2//8cHH3zAgAEDOHToEG+88QYtWrRg3Lhx/Pjjj54uUURERCoRBcBKJDQ0lOTkZA4fPszIkSOx2WwsWbKE6Oho/vSnP3Hu3DlPlygiIiKVgAJgJdS0aVNWrlxJWloanTt3pqCggGnTptGiRQtWrVqFA3t7i4iIiA9TAKzEunXrxmeffcY777xD48aN+de//sUDDzxAjx492LNnj6fLExERES+lAFjJVatWjdGjR3PkyBFmzpxJcHAwn376KV26dGH06NGcOHHC0yWKiIiIl1EArCKCg4N55pln+PrrrxkzZgwAK1asoHnz5jz77LOcPn3awxWKiIiIt1AArGIaNWrEW2+9RUZGBj169ODs2bPMmjWLW2+9lbfffhur1erpEkVERMTDFACrqI4dO7Jz507ee+89brrpJrKyshg7diydO3dm165dni5PREREPEgBsAqzWCyMGDGCQ4cOMWfOHEJDQ9m7dy933nkn999/P0ePHvV0iSIiIuIBCoA+ICgoiCeffJLMzEzGjx9PtWrVWLNmDS1btuSpp54iNzfX0yWKiIiIGykA+pB69eqxcOFC9u/fT9++fblw4QJz584lOjqaN954g0uXLnm6RBEREXEDBUAf1LZtWz755BM++ugjmjdvzr///W8SExPp0KEDmzZt8nR5IiIi4mIKgD7KYrEwaNAgvvjiC1599VVq1arFl19+Sb9+/YiNjeXw4cPlvkevXjBpkvm+aVOYP7/cl3TYc89B+/buu5+IiEhlogDo4/z9/Xn88cfJzMxk4sSJVK9enQ0bNtC2bVsmTpxITk5OhdwnIwMSEirkUg6ZMgW2bHHPvc6fN2HTYoH9++3nf/oJBgyAhg0hMBCaNIEJEyAvzz11iYiIlEQBUACIiIhg/vz5fPnll9x3331cunSJBQsWcMstt/Dqq69y8eLFcl2/bl0IDq6gYh0QEgK1a7vnXk8+aULe1apVgyFD4O9/h6+/hrfegs2bITHRPXWJiIiURAFQimjevDl///vf2bRpE23btuXnn39m0qRJtGnThvXr12Oz2Zy67tVDwIcPQ48eEBQErVqZYGSxwLp1jl3v5EkYORJq1TJBb8gQOHbM/vrVQ8Bjx8LQoZCcDJGREB4OM2fCpUswdSpEREDjxrB0adk+18aNkJICL7107Wu1asGjj0LHjnDjjXD33fDYY6BtGEVExNMUAKVY99xzD/v27WPRokXUq1ePr7/+msGDB9O3b18OHjxYrmtbrSaMBQdDejosWgTTpzve/swZ6N3b9PLt3Ampqeb7AQPgwoWS223dCllZps28eSYkxsaaoJaebnrmEhPB0ccnZ2fDuHHwzjuO9W5mZcEHH8Bddzl2fREREVdRAJQS+fn5MW7cOL755hueeuopAgIC2LJlCx06dCAhIYGffvrJqeumpMC338Ly5dCunekJnD3b8fYrV5rh1SVLoG1baNkSli2D48dh+/aS20VEwIIF0Lw5xMWZr2fOwLRpEB0NSUkQEABpaaXXYLOZXsXERNPDdz0PPmgCYqNGULOmqVtERMSTFAClVDVr1uSFF17g8OHD3H///VitVhYvXszQoUOdut6RI2ZBRP369nOdOzvefu9eyMyE0FDT8xcSYsLduXMmWJakdWsTHAtFRpoAWcjPzwwnnzpVeg2vvWYWcyQllf7eV16Bzz83w9vffgu//33pbURERFypuqcLkMrjpptuYvXq1aSmpjJ58mROnz7t1HVsNjPfz1lWK9x+O6xYce1rdeuW3M7fv+jPFkvx56zW0mvYuhV27zare6/UsSOMGgVvv20/V7++OVq0MAGzZ0/4wx+gQYPS7yMiIuIKCoBSZj169CA9PZ2PP/7YqfYtWpjh2uxs0wsHZpsYR8XEwKpVUK+eGVL1hAUL4Pnn7T9nZUH//qauLl1Kble4hub8edfWJyIicj0KgOKUatWqERsb61Tbvn2hWTMYMwbmzoX8fPsiEEd6BkeNghdfNCt/Z80yq3ePHzcLLKZONT+7WlRU0Z9DQszXZs3s9//4YxNyO3Uyrx86ZLaM6d7drIoWERHxFM0BFLfz8zPz4QoKTDiKj4cZM8xrQUGltw8ONit5o6Jg2DCzCCQuDs6e9VyPYHFq1IDFi80il5YtzVNRYmPho488XZmIiPg6i82Bjd3y8vIICwsjNzeXmt70N6xUGWlpJihlZppetPJKSjL77aWmlv9aIiIilUFZ8pqGgMUj1q41w6LR0Sb0TZxohkbLG/5sNjh61DwGrkOHiqlVRESkqtEQsHhEfr55KkaLFmY/vU6d4MMPzWvJyfbtXa4+7r33+tfNzTVPFgkIMPv7Oas8NYiIiHg7DQGL18nJMUdxatQwGyr7Qg0iIiJloSFgqdQiIszh6zWIiIi4ioaARURERHyMAqCIiIiIj1EAFBEREfExCoAiIiIiPkYBUDwiNTWVbt26ERMTwyOPPEJ+fr6nSxIREfEZCoDiET169GDu3LkcPXqUpUuXcuedd5Kdne3pskRERHyCAqB4TI8ePdixYweRkZHs37+fHj16cOzYMU+XJSIiUuUpAIpHtWvXjtTUVJo2bUpmZiY9evTg0KFDni5LRESkSlMAFI+75ZZbSE1NpVWrVpw8eZKePXuyZ88eT5clIiJSZSkAildo1KgRO3fupHPnzuTk5NCnTx+2bNni6bJERESqJAVA8Rq1a9dmy5Yt3H333Zw+fZqBAweydu1aT5clIiJS5SgAilcJCQlhw4YNDBs2jAsXLjBixAiWLl3q6bJERESqFAVA8TqBgYGsWrWKRx55BKvVyiOPPMLLL7/s6bJERESqDAVA8UrVq1dn8eLFTJ06FYApU6Ywffp0bDabhysTERGp/BQAxWtZLBbmzp3LCy+8AEBycjKPPvooly9f9nBlIiIilZsCoHi9p556ijfeeAOLxcIbb7zBqFGjuHDhgqfLEhERqbQUAKVSSEhIYOXKlfj7+7Nq1SqGDBnC6dOnPV2WiIhIpaQAKJXGr371K9avX09wcDD/+Mc/6NevHz///LOnyxIREal0FAClUunfvz+bN28mPDycTz/9lLvuuosffvjB02WJiIhUKgqAUunccccd7Ny5k/r16/PFF1/Qo0cPjh496umyREREKg0FQKmU2rZtS1paGjfffDNHjx6lR48efPnll54uS0REpFJQAJRK6+abbyY1NZU2bdrwww8/cOedd7J7925PlyUiIuL1FAClUmvQoAE7d+7kjjvu4Oeff+buu+9m06ZNni5LRETEqykASqVXq1YtNm3aRL9+/Thz5gyDBg1izZo1ni5LRETEaykASpVwww03sH79en71q19x8eJFRo4cyeLFiz1dloiIiFdSAJQqIyAggL/97W8kJCRgtVpJSEhgzpw5ni5LRETE6ygASpXi5+fHwoULSUpKAuDpp5/mqaeewmazebgyERER76EAKFWOxWIhOTmZF198EYC5c+eSkJDA5cuXPVyZiIiId1AAlCprypQpLFmyhGrVqrFkyRIeeOABzp8/7+myREREPE4BUKq0Rx55hPfee4+AgADWrFnDfffdR0FBgafLEhER8SgFQKnyhg0bxoYNG7jhhhvYtGkT99xzDzk5OZ4uS0RExGMUAMUn3HPPPWzZsoWIiAjS09O58847ycrKcqhtr14waZL5vmlTmD/fRUUW47nnoH17991PRER8gwKg+IwuXbqwc+dOGjZsyFdffUX37t3JzMws0zUyMiAhwUUFFmPKFNiyxT33On/ehE2LBfbvt58/cAAefBCaNIEaNaBlS3j1VffUJCIirqEAKD6ldevWpKWlccstt3Ds2DF69OjBN99843D7unUhONiFBV4lJARq13bPvZ58Eho2vPb83r3mc//1r/DVVzB9OiQlwf/8j3vqEhGRiqcAKD6nadOmpKam0q5dO7Kzs4mPjy9D26JDwIcPQ48eEBQErVrB5s2mB23dOseud/IkjBwJtWqZoDdkCBw7Zn/96iHgsWNh6FBITobISAgPh5kz4dIlmDoVIiKgcWNYutThjwTAxo2QkgIvvXTta3FxsGAB3HUX3HwzjB4Nv/kNfPBB2e4hIiLeQwFQfFJkZCTbt2+ne/fu5OfnO3UNq9WEseBgSE+HRYtM75ijzpyB3r1NL9/OnZCaar4fMAAuXCi53datkJVl2sybZ0JibKwJkenpkJhojhMnHKsjOxvGjYN33nG8dzM314RNERGpnBQAxWeFh4eTkpJC9+7dnWqfkgLffgvLl0O7dqYncPZsx9uvXAnVqsGSJdC2rZlbt2wZHD8O27eX3C4iwvTINW9ueueaNzdhcto0iI42w7MBAZCWVnoNNpvpVUxMhI4dHav7s89g9WoYP96x94uIiPep7ukCRDwpODiYefPmOdX2yBGzMKJ+ffu5zp0db793L2RmQmho0fPnzplgWZLWrU1wLBQZCW3a2H/28zPDyadOlV7Da69BXp4JjY746iszTP3MM9C3r2NtRETE+ygAis/z9/d3qp3NZub7OctqhdtvhxUrrn2tbt2S211drsVS/DmrtfQatm6F3bshMLDo+Y4dYdQoePtt+7lDh6BPHzNcPGNG6dcWERHvpQAo4qQWLcxwbXa26YUDs02Mo2JiYNUqqFcPatZ0TY2lWbAAnn/e/nNWFvTvb+rq0sV+/quvTPgbM6Zsw9wiIuKdNAdQxEl9+0KzZiYUHTxo5twVLgJxpGdw1CioU8cMqe7aBd99Bzt2wMSJ8P33rq29UFSUGT4uPG691Zxv1sysJgYT/nr3Np/397+HH380x7//7Z4aRUSk4ikAijjJz89s91JQAJ06QXy8fWg0KKj09sHBZiVvVBQMG2YWgcTFwdmznusRLM5775mwt2IFNGhgPzp18nRlIiLiLIvNZrOV9qa8vDzCwsLIzc2lpjf9zSTiZdLSzGrgzEzTi1ZeSUmmdzA1tfzXEhGRqq0seU1zAEXKYe1as3dfdLQJfRMnQvfu5Q9/NhscPWoeA9ehQ8XUKiIiUkhDwCLlkJ8Pjz1mFoSMHWuGRT/80LyWnGzCYXHHvfde/7q5uebJIgEBZn8/Z5WnBhERqbo0BCziIjk55ihOjRrQqJFv1CAiIu6hIWARLxAR4fnHpXlDDSIi4n00BCwiIiLiYxQARURERHyMAqCIiBv06gWTJpnvmzaF+fPdd+/nnoP27d13PxHxfgqAIiJulpEBCQnuu9+UKWZLIXc4f96ETYsF9u8v+lpGBtx9N4SHQ61a0K/fte8REfdQABSpIB999BHdu3cnJiaG/v378/nnn3u6JPFSdeuaJ8G4S0gI1K7tnns9+SQ0bHjt+fx885zpqChITzebm9esac5dvOie2kTETgFQpILExsayaNEizp07R0pKCp07d2bOnDlYrVZPlyZe5uoh4MOHzRNkgoLM/o+bN5setHXrHLveyZMwcqTpVatd2zxf+tgx++tXDwGPHQtDh5p9IiMjTY/czJlw6RJMnWpWjjduDEuXlu1zbdwIKSnw0kvXvnbkCPz8M8yaBc2bQ+vW8OyzcOoUHD9etvuISPkpAIpUoNatW7Nnzx5Gjx7N5cuXefrppxk8eDA//fSTp0sTL2W1mjAWHGx6xhYtgunTHW9/5gz07m16+XbuND1rISEwYABcuFByu61bISvLtJk3z4TE2FgTItPTITHRHCdOOFZHdjaMGwfvvFN872bz5lCnDrz5pqnr7FnzfevWcOONjn9eEakYCoAiFSwkJITly5ezePFiAgMD2bBhAzExMaSnp3u6NPFCKSnw7bewfDm0a2d6AmfPdrz9ypVQrRosWQJt20LLlrBsmelV27695HYREbBggQlmcXHm65kz5skz0dHmOdQBAeb51qWx2UyvYmIidOxY/HtCQ009f/2r2YQ8JAQ++QQ+/hiqa0daEbdTABRxAYvFQnx8PLt37+aWW27h+PHj9OzZk1dffRUHHr4jPuTIEWjSBOrXt5/r3Nnx9nv3mudQh4baH/MXEQHnzplgWZLWrU1wLBQZaQJkIT8/M5x86lTpNbz2GuTlmdBYkrNnTdDs3h127zbBsnVrGDjQvCYi7qUAKOJC7du3Z+/evdx///1cvHiRSZMmMWLECHJzcz1dmngJm83M93OW1Qq3325W0155fP01PPRQye38/Yv+bLEUf86RKaxbt5pQFxhoevNuucWc79gRxowx3//tb2Ze4rJl5pnZXbuac999Z39+toi4jwKgiIvVrFmTVatW8dprr+Hv788HH3xATEyMVgkLAC1amOHa7Gz7uYwMx9vHxMA330C9eiZ4XXmEhVV8vcVZsAAOHLCHz48/NudXrbIPZ585Y3ocrwy7hT9rnZSI+ykAiriBxWJhwoQJpKWlceONN3L06FG6devGwoULNSTs4/r2hWbNTE/ZwYNmaLRwEYgjPYOjRpnFFUOGwK5dpkdtxw6YOBG+/961tReKioI2bezHrbea882amdXEYD7nzz/Db38L//wnfPUV/OY3psewd2/31CkidgqAIm7UqVMn9u3bx3333cf58+d59NFHGTVqFPn5+Z4uTTzEz89s91JQYIZG4+NhxgzzWlBQ6e2Dg81K3qgoGDbMLAKJizPz6mrWdGnpZdKiBaxfb0LuHXdAz55mFfI//gENGni6OhHfY7E50P2Ql5dHWFgYubm51PSm3ygilZTNZmPevHk89dRTXL58mebNm/Pee+/R9spZ+OKz0tLMauDMTNOLVl5JSaZ3MDW1/NcSEe9VlrymHkARD7BYLDzxxBPs2LGDRo0aceTIEbp06cJbb73l6dLEA9auhU2bzCKJzZvNY+K6dy9/+LPZzErgLVvMilsRkUIKgCIe1L17d/bt20f//v05e/Ysv/nNb4iLi+PMmTOeLk3cKD8fHnvMDJOOHWuGggtXxiYn27d3ufq4997rXzc31zxZJCDA7O/nrPLUICLeSUPAIl7AarXypz/9iWeeeQar1UqbNm1Ys2YNzZs393Rp4mE5OeYoTo0a0KiRb9QgIqUrS15TABTxItu2bePBBx8kOzubkJAQFi1axIMPPujpskREpBLQHECRSqp3797s37+fXr16UVBQwEMPPcSjjz7KuXPnPF2aiIhUIQqAIl6mfv36bN68mRkzZmCxWFi4cCHdunXj2+s910tERKQMFABFvJCfnx9//OMf2bhxI3Xq1GHfvn3ExMTwwQcfeLo0ERGpAhQARbxY//792bdvH927dycvL4/hw4czefJkLly44OnSRESkElMAFPFyjRs3Ztu2bUydOhWA+fPnc+edd3L8+HEPVyYiIpWVAqBIJeDv78/cuXP58MMPCQ8PJz09nQ4dOrBhwwZPlyZX+OKLL4iJiaFLly78/PPPni5HRKRECoAilcjgwYP5/PPP6dixIzk5OcTGxpKUlMSlS5c8XZoAr7/+Ovv27ePmm2+mVq1ani5HRKRECoAilcxNN91Eamoqv/vd7wB44YUX6NOnD1lZWR6uzLedPn2aFStWABAfH+/hakRErk8BUKQSCgwMZMGCBaxevZrQ0FB27dpF+/bt2bx5s1PX69ULJk0y3zdtCvPnV1ChDnjuOWjf3n33c5X33nuP/Px8br75Znr37u3pckRErksBUKQSu//++9m7dy/t2rXj3//+N/369WPmzJlcvnzZ6WtmZEBCQgUWWYopU2DLFtfeo2lTsFiKHk8/XfQ9x4/DfffBDTdAnTrw+ONQlsXWixcvBkzvX7Vq+tUqIt5Nv6VEKrno6Gg+++wzxo0bh81m47nnnmPAgAGcOnXKqevVrQvBwRVc5HWEhEDt2q6/z6xZ8MMP9mPGDPtrly/DoEFw+jSkpsLKlfD++/DEE45d+9ChQ3z66af4+fkxduxYl9QvIlKRFABFqoAaNWqwaNEili9fTnBwMJs3b6Z9+/bs3LmzzNe6egj48GHo0QOCgqBVK9i82fSgrVvn2PVOnoSRI6FWLRP0hgyBY8fsr189BDx2LAwdCsnJEBkJ4eEwcyZcugRTp0JEBDRuDEuXlu1zhYZC/fr2IyTE/lpKChw6BH/9K3ToAPfcAy+/DIsXQ15e6ddesmQJALGxsTRo0KBshYmIeIACoEgV8vDDD5ORkUHLli354Ycf6NOnD3PmzMFqtTp1PavVhLHgYEhPh0WLYPp0x9ufOQO9e5uwtXOn6V0LCYEBA64/vLp1K2RlmTbz5pmQGBtrQmR6OiQmmuPECcdrmTPHBND27WH27KL3/+wzaNMGGja0n+vfH86fh717r3/dCxcusHz5cgDGjRvneEEiIh6kAChSxbRq1YqMjAwefvhhLl++zNNPP82kwhUeZZSSAt9+C8uXQ7t2pidw9mzH269cCdWqwZIl0LYttGwJy5aZ+Xbbt5fcLiICFiyA5s0hLs58PXMGpk2D6GhISoKAAEhLc6yOiRNNLdu2wYQJpofzscfsr//4o+ltvFKtWuYeP/54/Wtv376dn376iUaNGtG/f3/HChIR8bDqni5ARCreDTfcwNtvv82dd97J7373O1JTU526zpEj0KSJGTIt1Lmz4+337oXMTDP8eqVz50ywLEnr1iY4FoqMND10hfz8TG+eo9McJ0+2f3/bbSbcjRhh7xUEM6x9NZut+PNXKnw+c1xcHNWr61eqiFQO+m0lUkVZLBbi4+Pp1KkTzz77rFPXcCQAXY/VCrffDv/dHq+IunVLbufvX/Rni6X4c06ObNO1q/mamWkCYP36Zmj5Sj//DBcvXtszeLU9e/ZgsViIi4tzrhgREQ/QELBIFdeuXTv++te/OtW2RQszXJudbT+XkeF4+5gY+OYbqFcPbrml6BEW5lRJFWLfPvO1cL3GHXfAl1+a1cGFUlIgMNAE2NL07duXpk2bVnidIiKuogAo4gNCrlzyWgZ9+0KzZjBmDBw8aObcFS4CcaRncNQos6fekCGwaxd89x3s2GHm5H3/vVMlldlnn8Err8D+/eb+q1fD+PEweDBERZn39OtnVjg//LAJh1u2mP0Jx42DmjVLv4cWf4hIZaMAKCIl8vMz270UFECnThAfb98/Lyio9PbBwWYlb1QUDBtmFoHExcHZs44Fq4oQGAirVpmnnbRqBc88Y4Ldu+/a3+PnBxs2mM/UvTv86ldm9fNLL5V+/Vq1ajF48GBXlS8i4hIWm81mK+1NeXl5hIWFkZubS013/dYWEa+UlmZWA2dmmt7B8kpKMr2DTq5T8bj58+c7vcpaRKQilSWvaRGIiFzX2rVm777oaBP6Jk40vWTlDX82Gxw9aoZbO3SomFo9YejQoZ4uQUSkzDQELCLXlZ9v9sxr0cI8paNTJ/jwQ/NacrIJh8Ud9957/evm5poh2YAAs7+fs8pTQ0XQ4g8RqYw0BCwiTsvJMUdxatSARo18owYREW+gIWARcYuICHP4eg0iIpWNhoBFREREfIwCoIiIiIiPUQAUERER8TEKgCIiIiI+RgFQRERExMcoAIqIww4cOMCgQYOIiYmhc+fOLF++HKvV6umy3OIPf/gDMTExzJo1y9OliIiUmwKgiDisXbt2rFixgmbNmpGRkcGYMWMYOHAg2dnZni7NpX755Rdeeukl9u3bR79+/TxdjohIuSkAikiZhIeHs3r1at544w2CgoL45JNPaNeuHZs2bfJ0aS6zYsUKzp07R5s2bejSpYunyxERKTcFQBEpM4vFQkJCAhkZGbRu3Zrs7Gz69evH008/zcWLFz1dXoWy2WwsXrwYgHHjxmGxWDxckYhI+SkAiojT2rRpw549exg/fjwAc+bMoWfPnnz33Xcerqzi7N27lwMHDhAYGMjo0aM9XY6ISIVQABSRcgkODmbhwoWsWbOG8PBw0tPTad++PatWrfJ0aRWisPdv+PDhROiZcyJSRSgAikiFGD58OPv376dbt27k5eXxwAMPEB8fz+nTpz1dmtMKCgr429/+BpjhXxGRqkIBUEQqzI033siOHTuYPn06FouFN998k44dO3Lw4EFPl+aU1atXU1BQwC233MJdd93l6XJERCqMAqCIVKjq1avz/PPPs3nzZho0aMDhw4fp3Lkzf/7zn7HZbJ4ur0wKh3/j4+O1+ENEqhQFQBFxiT59+nDgwAEGDhzI+fPnmTBhAsOGDSMnJ8fTpTnkyy+/ZPfu3VSvXp0xY8Z4uhwRkVJVq+Z4rFMAFBGXqVu3Lh999BGvvPIK/v7+rFu3jvbt27Nr1y5Pl1aqJUuWAHDfffdRv359D1cjIlK6kJAQh9+rACgiLmWxWJg0aRK7d+8mOjqaEydO0KtXL2bNmsXly5c9XV6xzp07xzvvvANo8YeIVE0KgCLiFjExMezdu5eHH34Yq9XKs88+y913383333/v6dKusXbtWnJycmjSpIke/SYiVZICoIi4TWhoKMuXL2f58uWEhISwY8cO2rVrx9///ndPl1ZE4eKPuLg4/Pz8PFyNiEjFUwAUEbd7+OGH+fzzz4mJiSEnJ4chQ4bw+OOPc+7cOU+XRmZmJtu2bcNisRAXF+fpckREXEIBUEQ8Ijo6mk8//ZTJkycD8Nprr9G1a1eOHDni0brefPNNAAYMGEBUVJRHaxERcRUFQBHxmMDAQObNm8eGDRuoU6cOBw4cICYmhmXLlnlkz8CLFy+ybNkywOz9JyJSEXr1gkmTzPdNm8L8+RV3bYsF1q0rezsFQBHxuIEDB3LgwAH69OnDmTNniIuLY9SoUeTl5bm1jo8++ojs7GwiIyO577773HpvEfENGRmQkFBx1/vhB7j33rK3UwAUEa/QsGFDUlJSmD17Nn5+frz77rt06NCBjIwMt9Wwbds2OnTowLRp0/D393fbfUXEd9StC8HBFXe9+vUhMLDs7RQARcRr+Pn5MW3aNHbu3ElUVBRHjx6lW7duvPTSS1itVpfff8GCBXz++ec8/vjjLr+XiPimq4eADx+GHj0gKAhatYLNm8s2rHvle48dc7wOBUAR8TrdunVj//79DB8+nEuXLjF16lQGDhxIdna2p0sTEakwVisMHWp6BNPTYdEimD7dPfdWABQRr1SrVi3ee+893njjDYKCgvjkk09o164dmzZt8nRpIiIVIiUFvv0Wli+Hdu1MT+Ds2e65twKgiHgti8VCQkICGRkZtG7dmuzsbPr168fTTz/NxYsXPV2eiEi5HDkCTZqYeXyFOnd2z70VAEXE67Vp04Y9e/Ywfvx4AObMmUPPnj357rvvPFyZiIjzbDYzh88TFABFpFIIDg5m4cKFrFmzhvDwcNLT02nfvj2rVq3ydGkiIk5p0QKOH4crpze7a+MDBUARqVSGDx/O/v376datG3l5eTzwwAPEx8dz+vTpMl/LlZuzlua556B9e/fdT0S8T9++0KwZjBkDBw9CWpp9EYirewYVAEWk0rnxxhvZsWMH06dPx2Kx8Oabb9KxY0cOHjzo9DUrenPW0kyZAlu2uPYegwdDVJTZXqJBA3j4YcjKKvqeiRPh9tvNPmIKpCLu5edntnApKIBOnSA+HmbMMK8FBbn23gqAIlIpVa9eneeff57NmzfToEEDDh8+TOfOnfnzn//s1GPkKnpz1tKEhEDt2q69R+/esHq1mWj+/vtmteGIEUXfY7NBXByMHOnaWkR82fbt9hGGY8fsIw9ghoFTU+H8efjnP6FWLXP+lltKv+758+ZrSIj52rSp4zUpAIpIpdanTx8OHDjAwIEDOX/+PBMmTGDYsGHk5OSU6ToVvTnryZMmVNWqZYLekCFFN2m9egh47FizH1hyMkRGQng4zJwJly7B1KkQEQGNG8PSpY5/psmToWtXuPFG6NYNnn4adu+GKxdQL1gAv/0t3Hyz49cV8TRnn3/rjdauhU2bzO+HzZvNSET37mZo+Hry8uDdd6FaNRMiy0oBUEQqvbp16/LRRx/xyiuv4O/vz7p162jfvj2ff/65U9cr7+asZ86Y3reQENi50/zrPiQEBgyACxdKbrd1qxmi3bkT5s0zITE21oTI9HRITDTHiRNl/0w5ObBihQmCesqdVHbOPv+2IuTkwO9+B82bm98RUVEwd67z18vPh8ceMyFu7FgzFPzhh+a15GTzu6O4Y8gQeOopmDPH/OOwrBQARaRKsFgsTJo0id27dxMdHc2JEydIcHJSX3k3Z1250vyrfMkSaNsWWraEZcvMar/t20tuFxFheuSaNzfDss2bmzA5bRpER0NSEgQEmInijnrqKbjhBtMLefy4/S8WZ2nhjHgDZ59/WxGysszx0kvwxRfw1lvw6afOX+/Xv4ZvvoFz5+D77831CqeHJCbC/v3FH3/9q1k9PGWKc/dVABSRKiUmJoa9e/fy8MMPO/384PJuzrp3L2RmQmio/V/rERHmF/y335bcrnVrExwLRUaaAFnIz8/8xXDqlOO1TJ0K+/aZUOvnZ/6ycWKKZLGq4sKZQufPm7BpsZi/bK/21ltw221mikD9+jBhgnvqqqrS08v3/FuLxcx37dkTatQwvWhff23+jHbsaO+B//e/i15n6VLz/7vAQLNQypH/Hdu0MXNq77vPDNP26WOmUbhCRISZC1jc0ahR+a5dvWJKFBHxHqGhoSxfvpwNGzY41b68m7NarWZl7YoV175Wt27J7a4emrVYij9Xllxbp445br3V9EQ2aWLmAd5xh+PXKMn1PosrFIZpd3jySWjYEA4cuPa1efPg5ZfhxRehSxcT7I8edU9dVdWf/1z+azz7rOmRjooyPegPPgg1a8Krr5qh2l/9Cp55Bv7yF/P+v/wFfv97eOEFM5ycm1u23vUrFRSUv353Uw+giFRZgwYNcqpdeTdnjYkxQzr16l37r/awMKdKqhCFPX+FKwfLqyounAHYuNH0mL700rWv/fyz2aZj+XJ46CHTA9S6tekNcqWqtOihOBXRgzZlCvTvb/6hM3EifP45/OEPZkFFhw7wyCOwbZv9/c8/D088Yd57662m1/DK1bmO+uknM92jslEAFBG5Snk3Zx01yvS6DRkCu3bBd9/Bjh3mL5rvv3dt7YX27IH/+R8zfPmvf5m/+AoDy5W9f5mZ5j0//ghnz5rhb2dUlYUz2dkwbhy8807x2wJt2mQ+68mTJmg0bmx6lpxZmFMW3rbo4fHHTY/ZlRzZd7IkrVuXv87bbrN/Hxlpvl45hSIy0j594tQpU9vdd5fvnnl5MGgQ3HRT+a7jCQqAIiJXKe/mrMHBJpBERcGwYSYoxMWZgFWzpktL/z81asAHH5i/4AoXlbRpY4LolZPn4+NN78gbb5g5Uw8+6Nz9qsLCGZvN9ComJpp5Y8U5etQEwORk0/u5Zo0JSH37Xj+olpe3LXr4xz9Mj9qVHNl30pWunC5R+A+1q88VTp+oUaP898vPN/9ACQkxUwIqG80BFBGfdWWwuHKoEeybsxYqDBCObM4K5i/st98u+fXz54vOZ3vrrevXV1KdJWnb1vSOleZ64aosKnLhzJWcWTjTpo3957IsnHntNdOjk5RU8nusVrOP4oIF0K+fOffuu+Zzb9tmhiCvp2tXc48FC0xoXLvW9JyWxmKxv/fYMdPjtGqVqfl//9d85hUrTK/co4/ah+PfeafoXM2lS01Yycw04Xn4cNNTfD2Fix4KNWtmwv3o0Wa4vfp/k8Tkyfb33Hij2Xdy6FDz36u0rYcOHSr9v0FFCg01Uxi2bDHBtazy8sz/1oGB8Pe/ey6cl4cCoIhIMdauNQEtOtr8ZTlxomObs5bGZjO9SFu2mJ63qqIqLJzZutUskLn6L/OOHc2w/ttvm6FNMHMcr6yvTh3TW1ma5ctNGH3iidLfWxpPLnrIzTX3ql5CiijrvpOFi0Bc/fzbKz33nOntrVfP/PfIzzf/PX73u+u3y8834f/MGbMVS16eOapVM//Y8PMzc0WHDzfzgRMSzJ+ptWvhb38zbW691TWfqaAMq1E0BCwiUgxnN2ctbZ5Wbq4JDwEBZpjSWeWpwRWqwsKZBQvMqt/CfdY+/ticX7XKPpzdvbv5euVcyZwc+M9/TK9XaW69tezD4yXx5KKHP/4Rxo+/9jVn950sHE529fNvrzRmjAnQr79uepJjY82fwdLs3Wvml37xhfnz2aCBOSIj7XNBa9Uym0N/8YWZc9u2rflzNHOm68IfUKatr9QDKCJSjF//2hzFSUw0vSvFKW1uUXh4xazCLU8NrnDlwpm5c02ALuvCmRdfNAtnZs0yiyuOHzfzGKdOde5JB2UVFVX058Ih+mbN7Pe/9VZT48SJZqFLzZpmyLhFi7INJZZleLwknlz00KqV6YG82tSpJsz9618m7Pz61/DRR6X/GSicG+vs82+v3tuyV69rz40da44rjR9ffJC9nuKuXZyOHeGTT8p2bXdSABSRKis9PZ0uXbpU+HUjIszhSd5Qw5UKF87Ex5uepZtvNoHuvvvKtnDmqafMwpn8fLPR7d13u2/hjKOWLzfz3QYNMsN+d91lFkW4+xF7nlz0sHZt8Z/X2X0nn3/e8efffvCB88+/FTsFQBGpkvbs2cPvf/970pyd5CTFqsoLZ65WXM8SmED65pvmcFZZhscrQkUvenAk1Jdl38nWrc1KdDDTG5KTi39fp05mwYizz791xIoVJfcK3ngjfPWVa+7rbgqAIlLl/POf/2TgwIFEXT2mJy6lhTOl++YbMxxbluHxilLRix7ALIDx8zP7Tu7ZY+Y31qpl/vd65plr950sycyZ9u9Lm95Q3keglWbwYPOEl+K4u5fXlRQARaRKOXHiBP369eOnn37iXk/tnOuj8vPNI9ROnDDDgPfcY98f7Xq9Oj17mqdvlKRw4UynTuVfOONsDRVl9GgTnsoyPF5Rxowx2+q88opZQFKnjmP79BUueoBre3O/+870LBbuO/nss3D6tFkUMWCA2d+xrFukeHp6Q2jotdsRVUUWm630qYx5eXmEhYWRm5tLTW+bjCEi8l//+c9/6NmzJ4cPH6ZFixakpaUR4U0T5XxYTo45iuOOXh1vqaFQWprpLcvMLL2H9Px5ExQ3bTKhWqQkZclr6gEUkSohPz+fgQMHcvjwYZo0aUJKSkqJ4e+tt95iwYIFxMbGMmvWLDdX6ps83avjLTVkZZk5bI4Oj2vRg7iKAqCIVHrnz59n2LBhZGRkULt2bVJSUmjSpMl12+zbt4969eq5qUIRY9gw8zxoR4fHtehBXEUBUEQqtcuXLzN69Gg2b97MDTfcwMaNG2lRSldJ5H83Tcu+ctdiETfYvfvac1r0IJ6gACgilZbNZuO3v/0ta9asISAggHXr1tGpU6dS2ykAijfx9NC0ryx6kKL0KDgRqbT+8Ic/8MYbb2CxWFixYgX3ODhDvjAAnjp1qkyPThIRqSoUAEWkUpo/fz6z//tA1YULFzLCkf0s/qtw7t/ly5fJKWlZqIhIFaYAKCKVzjvvvMPkyZMBmD17NgkJCWVq7+/v/38rhDUMLCK+SAFQRCqVDRs28Jvf/AaASZMmkZSU5NR1NA9QRHyZAqCIVBqpqamMGDGCy5cv8/DDD/Pyyy9jcfJZWgqAIuLLFABFpFI4ePAgsbGxnDt3jkGDBvHmm29SrZrzv8IUAEXElykAiojXO3r0KP379yc3N5cePXqwevVq/Mu5QZkCoIj4MgVAEfFqP/74I3379uXHH3/ktttuY/369QQHB5f7ugqAIuLLFABFxGv98ssvDBgwgKNHj3LzzTfzj3/8g/Dw8Aq5tgKgiPgyBUAR8Upnz55l8ODBHDhwgMjISFJSUmjQoEGFXV8BUER8mQKgiHidixcvMnLkSHbt2kVYWBiffPIJzZo1q9B7KACKiC9TABQRr2K1WomPj2f9+vUEBQWxfv162rVrV+H3ufJxcDabrcKvLyLizRQARcRr2Gw2pk6dyvLly/Hz8+O9996jZ8+eLrlX4ePgLly4wC+//OKSe4iIeCsFQBHxGnPmzGHevHkALF26lNjYWJfdKygoiLCwMEDDwCLiexQARcQrLF68+P8e6zZv3jx+/etfu/yemgcoIr5KAVBEPO79998nMTERgGnTpjF58mS33FcBUER8lQKgiHjU1q1beeihh7BarSQkJPD888+77d4KgCLiqxQARcRj/vd//5chQ4Zw4cIFhg8fzuuvv47FYnHb/RUARcRXKQCKiEccPnyYe++9l4KCAu6++25WrFiBn5+fW2tQABQRX6UAKCJud+LECfr168d//vMfOnbsyNq1awkMDHR7HQqAIuKrFABFxK1++ukn+vfvz4kTJ2jevDkbN24kNDTUI7UoAIqIr1IAFBG3KSgoYODAgfzzn/+kcePGpKSkUKdOHY/VowAoIr5KAVBE3OL8+fMMGzaMPXv2ULt2bVJSUoiKivJoTVcGQD0OTkR8iQKgiLjc5cuX+fWvf82mTZu44YYb+Pjjj2nZsqWny/q/AHju3Dny8/M9XI2IiPsoAIqIS9lsNiZMmMDq1avx9/dn7dq1dO7c2dNlARAcHExISAigYWAR8S0KgCLiUgsXLiQ9PZ2YmBg2bNhA3759PV1SEX369KFDhw4UFBR4uhQREbex2ByY+JKXl0dYWBi5ubnUrFnTHXWJiIiISBmUJa+pB1BERETExygAioiIiPgYBUARERERH6MAKCIiIuJjFABFREREfIwCoIg4rFcvmDTJfN+0Kcyf7757P/cctG/vvvuJiFRlCoAi4pSMDEhIcN/9pkyBLVvcc6/z503YtFhg//6ir1ks1x4LF7qnLhGRilLd0wWISOVUt6577xcSYg53ePJJaNgQDhwo/vVly2DAAPvPYWHuqUtEpKKoB1BEnHL1EPDhw9CjBwQFQatWsHmz6R1bt86x6508CSNHQq1aULs2DBkCx47ZX796CHjsWBg6FJKTITISwsNh5ky4dAmmToWICGjcGJYuLdvn2rgRUlLgpZdKfk94ONSvbz9q1CjbPUREPE0BUETKzWo1YSw4GNLTYdEimD7d8fZnzkDv3qaHb+dOSE013w8YABculNxu61bIyjJt5s0zITE21oTI9HRITDTHiROO1ZGdDePGwTvvmM9SkgkToE4d6NTJDP9arY5/VhERb6AAKCLllpIC334Ly5dDu3amJ3D2bMfbr1wJ1arBkiXQti20bGmGWY8fh+3bS24XEQELFkDz5hAXZ76eOQPTpkF0NCQlQUAApKWVXoPNZnoVExOhY8eS3/fHP8J775kezgcegCeeML2QIiKVieYAiki5HTkCTZqY4dBCnTs73n7vXsjMhNDQoufPnTPBsiStW5vgWCgyEtq0sf/s52eGk0+dKr2G116DvDwTGq9nxgz794VD0rNmFT0vIuLtFABFpNxsNjPfz1lWK9x+O6xYce1r11ts4u9f9GeLpfhzjgzRbt0Ku3dDYGDR8x07wqhR8Pbbxbfr2tUEx+xsE0BFRCoDBUARKbcWLcxw7ZUhKCPD8fYxMbBqFdSrBzVruqbG0ixYAM8/b/85Kwv69zd1delScrt9+8zCl/Bwl5coIlJhFABFpNz69oVmzWDMGJg7F/Lz7YtAHOkZHDUKXnzRrPydNcus3j1+HD74wKzobdzYtfUDREUV/blwy5lmzez3X78efvwR7rjDrPzdts18zoSEa3sORUS8mRaBiEi5+fmZ7V4KCszK2Ph4+5y4oKDS2wcHm5W8UVEwbJhZBBIXB2fPeq5HsDj+/vD66yYA3nYbvPqqCawvv+zpykREysZis9lspb0pLy+PsLAwcnNzqelNv41FxGulpZnVwJmZphetvJKSYNcus0WMiIhcqyx5TUPAIlIh1q41w6bR0Sb0TZwI3buXP/zZbHD0qHkMXIcOFVOriIiv0xCwiFSI/Hx47DGzIGTsWDMU/OGH5rXkZPuj3K4+7r33+tfNzTVPFgkIMPv7Oas8NYiIVDUaAhYRl8vJMUdxatSARo18owYREVfSELCIeJWICHP4eg0iIt5CQ8AiIiIiPkYBUERERMTHKACKiIiI+BgFQBEREREfowAoIuJlnnsO2rf3dBUiUpUpAIqIFGPcOHjpJfP9zz+bx9K5y5QpZuNrdzh/3oRNiwX277eff+stc66449Qp99QmIq6jbWBERIrxzTdwww3m+1q13Hvvwg2q3eHJJ6FhQzhwoOj5kSNhwICi58aOhXPnoF4999QmIq6jHkARkVI0bQrz59t/PnzYPOc4KMg8pWTzZtMztm6dY9c7edIErFq1oHZtGDIEjh2zv371EPDYsTB0qHmaSWQkhIfDzJlw6RJMnWr2N2zcGJYuLdvn2rgRUlLsPZ1XqlED6te3H35+sHUrPPJI2e4hIt5JAVBEpAysVhPGgoMhPR0WLYLp0x1vf+YM9O5tevh27oTUVPP9gAFw4ULJ7bZuhaws02bePBMSY2NNiExPh8REc5w44Vgd2dlmmPudd8xnKc3y5eZ9I0Y4dn0R8W4KgCIiZZCSAt9+awJRu3amJ3D2bMfbr1wJ1arBkiXQti20bAnLlsHx47B9e8ntIiJgwQJo3hzi4szXM2fM85GjoyEpyTwvOS2t9BpsNtOrmJgIHTs6VvfSpfDQQ6ZnUEQqP80BFBEpgyNHoEkTMyxaqHNnx9vv3QuZmRAaWvT8uXMmWJakdWsTHAtFRkKbNvaf/fzMcLIjCzReew3y8kxodMRnn8GhQyb0ikjVoAAoIlIGNpuZ7+csqxVuvx1WrLj2tbp1S27n71/0Z4ul+HNWa+k1bN0Ku3dDYGDR8x07wqhR8PbbRc8vWWLmJN5+e+nXFpHKQQFQRKQMWrQww7XZ2aYXDiAjw/H2MTGwapVZSVuzpmtqLM2CBfD88/afs7Kgf39TV5cuRd9bUACrV8Of/uTeGkXEtTQHUESkDPr2hWbNYMwYOHjQzLkrXATiSM/gqFFQp45Z+btrF3z3HezYARMnwvffu7b2QlFRZvi48Lj1VnO+WTOzmvhKq1aZ1cajRrmnNhFxDwVAEZEy8PMz270UFECnThAfDzNmmNeCgkpvHxxsVvJGRcGwYWYRSFyc2WjaUz2C1/Pmm6ZOd++FKCKuZbHZbLbS3pSXl0dYWBi5ubnU9MbfUCIiHpSWZlYDZ2aaXrTySkoyvYOpqeW/loj4jrLkNc0BFBEpo7Vrzd590dEm9E2cCN27lz/82Wxw9Kh5DFyHDhVTq4hIcTQELCJSRvn58NhjZkHI2LFmKPjDD81rycn2R7ldfdx77/Wvm5trniwSEGD293NWeWoQEd+gIWARkQqUk2OO4tSoAY0a+UYNIuJ+GgIWEfGQiAhz+HoNIuLdNAQsIiIi4mMUAEVERER8jAKgiIiIiI9RABQRERHxMQqAIiIiIj5GAVBERETExygAioiIiPgYBUARERERH+PQRtCFDwvJy8tzaTEiIiIi4pzCnObAQ94cC4D5+fkANGnSpBxliYiIiIir5efnExYWdt33OPQsYKvVSlZWFqGhoVgslgorUEREREQqhs1mIz8/n4YNG1Kt2vVn+TkUAEVERESk6tAiEBEREREfowAoIiIi4mMUAEVERER8jAKgiIiIiI9RABQRERHxMQqAIiIiIj5GAVBERETEx/x/4XL3aypx9EMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -620,18 +670,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "lig_ejm_46 lig_jmc_28\n", - "lig_ejm_31 lig_ejm_48\n", - "lig_ejm_31 lig_ejm_45\n", "lig_ejm_46 lig_ejm_31\n", - "lig_ejm_42 lig_ejm_43\n", + "lig_ejm_55 lig_ejm_43\n", + "lig_ejm_31 lig_ejm_50\n", + "lig_ejm_31 lig_ejm_48\n", + "lig_ejm_47 lig_ejm_31\n", "lig_ejm_42 lig_ejm_50\n", + "lig_jmc_23 lig_ejm_46\n", + "lig_ejm_42 lig_ejm_43\n", "lig_jmc_23 lig_jmc_28\n", "lig_jmc_27 lig_jmc_28\n", "lig_ejm_54 lig_ejm_55\n", - "lig_ejm_47 lig_ejm_31\n", - "lig_ejm_31 lig_ejm_50\n", - "lig_ejm_55 lig_ejm_43\n" + "lig_ejm_31 lig_ejm_45\n" ] } ], @@ -700,7 +750,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 28, @@ -741,7 +791,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 29, "id": "4471ecb9-5e58-40b2-b959-9c1a04cbda72", "metadata": {}, "outputs": [ @@ -749,7 +799,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "alchemiscale version: 0.1.3.post3\n" + "alchemiscale version: 0.5.0\n" ] } ], @@ -760,7 +810,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 30, "id": "c09991ea-bb8f-4907-9c99-94d5fe9c3714", "metadata": {}, "outputs": [], @@ -771,7 +821,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 31, "id": "03b860de-8cf7-4ec3-909f-708ab2165a7a", "metadata": {}, "outputs": [ @@ -789,7 +839,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 32, "id": "544ba62a-68c2-42e4-98b2-a9067ab643ef", "metadata": {}, "outputs": [ @@ -799,7 +849,7 @@ "AlchemiscaleClient('https://api.alchemiscale.org')" ] }, - "execution_count": 24, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -811,7 +861,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 33, "id": "a124d7ec-fb70-4194-b26c-ba57293c27ae", "metadata": {}, "outputs": [ @@ -821,7 +871,7 @@ "[]" ] }, - "execution_count": 25, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -832,17 +882,17 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 34, "id": "8a44648f-fc45-4bd1-8ce0-b12445f1f453", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 28, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -863,7 +913,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 35, "id": "194b7484-2db0-4255-84e6-dabe220ff455", "metadata": {}, "outputs": [], @@ -881,14 +931,14 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 36, "id": "503a72fb-7d6a-4206-a34b-4f696880b148", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b038af755384457385bd3ada27e98326", + "model_id": "6dbc2f0a1b134571bae417ab2cef51d2", "version_major": 2, "version_minor": 0 }, @@ -908,19 +958,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -937,17 +974,17 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 37, "id": "57928257-eea8-43dd-8899-bde7550eac46", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 30, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -966,18 +1003,17 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 38, "id": "89a4302b-1f3e-4aef-b20d-09ea763d9c80", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[,\n", - " ]" + "[]" ] }, - "execution_count": 34, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -996,14 +1032,14 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 39, "id": "0ee299eb-c5a4-4802-90ed-4096baf6ecd3", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "afdb692e202b464188177d12232f8e56", + "model_id": "ff0bf3a744b9489faa1794cc93dbe3f0", "version_major": 2, "version_minor": 0 }, @@ -1023,19 +1059,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -1063,49 +1086,56 @@ }, { "cell_type": "code", - "execution_count": 36, - "id": "35400b4b-1232-4097-888a-5fda6d15b19b", + "execution_count": null, + "id": "1e3f0956-5dc2-411b-8a57-1d73507f26fb", + "metadata": {}, + "outputs": [], + "source": [ + "tf_sks = asc.get_network_transformations(an_sk)\n", + "tasks = asc.create_transformations_tasks(tf_sks)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "e2033823-6d61-4d04-839a-79b2cbd1e11e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" - ] - }, - "execution_count": 36, + "[,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ]" + ] + }, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "tasks = []\n", - "for tf_sk in asc.get_network_transformations(an_sk):\n", - " tasks.extend(asc.create_tasks(tf_sk, count=1))\n", - "\n", "tasks" ] }, @@ -1119,14 +1149,14 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 45, "id": "728c5157-ff6c-4fb7-9925-418b00a7823a", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
AlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo                                               \n",
+       "
AlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo                                               \n",
        "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
        "┃ status                                                                                                   count ┃\n",
        "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
@@ -1140,7 +1170,7 @@
        "
\n" ], "text/plain": [ - "\u001b[3mAlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo \u001b[0m\n", + "\u001b[3mAlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo \u001b[0m\n", "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mstatus \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m count\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", @@ -1162,7 +1192,7 @@ "{'waiting': 24}" ] }, - "execution_count": 37, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -1181,40 +1211,40 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 46, "id": "9c849250-8f08-4cc2-b32d-213392efb2e4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" + "[,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ]" ] }, - "execution_count": 38, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -1241,20 +1271,20 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 47, "id": "d1a27b3f-e2e3-4501-b1cc-e475ccc6a24b", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
AlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo                                               \n",
+       "
AlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo                                               \n",
        "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
        "┃ status                                                                                                   count ┃\n",
        "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
        "│ complete                                                                                                     0 │\n",
-       "│ running                                                                                                     15 │\n",
-       "│ waiting                                                                                                      9 │\n",
+       "│ running                                                                                                      0 │\n",
+       "│ waiting                                                                                                     24 │\n",
        "│ error                                                                                                        0 │\n",
        "│ invalid                                                                                                      0 │\n",
        "│ deleted                                                                                                      0 │\n",
@@ -1262,13 +1292,13 @@
        "
\n" ], "text/plain": [ - "\u001b[3mAlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo \u001b[0m\n", + "\u001b[3mAlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo \u001b[0m\n", "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mstatus \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m count\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 0\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 15\u001b[0m\u001b[38;5;172m \u001b[0m│\n", - "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 9\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", + "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 0\u001b[0m\u001b[38;5;172m \u001b[0m│\n", + "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 24\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 0\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", "│\u001b[38;5;201m \u001b[0m\u001b[38;5;201minvalid \u001b[0m\u001b[38;5;201m \u001b[0m│\u001b[38;5;201m \u001b[0m\u001b[38;5;201m 0\u001b[0m\u001b[38;5;201m \u001b[0m│\n", "│\u001b[38;5;129m \u001b[0m\u001b[38;5;129mdeleted \u001b[0m\u001b[38;5;129m \u001b[0m│\u001b[38;5;129m \u001b[0m\u001b[38;5;129m 0\u001b[0m\u001b[38;5;129m \u001b[0m│\n", @@ -1281,10 +1311,10 @@ { "data": { "text/plain": [ - "{'waiting': 9, 'running': 15}" + "{'waiting': 24}" ] }, - "execution_count": 43, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -1303,20 +1333,20 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 53, "id": "67f5edd1-9775-45e1-a161-85cf12c67265", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
AlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo                                               \n",
+       "
AlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo                                               \n",
        "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
        "┃ status                                                                                                   count ┃\n",
        "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
-       "│ complete                                                                                                     0 │\n",
-       "│ running                                                                                                     24 │\n",
-       "│ waiting                                                                                                      0 │\n",
+       "│ complete                                                                                                     4 │\n",
+       "│ running                                                                                                     12 │\n",
+       "│ waiting                                                                                                      8 │\n",
        "│ error                                                                                                        0 │\n",
        "│ invalid                                                                                                      0 │\n",
        "│ deleted                                                                                                      0 │\n",
@@ -1324,13 +1354,13 @@
        "
\n" ], "text/plain": [ - "\u001b[3mAlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo \u001b[0m\n", + "\u001b[3mAlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo \u001b[0m\n", "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mstatus \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m count\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 0\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 24\u001b[0m\u001b[38;5;172m \u001b[0m│\n", - "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 0\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", + "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 4\u001b[0m\u001b[32m \u001b[0m│\n", + "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 12\u001b[0m\u001b[38;5;172m \u001b[0m│\n", + "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 8\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 0\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", "│\u001b[38;5;201m \u001b[0m\u001b[38;5;201minvalid \u001b[0m\u001b[38;5;201m \u001b[0m│\u001b[38;5;201m \u001b[0m\u001b[38;5;201m 0\u001b[0m\u001b[38;5;201m \u001b[0m│\n", "│\u001b[38;5;129m \u001b[0m\u001b[38;5;129mdeleted \u001b[0m\u001b[38;5;129m \u001b[0m│\u001b[38;5;129m \u001b[0m\u001b[38;5;129m 0\u001b[0m\u001b[38;5;129m \u001b[0m│\n", @@ -1343,10 +1373,10 @@ { "data": { "text/plain": [ - "{'running': 24}" + "{'waiting': 8, 'complete': 4, 'running': 12}" ] }, - "execution_count": 52, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -1355,37 +1385,45 @@ "asc.get_network_status(an_sk)" ] }, + { + "cell_type": "markdown", + "id": "a30d40aa-ee2a-4811-a21e-baa143b15686", + "metadata": {}, + "source": [ + "...and some might have errored:" + ] + }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 54, "id": "d78652a8-ecee-491e-aedc-c9312682c418", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
AlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo                                               \n",
+       "
AlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo                                               \n",
        "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
        "┃ status                                                                                                   count ┃\n",
        "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
-       "│ complete                                                                                                    12 │\n",
-       "│ running                                                                                                     12 │\n",
+       "│ complete                                                                                                    14 │\n",
+       "│ running                                                                                                      9 │\n",
        "│ waiting                                                                                                      0 │\n",
-       "│ error                                                                                                        0 │\n",
+       "│ error                                                                                                        1 │\n",
        "│ invalid                                                                                                      0 │\n",
        "│ deleted                                                                                                      0 │\n",
        "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n",
        "
\n" ], "text/plain": [ - "\u001b[3mAlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo \u001b[0m\n", + "\u001b[3mAlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo \u001b[0m\n", "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mstatus \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m count\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 12\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 12\u001b[0m\u001b[38;5;172m \u001b[0m│\n", + "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 14\u001b[0m\u001b[32m \u001b[0m│\n", + "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 9\u001b[0m\u001b[38;5;172m \u001b[0m│\n", "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 0\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", - "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 0\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", + "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 1\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", "│\u001b[38;5;201m \u001b[0m\u001b[38;5;201minvalid \u001b[0m\u001b[38;5;201m \u001b[0m│\u001b[38;5;201m \u001b[0m\u001b[38;5;201m 0\u001b[0m\u001b[38;5;201m \u001b[0m│\n", "│\u001b[38;5;129m \u001b[0m\u001b[38;5;129mdeleted \u001b[0m\u001b[38;5;129m \u001b[0m│\u001b[38;5;129m \u001b[0m\u001b[38;5;129m 0\u001b[0m\u001b[38;5;129m \u001b[0m│\n", "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n" @@ -1397,10 +1435,10 @@ { "data": { "text/plain": [ - "{'complete': 12, 'running': 12}" + "{'error': 1, 'running': 9, 'complete': 14}" ] }, - "execution_count": 171, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -1411,50 +1449,80 @@ }, { "cell_type": "markdown", - "id": "9dd5fce4-fc5d-4bc4-add2-1ecd6d0c893f", - "metadata": {}, - "source": [ - "### Dealing with errors" - ] - }, - { - "cell_type": "markdown", - "id": "b0901744-073e-4ea4-9b5f-b9a49eeb3186", - "metadata": {}, - "source": [ - "Inevitably, some of your `Task`s will encounter problems in execution, either random or systematic errors. When this happens, the `Task` status will be set to `'error'`. To illustrate this, we'll look at an `AlchemicalNetwork` with some failures:" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "id": "2ae49ee5-05ff-4834-9dce-59ff2255b9e2", + "id": "ce6a0d3c-7276-47c4-a7a5-949e25a49fd9", "metadata": {}, - "outputs": [], "source": [ - "failed_tasks = asc.query_tasks(scope=Scope('ddotson'), status='error')" + "...and at some point, none are `waiting` or `running`; they are either `complete` or `errored`:" ] }, { "cell_type": "code", - "execution_count": 41, - "id": "0f8670fb-efd6-414b-858c-be30d3af742e", + "execution_count": 67, + "id": "033a8832-e89b-42c7-85ce-e691be138c26", "metadata": {}, "outputs": [ + { + "data": { + "text/html": [ + "
AlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo                                               \n",
+       "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
+       "┃ status                                                                                                   count ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
+       "│ complete                                                                                                    21 │\n",
+       "│ running                                                                                                      0 │\n",
+       "│ waiting                                                                                                      0 │\n",
+       "│ error                                                                                                        3 │\n",
+       "│ invalid                                                                                                      0 │\n",
+       "│ deleted                                                                                                      0 │\n",
+       "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[3mAlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo \u001b[0m\n", + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mstatus \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m count\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", + "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 21\u001b[0m\u001b[32m \u001b[0m│\n", + "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 0\u001b[0m\u001b[38;5;172m \u001b[0m│\n", + "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 0\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", + "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 3\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", + "│\u001b[38;5;201m \u001b[0m\u001b[38;5;201minvalid \u001b[0m\u001b[38;5;201m \u001b[0m│\u001b[38;5;201m \u001b[0m\u001b[38;5;201m 0\u001b[0m\u001b[38;5;201m \u001b[0m│\n", + "│\u001b[38;5;129m \u001b[0m\u001b[38;5;129mdeleted \u001b[0m\u001b[38;5;129m \u001b[0m│\u001b[38;5;129m \u001b[0m\u001b[38;5;129m 0\u001b[0m\u001b[38;5;129m \u001b[0m│\n", + "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "text/plain": [ - "" + "{'error': 3, 'complete': 21}" ] }, - "execution_count": 41, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "an2_sk = asc.get_task_networks(failed_tasks[0])[0]\n", - "an2_sk" + "asc.get_network_status(an_sk)" + ] + }, + { + "cell_type": "markdown", + "id": "9dd5fce4-fc5d-4bc4-add2-1ecd6d0c893f", + "metadata": {}, + "source": [ + "### Dealing with errors" + ] + }, + { + "cell_type": "markdown", + "id": "b0901744-073e-4ea4-9b5f-b9a49eeb3186", + "metadata": {}, + "source": [ + "Inevitably, some of your `Task`s will encounter problems in execution, either random or systematic errors. When this happens, the `Task` status will be set to `'error'`." ] }, { @@ -1467,27 +1535,25 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 68, "id": "2a75797f-4289-4b49-9165-dd7252d055fd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" + "[,\n", + " ,\n", + " ]" ] }, - "execution_count": 42, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "failed_tasks = asc.get_network_tasks(an2_sk, status='error')\n", + "failed_tasks = asc.get_network_tasks(an_sk, status='error')\n", "failed_tasks" ] }, @@ -1501,14 +1567,14 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 69, "id": "10bb091c-99f4-4dc6-9e57-bd2e6a780761", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "16504c50b6444cceb90ddd1514b3caad", + "model_id": "8bb66e693c9d492186fa5869476610ab", "version_major": 2, "version_minor": 0 }, @@ -1520,24 +1586,18 @@ "output_type": "display_data" }, { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-15fdd9ff3f68cde67e706ffa87f6a9b7-ddotson-tyk2-demo/failures/ProtocolDAGResultRef-2bc722e46be751f9ec1a770028f393f7-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n"
+     ]
     },
     {
      "data": {
       "text/html": [
-       "
\n",
-       "
\n" + "
\n"
       ],
-      "text/plain": [
-       "\n"
-      ]
+      "text/plain": []
      },
      "metadata": {},
      "output_type": "display_data"
@@ -1545,10 +1605,10 @@
     {
      "data": {
       "text/plain": [
-       "[]"
+       "[]"
       ]
      },
-     "execution_count": 43,
+     "execution_count": 69,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1568,17 +1628,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 44,
+   "execution_count": 70,
    "id": "b37bc64d-8fc1-42c5-8b88-4383c53f91da",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       ""
+       ""
       ]
      },
-     "execution_count": 44,
+     "execution_count": 70,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1589,17 +1649,20 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 45,
+   "execution_count": 71,
    "id": "4ffe5d77-f42f-4157-b8d1-d8c85c241bbf",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "[ProtocolUnitFailure(lig_ejm_55 to lig_ejm_43 repeat 0 generation 0)]"
+       "[ProtocolUnitFailure(lig_jmc_27 to lig_jmc_28 repeat 0 generation 0),\n",
+       " ProtocolUnitFailure(lig_jmc_27 to lig_jmc_28 repeat 0 generation 0),\n",
+       " ProtocolUnitFailure(lig_jmc_27 to lig_jmc_28 repeat 0 generation 0),\n",
+       " ProtocolUnitFailure(lig_jmc_27 to lig_jmc_28 repeat 0 generation 0)]"
       ]
      },
-     "execution_count": 45,
+     "execution_count": 71,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1618,7 +1681,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 46,
+   "execution_count": 72,
    "id": "8bba1453-7a1b-4f6d-8f20-05009d22ba76",
    "metadata": {},
    "outputs": [
@@ -1627,23 +1690,29 @@
      "output_type": "stream",
      "text": [
       "Traceback (most recent call last):\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/gufe/protocols/protocolunit.py\", line 319, in execute\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/gufe/protocols/protocolunit.py\", line 320, in execute\n",
       "    outputs = self._execute(context, **inputs)\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openfe/protocols/openmm_rfe/equil_rfe_methods.py\", line 684, in _execute\n",
+      "              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openfe/protocols/openmm_rfe/equil_rfe_methods.py\", line 1129, in _execute\n",
       "    outputs = self.run(scratch_basepath=ctx.scratch,\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openfe/protocols/openmm_rfe/equil_rfe_methods.py\", line 593, in run\n",
+      "              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openfe/protocols/openmm_rfe/equil_rfe_methods.py\", line 998, in run\n",
       "    sampler.setup(\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openfe/protocols/openmm_rfe/_rfe_utils/multistate.py\", line 121, in setup\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openfe/protocols/openmm_rfe/_rfe_utils/multistate.py\", line 121, in setup\n",
       "    minimize(compound_thermostate_copy, sampler_state,\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openfe/protocols/openmm_rfe/_rfe_utils/multistate.py\", line 295, in minimize\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openfe/protocols/openmm_rfe/_rfe_utils/multistate.py\", line 295, in minimize\n",
       "    context, integrator = dummy_cache.get_context(\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openmmtools/cache.py\", line 770, in get_context\n",
+      "                          ^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openmmtools/cache.py\", line 770, in get_context\n",
       "    context = thermodynamic_state.create_context(integrator, self.platform)\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openmmtools/states.py\", line 1179, in create_context\n",
+      "              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openmmtools/states.py\", line 1179, in create_context\n",
       "    return openmm.Context(system, integrator, platform)\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openmm/openmm.py\", line 3749, in __init__\n",
+      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openmm/openmm.py\", line 8037, in __init__\n",
       "    _openmm.Context_swiginit(self, _openmm.new_Context(*args))\n",
-      "openmm.OpenMMException: Error initializing CUDA: CUDA_ERROR_UNKNOWN (999) at /home/conda/feedstock_root/build_artifacts/openmm_1682500546897/work/platforms/cuda/src/CudaContext.cpp:140\n",
+      "                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "openmm.OpenMMException: Error initializing CUDA: CUDA_ERROR_MPS_CONNECTION_FAILED (805) at /home/conda/feedstock_root/build_artifacts/openmm_1721257909416/work/platforms/cuda/src/CudaContext.cpp:91\n",
       "\n"
      ]
     }
@@ -1670,17 +1739,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 58,
+   "execution_count": 73,
    "id": "4c661612-7cfa-4b55-95d0-713d8fcbee22",
    "metadata": {},
    "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:\tHTTP Request: POST https://api.alchemiscale.org/bulk/tasks/status/set \"HTTP/1.1 200 OK\"\n"
+     ]
+    },
     {
      "data": {
       "text/plain": [
-       "[]"
+       "[]"
       ]
      },
-     "execution_count": 58,
+     "execution_count": 73,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1707,52 +1783,80 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 63,
+   "execution_count": 74,
    "id": "704c9ddd-be00-43c3-9bc1-2ce99fb3fe02",
    "metadata": {},
-   "outputs": [],
-   "source": [
-    "results = dict()\n",
-    "for tf_sk in asc.get_network_transformations(an_sk):\n",
-    "    results[str(tf_sk)] = asc.get_transformation_results(tf_sk, visualize=False)"
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-82e90d15b483a813a6501073e3964930-ddotson-tyk2-demo/results/ProtocolDAGResultRef-01a2e46b4c33a9c52aab71b8c01ba5cd-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-73164716e2ad3c2e410fce413fa41be4-ddotson-tyk2-demo/results/ProtocolDAGResultRef-caabc7fbbe8e9bae4ad0da4f5db7cb61-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-e3022bfd607e772136f5c262875a8e78-ddotson-tyk2-demo/results/ProtocolDAGResultRef-b6b00c75b4f66e546623a98d42b165c8-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-6064e55fed6e90b90b727b299462cbad-ddotson-tyk2-demo/results/ProtocolDAGResultRef-f87f2f38715e0e03c30b574fe3c0e01d-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-28453f83bb03486a08afc096a8dc5298-ddotson-tyk2-demo/results/ProtocolDAGResultRef-d206475f1ae25c4818964579eabca7b0-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-eebbe29feefc097086749081844d8adc-ddotson-tyk2-demo/results/ProtocolDAGResultRef-2a9f4953c83460388614a4cb872bc601-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-2a345646fa5b3900aba8b74935fc4ec6-ddotson-tyk2-demo/results/ProtocolDAGResultRef-821c1a7ccc7740a28f4dd3d553b2f035-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-f8fb4a09881bce886dcb55a88be49016-ddotson-tyk2-demo/results/ProtocolDAGResultRef-8295104d5c32f10bdd86b69675bb7494-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-874c39cca17041ceb7a91f142104e8eb-ddotson-tyk2-demo/results/ProtocolDAGResultRef-2d7d1eed2ee1b96e67c95385c14b220c-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-b4857c06e9564cf3c2451f436f7af410-ddotson-tyk2-demo/results/ProtocolDAGResultRef-fdea668674894a4ebc21cd51a9ca8e02-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-958a3d55d581ec276b72394435df4bd0-ddotson-tyk2-demo/results/ProtocolDAGResultRef-19825c22d09bf2a8d70e47e5cac34829-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-22a2847c2a28584956e90d549fc6bcc6-ddotson-tyk2-demo/results/ProtocolDAGResultRef-83f986401353591db65c9ed401af260b-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-d5cdd9f4f4edd380361129082a01360b-ddotson-tyk2-demo/results/ProtocolDAGResultRef-57a8c3097273d30ff5b0350943883824-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-20fd18a057e4affd5c78cad41a81d3b4-ddotson-tyk2-demo/results/ProtocolDAGResultRef-2798447525f7139b158919d08faadb95-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-44cf523e9d0e53674fadc59c9b9110b7-ddotson-tyk2-demo/results/ProtocolDAGResultRef-f56c970e363dbe075f2dda74386055a8-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-856f85d23d9b8b84916d5b83ebfa1773-ddotson-tyk2-demo/results/ProtocolDAGResultRef-f94dec1b5cc13aff45aba30eb1647c3c-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-ef57a778259ba88b9fb4c23cc2bd78f4-ddotson-tyk2-demo/results/ProtocolDAGResultRef-474df4f73b5bdb270a43361d8651dfa4-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-c33480c9f0dfd80852541205f46914a7-ddotson-tyk2-demo/results/ProtocolDAGResultRef-943e801e0c7774f3c962ca8127150ace-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-4bfeb3edd7f0d47ec52f533a5cf435a0-ddotson-tyk2-demo/results/ProtocolDAGResultRef-0d56400cc2c06fe557f170b872c9a465-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-06eac733376ab1ff566248040fe37e01-ddotson-tyk2-demo/results/ProtocolDAGResultRef-cc1df82df45efd8fba44f029a28094b6-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n",
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-76de739d87d53981abfff4ab9ce071e4-ddotson-tyk2-demo/results/ProtocolDAGResultRef-810f1f48475da9a8cbb7ed364848cdf2-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n"
+     ]
+    }
+   ],
+   "source": [
+    "results = dict()\n",
+    "for tf_sk in asc.get_network_transformations(an_sk):\n",
+    "    results[str(tf_sk)] = asc.get_transformation_results(tf_sk, visualize=False)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 64,
+   "execution_count": 75,
    "id": "816d46a2-178b-459a-80a5-357b5438462a",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "{'Transformation-3bde3c547da7c4db25af92e94f34efce-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-3d1c7ab3c70341bc88fc91112689a648-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-333a2629c325b4f257b416c2431d9132-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-086a259a37b0f93979cc23dc31344aa8-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-553107db824ee8a99f30fb42cbe5798c-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-08f4c68a8e178d698e59cc1a366e3415-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-c244dffbafa7e4e95ff4c0a03a54888b-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-7080ba2b294fbb443f7c8fd0432523b8-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-2168cd5e6257debd9e31a7dea8f865db-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-6fedaff17af81e8f8cd903ff54f4fa43-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-058b41226978833e875145eca60fa44d-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-a34291c782001508c20b0f8fbd8e8768-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-be3971fa5275fae3d0767ef387e4f673-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-c824272678b20bb10b0b3ed82a75cba7-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-72f58e6ef2cc85e52de765b797fb935b-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-d5634110bde446e3c0135a213ca126be-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-cfc64db96341e6c6fe78b31bc45086fe-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-f549eb13fa5c5aa43a4b0581509ec17b-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-22f055e336144e1192a54fc36b008761-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-954a54426ba12cd7f97b163692de84b3-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-43fcc3ea77628d04acffbfafaf7289f3-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-1ed12e0907b854bd0810ebb8bce91bbd-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-e85c3cfe5386d9e53c4593acf52df560-ddotson-tyk2-demo': ,\n",
-       " 'Transformation-1d104d98ba12a95e13d2e086f1839b51-ddotson-tyk2-demo': }"
-      ]
-     },
-     "execution_count": 64,
+       "{'Transformation-15fdd9ff3f68cde67e706ffa87f6a9b7-ddotson-tyk2-demo': None,\n",
+       " 'Transformation-152928d4d69298dcedf2dd622073a95b-ddotson-tyk2-demo': None,\n",
+       " 'Transformation-82e90d15b483a813a6501073e3964930-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-73164716e2ad3c2e410fce413fa41be4-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-e3022bfd607e772136f5c262875a8e78-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-6064e55fed6e90b90b727b299462cbad-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-28453f83bb03486a08afc096a8dc5298-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-eebbe29feefc097086749081844d8adc-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-2a345646fa5b3900aba8b74935fc4ec6-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-f8fb4a09881bce886dcb55a88be49016-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-874c39cca17041ceb7a91f142104e8eb-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-b4857c06e9564cf3c2451f436f7af410-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-958a3d55d581ec276b72394435df4bd0-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-22a2847c2a28584956e90d549fc6bcc6-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-d5cdd9f4f4edd380361129082a01360b-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-20fd18a057e4affd5c78cad41a81d3b4-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-44cf523e9d0e53674fadc59c9b9110b7-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-856f85d23d9b8b84916d5b83ebfa1773-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-ef57a778259ba88b9fb4c23cc2bd78f4-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-c33480c9f0dfd80852541205f46914a7-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-4bfeb3edd7f0d47ec52f533a5cf435a0-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-8e74110792d4c68bb5a772733d490401-ddotson-tyk2-demo': None,\n",
+       " 'Transformation-06eac733376ab1ff566248040fe37e01-ddotson-tyk2-demo': ,\n",
+       " 'Transformation-76de739d87d53981abfff4ab9ce071e4-ddotson-tyk2-demo': }"
+      ]
+     },
+     "execution_count": 75,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1763,56 +1867,56 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 68,
+   "execution_count": 76,
    "id": "35d41826-c6fa-44fe-aec9-45e85bd5d30c",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/html": [
-       "39.7580051742956 kilocalorie/mole"
+       "20.937595533249475 kilocalorie_per_mole"
       ],
       "text/latex": [
-       "$39.7580051742956\\ \\frac{\\mathrm{kilocalorie}}{\\mathrm{mole}}$"
+       "$20.937595533249475\\ \\mathrm{kilocalorie\\_per\\_mole}$"
       ],
       "text/plain": [
-       "39.7580051742956 "
+       "20.937595533249475 "
       ]
      },
-     "execution_count": 68,
+     "execution_count": 76,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "results['Transformation-08f4c68a8e178d698e59cc1a366e3415-ddotson-tyk2-demo'].get_estimate()"
+    "results['Transformation-82e90d15b483a813a6501073e3964930-ddotson-tyk2-demo'].get_estimate()"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 69,
+   "execution_count": 77,
    "id": "88efaebb-a47b-4a53-b6b9-382bcfc2b1ec",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/html": [
-       "0.0 kilocalorie/mole"
+       "0.0 kilocalorie_per_mole"
       ],
       "text/latex": [
-       "$0.0\\ \\frac{\\mathrm{kilocalorie}}{\\mathrm{mole}}$"
+       "$0.0\\ \\mathrm{kilocalorie\\_per\\_mole}$"
       ],
       "text/plain": [
-       "0.0 "
+       "0.0 "
       ]
      },
-     "execution_count": 69,
+     "execution_count": 77,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "results['Transformation-08f4c68a8e178d698e59cc1a366e3415-ddotson-tyk2-demo'].get_uncertainty()"
+    "results['Transformation-82e90d15b483a813a6501073e3964930-ddotson-tyk2-demo'].get_uncertainty()"
    ]
   },
   {
@@ -1822,7 +1926,7 @@
    "source": [
     "In this case, we have only a single `ProtocolDAGResult` for each `Transformation` (since we created and actioned only 1 `Task` for each), and so the uncertainty (standard deviation between replicate simulations) given for this `ProtocolResult` is 0.0. The `RelativeHybridTopologyProtocol` combines `ProtocolDAGResult` values statistically, reducing the uncertainty but not increasing convergence with additional `Task`s\n",
     "\n",
-    "By contrast other `Protocol`s, such as the `perses` `NonEquilibriumCyclingProtocol`, will improve convergence with more `Task`s on a given `Transformation`; in the case of the `NonEquilibriumCyclingProtocol`, the non-equilibrium work values for each `ProtocolDAGResult` are combined together and fed to `BAR` to produce a single estimate with its own uncertainty."
+    "By contrast other `Protocol`s, such as the `feflow` `NonEquilibriumCyclingProtocol`, will improve convergence with more `Task`s on a given `Transformation`; in the case of the `NonEquilibriumCyclingProtocol`, the non-equilibrium work values for each `ProtocolDAGResult` are combined together and fed to `BAR` to produce a single estimate with its own uncertainty."
    ]
   },
   {
@@ -1835,64 +1939,64 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 58,
+   "execution_count": 78,
    "id": "78a17d4c-da4d-4879-a7d1-ae81f158fc00",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "[,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ,\n",
-       " ]"
-      ]
-     },
-     "execution_count": 58,
+       "[,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ,\n",
+       " ]"
+      ]
+     },
+     "execution_count": 78,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1907,35 +2011,35 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 75,
+   "execution_count": 81,
    "id": "7416399a-a06c-461f-a1ae-739bd46abcdb",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/html": [
-       "
AlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo                                               \n",
+       "
AlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo                                               \n",
        "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
        "┃ status                                                                                                   count ┃\n",
        "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
-       "│ complete                                                                                                    19 │\n",
-       "│ running                                                                                                     48 │\n",
-       "│ waiting                                                                                                      0 │\n",
-       "│ error                                                                                                        5 │\n",
+       "│ complete                                                                                                    21 │\n",
+       "│ running                                                                                                      0 │\n",
+       "│ waiting                                                                                                     49 │\n",
+       "│ error                                                                                                        2 │\n",
        "│ invalid                                                                                                      0 │\n",
        "│ deleted                                                                                                      0 │\n",
        "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n",
        "
\n" ], "text/plain": [ - "\u001b[3mAlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo \u001b[0m\n", + "\u001b[3mAlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo \u001b[0m\n", "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mstatus \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m count\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 19\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 48\u001b[0m\u001b[38;5;172m \u001b[0m│\n", - "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 0\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", - "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 5\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", + "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 21\u001b[0m\u001b[32m \u001b[0m│\n", + "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 0\u001b[0m\u001b[38;5;172m \u001b[0m│\n", + "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 49\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", + "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 2\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", "│\u001b[38;5;201m \u001b[0m\u001b[38;5;201minvalid \u001b[0m\u001b[38;5;201m \u001b[0m│\u001b[38;5;201m \u001b[0m\u001b[38;5;201m 0\u001b[0m\u001b[38;5;201m \u001b[0m│\n", "│\u001b[38;5;129m \u001b[0m\u001b[38;5;129mdeleted \u001b[0m\u001b[38;5;129m \u001b[0m│\u001b[38;5;129m \u001b[0m\u001b[38;5;129m 0\u001b[0m\u001b[38;5;129m \u001b[0m│\n", "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n" @@ -1947,10 +2051,10 @@ { "data": { "text/plain": [ - "{'complete': 19, 'running': 48, 'error': 5}" + "{'waiting': 49, 'error': 2, 'complete': 21}" ] }, - "execution_count": 75, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -1969,21 +2073,72 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 84, + "id": "9c0f6683-603d-4a82-8255-104e473cb4a6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
AlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo                                               \n",
+       "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
+       "┃ status                                                                                                   count ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
+       "│ complete                                                                                                    46 │\n",
+       "│ running                                                                                                     24 │\n",
+       "│ waiting                                                                                                      0 │\n",
+       "│ error                                                                                                        2 │\n",
+       "│ invalid                                                                                                      0 │\n",
+       "│ deleted                                                                                                      0 │\n",
+       "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[3mAlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo \u001b[0m\n", + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mstatus \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m count\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", + "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 46\u001b[0m\u001b[32m \u001b[0m│\n", + "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 24\u001b[0m\u001b[38;5;172m \u001b[0m│\n", + "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 0\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", + "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 2\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", + "│\u001b[38;5;201m \u001b[0m\u001b[38;5;201minvalid \u001b[0m\u001b[38;5;201m \u001b[0m│\u001b[38;5;201m \u001b[0m\u001b[38;5;201m 0\u001b[0m\u001b[38;5;201m \u001b[0m│\n", + "│\u001b[38;5;129m \u001b[0m\u001b[38;5;129mdeleted \u001b[0m\u001b[38;5;129m \u001b[0m│\u001b[38;5;129m \u001b[0m\u001b[38;5;129m 0\u001b[0m\u001b[38;5;129m \u001b[0m│\n", + "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "{'complete': 46, 'running': 24, 'error': 2}" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "asc.get_network_status(an_sk)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, "id": "892122f7-95c9-47e0-8931-f15ab9f2efae", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" + "[,\n", + " ]" ] }, - "execution_count": 76, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -1994,14 +2149,14 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 86, "id": "cbfe1d37-0934-4121-abbb-09d7c1f19396", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "51c7eaf8708b4a99ba637c22d4c621a3", + "model_id": "a679f2867bb946d9963cdb603c80bf52", "version_major": 2, "version_minor": 0 }, @@ -2013,24 +2168,18 @@ "output_type": "display_data" }, { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:\tHTTP Request: GET https://api.alchemiscale.org/transformations/Transformation-152928d4d69298dcedf2dd622073a95b-ddotson-tyk2-demo/failures/ProtocolDAGResultRef-08d10b9130b46d11e70cdf91343e686e-ddotson-tyk2-demo \"HTTP/1.1 200 OK\"\n"
+     ]
     },
     {
      "data": {
       "text/html": [
-       "
\n",
-       "
\n" + "
\n"
       ],
-      "text/plain": [
-       "\n"
-      ]
+      "text/plain": []
      },
      "metadata": {},
      "output_type": "display_data"
@@ -2040,23 +2189,29 @@
      "output_type": "stream",
      "text": [
       "Traceback (most recent call last):\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/gufe/protocols/protocolunit.py\", line 319, in execute\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/gufe/protocols/protocolunit.py\", line 320, in execute\n",
       "    outputs = self._execute(context, **inputs)\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openfe/protocols/openmm_rfe/equil_rfe_methods.py\", line 684, in _execute\n",
+      "              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openfe/protocols/openmm_rfe/equil_rfe_methods.py\", line 1129, in _execute\n",
       "    outputs = self.run(scratch_basepath=ctx.scratch,\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openfe/protocols/openmm_rfe/equil_rfe_methods.py\", line 593, in run\n",
+      "              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openfe/protocols/openmm_rfe/equil_rfe_methods.py\", line 998, in run\n",
       "    sampler.setup(\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openfe/protocols/openmm_rfe/_rfe_utils/multistate.py\", line 121, in setup\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openfe/protocols/openmm_rfe/_rfe_utils/multistate.py\", line 121, in setup\n",
       "    minimize(compound_thermostate_copy, sampler_state,\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openfe/protocols/openmm_rfe/_rfe_utils/multistate.py\", line 295, in minimize\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openfe/protocols/openmm_rfe/_rfe_utils/multistate.py\", line 295, in minimize\n",
       "    context, integrator = dummy_cache.get_context(\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openmmtools/cache.py\", line 770, in get_context\n",
+      "                          ^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openmmtools/cache.py\", line 770, in get_context\n",
       "    context = thermodynamic_state.create_context(integrator, self.platform)\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openmmtools/states.py\", line 1179, in create_context\n",
+      "              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openmmtools/states.py\", line 1179, in create_context\n",
       "    return openmm.Context(system, integrator, platform)\n",
-      "  File \"/opt/conda/lib/python3.10/site-packages/openmm/openmm.py\", line 3749, in __init__\n",
+      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "  File \"/lila/home/dotson/mambaforge/envs/alchemiscalemiscale-compute-ddotson-v0.5.0-2024.08.15/lib/python3.12/site-packages/openmm/openmm.py\", line 8037, in __init__\n",
       "    _openmm.Context_swiginit(self, _openmm.new_Context(*args))\n",
-      "openmm.OpenMMException: Error initializing CUDA: CUDA_ERROR_UNKNOWN (999) at /home/conda/feedstock_root/build_artifacts/openmm_1682500546897/work/platforms/cuda/src/CudaContext.cpp:140\n",
+      "                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+      "openmm.OpenMMException: Error initializing CUDA: CUDA_ERROR_MPS_CONNECTION_FAILED (805) at /home/conda/feedstock_root/build_artifacts/openmm_1721257909416/work/platforms/cuda/src/CudaContext.cpp:91\n",
       "\n"
      ]
     }
@@ -2067,7 +2222,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 222,
+   "execution_count": 87,
    "id": "42b373ed-2ec3-4e10-a551-034fdd2b5ed6",
    "metadata": {},
    "outputs": [
@@ -2075,17 +2230,17 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "INFO:\tHTTP Request: POST http://api.alchemiscale.internal/bulk/tasks/status/set \"HTTP/1.1 200 OK\"\n"
+      "INFO:\tHTTP Request: POST https://api.alchemiscale.org/bulk/tasks/status/set \"HTTP/1.1 200 OK\"\n"
      ]
     },
     {
      "data": {
       "text/plain": [
-       "[,\n",
-       " ]"
+       "[,\n",
+       " ]"
       ]
      },
-     "execution_count": 222,
+     "execution_count": 87,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2096,35 +2251,35 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 86,
+   "execution_count": 98,
    "id": "55c733aa-3e41-481c-8f63-df7b2c8a79de",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/html": [
-       "
AlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo                                               \n",
+       "
AlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo                                               \n",
        "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
        "┃ status                                                                                                   count ┃\n",
        "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
-       "│ complete                                                                                                    66 │\n",
-       "│ running                                                                                                      1 │\n",
+       "│ complete                                                                                                    72 │\n",
+       "│ running                                                                                                      0 │\n",
        "│ waiting                                                                                                      0 │\n",
-       "│ error                                                                                                        5 │\n",
+       "│ error                                                                                                        0 │\n",
        "│ invalid                                                                                                      0 │\n",
        "│ deleted                                                                                                      0 │\n",
        "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n",
        "
\n" ], "text/plain": [ - "\u001b[3mAlchemicalNetwork-391c0eb68025cf4b83e4d706f189f745-ddotson-tyk2-demo \u001b[0m\n", + "\u001b[3mAlchemicalNetwork-6f22642592f789c4e7f918412ca947c5-ddotson-tyk2-demo \u001b[0m\n", "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mstatus \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m count\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 66\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 1\u001b[0m\u001b[38;5;172m \u001b[0m│\n", + "│\u001b[32m \u001b[0m\u001b[32mcomplete \u001b[0m\u001b[32m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m 72\u001b[0m\u001b[32m \u001b[0m│\n", + "│\u001b[38;5;172m \u001b[0m\u001b[38;5;172mrunning \u001b[0m\u001b[38;5;172m \u001b[0m│\u001b[38;5;172m \u001b[0m\u001b[38;5;172m 0\u001b[0m\u001b[38;5;172m \u001b[0m│\n", "│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208mwaiting \u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\u001b[38;2;23;147;208m \u001b[0m\u001b[38;2;23;147;208m 0\u001b[0m\u001b[38;2;23;147;208m \u001b[0m│\n", - "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 5\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", + "│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58merror \u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\u001b[38;2;255;7;58m \u001b[0m\u001b[38;2;255;7;58m 0\u001b[0m\u001b[38;2;255;7;58m \u001b[0m│\n", "│\u001b[38;5;201m \u001b[0m\u001b[38;5;201minvalid \u001b[0m\u001b[38;5;201m \u001b[0m│\u001b[38;5;201m \u001b[0m\u001b[38;5;201m 0\u001b[0m\u001b[38;5;201m \u001b[0m│\n", "│\u001b[38;5;129m \u001b[0m\u001b[38;5;129mdeleted \u001b[0m\u001b[38;5;129m \u001b[0m│\u001b[38;5;129m \u001b[0m\u001b[38;5;129m 0\u001b[0m\u001b[38;5;129m \u001b[0m│\n", "└──────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────┘\n" @@ -2136,10 +2291,10 @@ { "data": { "text/plain": [ - "{'complete': 66, 'error': 5, 'running': 1}" + "{'complete': 72}" ] }, - "execution_count": 86, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -2158,7 +2313,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 102, "id": "43aa0be9-4306-48f8-a3c6-e6851b05d553", "metadata": {}, "outputs": [], @@ -2170,40 +2325,40 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 103, "id": "bd6409b5-1ec9-469e-b7e7-5d0dbb2c29b3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'Transformation-3bde3c547da7c4db25af92e94f34efce-ddotson-tyk2-demo': ,\n", - " 'Transformation-3d1c7ab3c70341bc88fc91112689a648-ddotson-tyk2-demo': ,\n", - " 'Transformation-333a2629c325b4f257b416c2431d9132-ddotson-tyk2-demo': ,\n", - " 'Transformation-086a259a37b0f93979cc23dc31344aa8-ddotson-tyk2-demo': ,\n", - " 'Transformation-553107db824ee8a99f30fb42cbe5798c-ddotson-tyk2-demo': ,\n", - " 'Transformation-08f4c68a8e178d698e59cc1a366e3415-ddotson-tyk2-demo': ,\n", - " 'Transformation-c244dffbafa7e4e95ff4c0a03a54888b-ddotson-tyk2-demo': ,\n", - " 'Transformation-7080ba2b294fbb443f7c8fd0432523b8-ddotson-tyk2-demo': ,\n", - " 'Transformation-2168cd5e6257debd9e31a7dea8f865db-ddotson-tyk2-demo': ,\n", - " 'Transformation-6fedaff17af81e8f8cd903ff54f4fa43-ddotson-tyk2-demo': ,\n", - " 'Transformation-058b41226978833e875145eca60fa44d-ddotson-tyk2-demo': ,\n", - " 'Transformation-a34291c782001508c20b0f8fbd8e8768-ddotson-tyk2-demo': ,\n", - " 'Transformation-be3971fa5275fae3d0767ef387e4f673-ddotson-tyk2-demo': ,\n", - " 'Transformation-c824272678b20bb10b0b3ed82a75cba7-ddotson-tyk2-demo': ,\n", - " 'Transformation-72f58e6ef2cc85e52de765b797fb935b-ddotson-tyk2-demo': ,\n", - " 'Transformation-d5634110bde446e3c0135a213ca126be-ddotson-tyk2-demo': ,\n", - " 'Transformation-cfc64db96341e6c6fe78b31bc45086fe-ddotson-tyk2-demo': ,\n", - " 'Transformation-f549eb13fa5c5aa43a4b0581509ec17b-ddotson-tyk2-demo': ,\n", - " 'Transformation-22f055e336144e1192a54fc36b008761-ddotson-tyk2-demo': ,\n", - " 'Transformation-954a54426ba12cd7f97b163692de84b3-ddotson-tyk2-demo': ,\n", - " 'Transformation-43fcc3ea77628d04acffbfafaf7289f3-ddotson-tyk2-demo': ,\n", - " 'Transformation-1ed12e0907b854bd0810ebb8bce91bbd-ddotson-tyk2-demo': ,\n", - " 'Transformation-e85c3cfe5386d9e53c4593acf52df560-ddotson-tyk2-demo': ,\n", - " 'Transformation-1d104d98ba12a95e13d2e086f1839b51-ddotson-tyk2-demo': }" - ] - }, - "execution_count": 35, + "{'Transformation-15fdd9ff3f68cde67e706ffa87f6a9b7-ddotson-tyk2-demo': ,\n", + " 'Transformation-152928d4d69298dcedf2dd622073a95b-ddotson-tyk2-demo': ,\n", + " 'Transformation-82e90d15b483a813a6501073e3964930-ddotson-tyk2-demo': ,\n", + " 'Transformation-73164716e2ad3c2e410fce413fa41be4-ddotson-tyk2-demo': ,\n", + " 'Transformation-e3022bfd607e772136f5c262875a8e78-ddotson-tyk2-demo': ,\n", + " 'Transformation-6064e55fed6e90b90b727b299462cbad-ddotson-tyk2-demo': ,\n", + " 'Transformation-28453f83bb03486a08afc096a8dc5298-ddotson-tyk2-demo': ,\n", + " 'Transformation-eebbe29feefc097086749081844d8adc-ddotson-tyk2-demo': ,\n", + " 'Transformation-2a345646fa5b3900aba8b74935fc4ec6-ddotson-tyk2-demo': ,\n", + " 'Transformation-f8fb4a09881bce886dcb55a88be49016-ddotson-tyk2-demo': ,\n", + " 'Transformation-874c39cca17041ceb7a91f142104e8eb-ddotson-tyk2-demo': ,\n", + " 'Transformation-b4857c06e9564cf3c2451f436f7af410-ddotson-tyk2-demo': ,\n", + " 'Transformation-958a3d55d581ec276b72394435df4bd0-ddotson-tyk2-demo': ,\n", + " 'Transformation-22a2847c2a28584956e90d549fc6bcc6-ddotson-tyk2-demo': ,\n", + " 'Transformation-d5cdd9f4f4edd380361129082a01360b-ddotson-tyk2-demo': ,\n", + " 'Transformation-20fd18a057e4affd5c78cad41a81d3b4-ddotson-tyk2-demo': ,\n", + " 'Transformation-44cf523e9d0e53674fadc59c9b9110b7-ddotson-tyk2-demo': ,\n", + " 'Transformation-856f85d23d9b8b84916d5b83ebfa1773-ddotson-tyk2-demo': ,\n", + " 'Transformation-ef57a778259ba88b9fb4c23cc2bd78f4-ddotson-tyk2-demo': ,\n", + " 'Transformation-c33480c9f0dfd80852541205f46914a7-ddotson-tyk2-demo': ,\n", + " 'Transformation-4bfeb3edd7f0d47ec52f533a5cf435a0-ddotson-tyk2-demo': ,\n", + " 'Transformation-8e74110792d4c68bb5a772733d490401-ddotson-tyk2-demo': ,\n", + " 'Transformation-06eac733376ab1ff566248040fe37e01-ddotson-tyk2-demo': ,\n", + " 'Transformation-76de739d87d53981abfff4ab9ce071e4-ddotson-tyk2-demo': }" + ] + }, + "execution_count": 103, "metadata": {}, "output_type": "execute_result" } @@ -2238,7 +2393,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 104, "id": "0717730d-dc4a-4ee5-a7e9-6af423c3335c", "metadata": {}, "outputs": [ @@ -2386,7 +2541,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 105, "id": "7076019c-aa12-4be3-9b87-f864b5a5ffd8", "metadata": {}, "outputs": [], @@ -2396,7 +2551,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 106, "id": "f688cd6c", "metadata": {}, "outputs": [], @@ -2414,164 +2569,1843 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 109, "id": "7af574ec", "metadata": { "scrolled": true }, - "outputs": [], - "source": [ - "# Next we create a results dictionary and scan our network edges to accumulate all\n", - "# the free energy results and their uncertainty\n", - "results_dir = Path('results')\n", - "results_dir.mkdir(parents=True, exist_ok=True)\n", - "results = dict()\n", - "for tf_sk in asc.get_network_transformations(an_sk):\n", - " transformation = asc.get_transformation(tf_sk)\n", - " result = asc.get_transformation_results(tf_sk)\n", - " if result is None:\n", - " continue\n", - " runtype = _scan_components(transformation.stateA)\n", - " mapping = transformation.mapping['ligand']\n", - " nameA = mapping.componentA.name\n", - " nameB = mapping.componentB.name\n", - "\n", - " # store in accumulator\n", - " if f\"{nameA}_{nameB}\" in results.keys():\n", - " results[f\"{nameA}_{nameB}\"][runtype] = result\n", - " else:\n", - " results[f\"{nameA}_{nameB}\"] = {runtype: result, 'molA': nameA, 'molB': nameB}\n", - "\n", - " # output individual results to a separate `.dat` file for future use\n", - " filename = results_dir / f\"{nameA}_{nameB}.{runtype}.results.dat\"\n", - " output = f\"{result.get_estimate()},{result.get_uncertainty()}\"\n", - "\n", - " with open(filename, 'w') as f:\n", - " f.write(output)" - ] - }, - { - "cell_type": "markdown", - "id": "7a185273-3bea-4ee0-b69b-64a859bff35c", - "metadata": {}, - "source": [ - "### Writing out a `cinnabar` input CSV file\n", - "\n", - "Since this is a known benchmark system, we have experimental values for each of our ligands. We can combine them with our results to create a `cinnabar` input CSV file.\n", - "\n", - "**Note: this will change very soon. We are in the process of refactoring the cinnabar API.**" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "id": "e61661ee", - "metadata": {}, - "outputs": [], - "source": [ - "# Here we create a dictionary of experimental values from an input protein-ligand benchmark ligands.yml\n", - "\n", - "# First load the yaml data\n", - "import yaml\n", - "\n", - "with open('ligands.yml') as stream:\n", - " exp_data = yaml.safe_load(stream)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "id": "8d693308", - "metadata": {}, - "outputs": [], - "source": [ - "# Define a method for converting between Ki to estimated DG\n", - "from openff.units import unit\n", - "import math\n", - "\n", - "def ki_to_dg(\n", - " ki: unit.Quantity, uncertainty: unit.Quantity,\n", - " temperature: unit.Quantity = 298.15 * unit.kelvin\n", - ") -> tuple[unit.Quantity, unit.Quantity]:\n", - " \"\"\"\n", - " Convenience method to convert a Ki w/ a given uncertainty to an\n", - " experimental estimate of the binding free energy.\n", - " \n", - " Parameters\n", - " ----------\n", - " ki : unit.Quantity\n", - " Experimental Ki value (e.g. 5 * unit.nanomolar)\n", - " uncertainty : unit.Quantity\n", - " Experimental error. Note: returns 0 if =< 0 * unit.nanomolar.\n", - " temperature : unit.Quantity\n", - " Experimental temperature. Default: 298.15 * unit.kelvin.\n", - " \n", - " Returns\n", - " -------\n", - " DG : unit.Quantity\n", - " Gibbs binding free energy.\n", - " dDG : unit.Quantity\n", - " Error in binding free energy.\n", - " \"\"\"\n", - " if ki > 1e-15 * unit.nanomolar:\n", - " DG = (unit.molar_gas_constant * temperature.to(unit.kelvin)\n", - " * math.log(ki / unit.molar)).to(unit.kilocalorie_per_mole)\n", - " else:\n", - " raise ValueError(\"negative Ki values are not supported\")\n", - " if uncertainty > 0 * unit.molar:\n", - " dDG = (unit.molar_gas_constant * temperature.to(unit.kelvin)\n", - " * uncertainty / ki).to(unit.kilocalorie_per_mole)\n", - " else:\n", - " dDG = 0 * unit.kilocalorie_per_mole\n", - " \n", - " return DG, dDG" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "id": "bbc447a8", - "metadata": {}, - "outputs": [], - "source": [ - "from openff.units import unit\n", - "\n", - "exp_values = {}\n", - "for lig in exp_data:\n", - " exp_units = unit(exp_data[lig]['measurement']['unit'])\n", - " exp_values[lig] = {}\n", - " DG, dDG = ki_to_dg(exp_data[lig]['measurement']['value'] * exp_units,\n", - " exp_data[lig]['measurement']['error'] * exp_units)\n", - " exp_values[lig]['value'] = DG\n", - " exp_values[lig]['error'] = dDG" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "03439752", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "# write out the cinnabar input file\n", - "with open('cinnabar_input.csv', 'w') as f:\n", - " f.write(\"# Experimental block\\n\")\n", - " f.write(\"# Ligand, expt_DDG, expt_dDDG\\n\")\n", - " for entry in exp_values:\n", - " f.write(f\"{entry},{exp_values[entry]['value'].m:.2f},{exp_values[entry]['error'].m:.2f}\\n\")\n", - " f.write('\\n')\n", - " \n", - " f.write('# Calculated block\\n')\n", - " f.write('# Ligand1,Ligand2,calc_DDG,calc_dDDG(MBAR),calc_dDDG(additional)\\n')\n", - " for entry in results:\n", - " estimate = (results[entry]['complex'].get_estimate()\n", - " - results[entry]['solvent'].get_estimate())\n", - " err = np.sqrt(results[entry]['complex'].get_uncertainty()**2\n", - " + results[entry]['solvent'].get_uncertainty()**2)\n", - " molA = results[entry]['molA']\n", - " molB = results[entry]['molB']\n", + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5640f16b208b45b2bed156a7c1cd2abb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "845047b7a9cf4c85ac99743a3ecc518e",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "47d1c9fb6abb40c69bebf036eda37a9a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "c53caabbffe2450abf5a5bf7d79b2971",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "ad925a7d7ac140c1a4f8c5afb8478ebb",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "5ef90d51ad2046f289db987ff1b4628a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "838201f53e1d4149a9c1536443aee3ce",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "d50442f24ec94b24a8d68d020d93cee6",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "674d814a72ba4fb2b636162ac63fb280",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "383e725ae62d4df2ae55b14e084af261",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "1fb3baae68dd4fb08ff1030ced2b6d11",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "bf1110fdffb9434c9592b9b1fcb8b2de",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "4f822a027b4c46b5bc1ac9d2eb08a3ef",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b9698a65e59240799d4b01943b45b1a8",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "24b046c1c06b4822be16f35b329bbb80",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "42932d87f6764a7bac5f55f07ae87ebb",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "79ba040445ac48c8b4a023921860635d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "76d1dfe808aa48ecb5fb51d28a651260",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "7c5b48f995964c688cd4d4616db9a98b",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "ae39c441c65f458c89733f8999647ff6",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "142d2b7e001649bc92c1f67dcd68aa61",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "d9edac5adf1b4b23895a97f732085228",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e6430eb94a95449e8cf05b40dd35c53c",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "705fc471c9934c73ab154770dfa260fa",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a824882f0bcd4aee8837198ff622ab98",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "263ceb1b35844f688257019aab56abdf",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "bd7e31f3b1ab43e491fd8d9971cfd816",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "dc2a347f4b5c4505bbab03b8a0282265",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "583bf82b76cd45369508e44eee099745",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3d68642ae3b74b7d9ed59c8bac3d6183",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "811f3559740f457396013e40808136b6",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e8d49748a3a54b6bb02ba88534338eba",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "cc5410edf0f54836bda93c10ddf338a7",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "f53b79d2deb44be78d72ce65994faefa",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a42280ce12b74e409c0750c577fdae5d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a4dc7fa912944302b857ae7f850e4f90",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e8962d615e9a4e27ba7d8c5054102a2d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "383eb5aebf724c72acb6ad6b0441e12b",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "8d2fddee302348ec8d84e9ac59074882",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a5edea747d104f6b8c446502ad7018b2",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "c1f70064159645b38c3c77cdf96c1092",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "bc2f90eccdf743d0b27c13d70f2a0530",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "f3bfab0988684822ae3827397bb21747",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "f7dff08088554f3689630d034311ad15",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "720a037fd3634ad390d57a41e624c52d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "afc64bb900fe4ea7a386995529725151",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "53bc5bb6d8ec40e884b4a2c9c4305b1c",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a75e01b4007b4dfc981d0a7180dc91ce",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "5db61c39491b4c5788065e9144912f99",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "1a5fc3c12fa14995ae9c8da66f978ddd",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "70a986f7ce2c43dbaa0ea6ead8342e59",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e61f3b4367034945b3265f576dfad535",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "ee2922bba40c4bb1840d35a806d217b8",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "c1e2d7ea12984bfead52f1ee8f07f643",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "8a8902fc7888428b8717f700d044c94f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a9b270285b394c48bb5da6e7978be104",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "2e208d5417e34d38bfc7d2b5b9a1a245",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "f4d94b60391f4557800763de8c0b7d0f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "cb6fb55d42a545bbad0feae5e94e8fc7",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "9427b4c604b3464f8761b5f5610bf48b",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "30f8344c2ab34b14a828dd5dc299319b",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b968ae8260b248e98fb3327273c14660",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3279db9a348a4bc9a1b72fb2a54cb8a8",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "177311c4b4784caa8d966a84eb2b6e32",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "147ca9dba234457b958db4d29287152b",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "17817e9a32f943e7aa4c65dcac85e1ff",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "16379ac2e83648a4b0383e44004d5f07",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "6558a1acb84c4c41a66122255c078a3c",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a809e3b4d67e45a8964cb201bb6625f5",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "972ec7796a16447f94371ffbdcfbf36d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Next we create a results dictionary and scan our network edges to accumulate all\n",
+    "# the free energy results and their uncertainty\n",
+    "results_dir = Path('results')\n",
+    "results_dir.mkdir(parents=True, exist_ok=True)\n",
+    "results = dict()\n",
+    "for tf_sk in asc.get_network_transformations(an_sk):\n",
+    "    transformation = asc.get_transformation(tf_sk)\n",
+    "    result = asc.get_transformation_results(tf_sk)\n",
+    "    if result is None:\n",
+    "        continue\n",
+    "    runtype = _scan_components(transformation.stateA)\n",
+    "    mapping = transformation.mapping[0]\n",
+    "    nameA = mapping.componentA.name\n",
+    "    nameB = mapping.componentB.name\n",
+    "\n",
+    "    # store in accumulator\n",
+    "    if f\"{nameA}_{nameB}\" in results.keys():\n",
+    "        results[f\"{nameA}_{nameB}\"][runtype] = result\n",
+    "    else:\n",
+    "        results[f\"{nameA}_{nameB}\"] = {runtype: result, 'molA': nameA, 'molB': nameB}\n",
+    "\n",
+    "    # output individual results to a separate `.dat` file for future use\n",
+    "    filename = results_dir / f\"{nameA}_{nameB}.{runtype}.results.dat\"\n",
+    "    output = f\"{result.get_estimate()},{result.get_uncertainty()}\"\n",
+    "\n",
+    "    with open(filename, 'w') as f:\n",
+    "        f.write(output)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7a185273-3bea-4ee0-b69b-64a859bff35c",
+   "metadata": {},
+   "source": [
+    "### Writing out a `cinnabar` input CSV file\n",
+    "\n",
+    "Since this is a known benchmark system, we have experimental values for each of our ligands. We can combine them with our results to create a `cinnabar` input CSV file."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 110,
+   "id": "e61661ee",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Here we create a dictionary of experimental values from an input protein-ligand benchmark ligands.yml\n",
+    "\n",
+    "# First load the yaml data\n",
+    "import yaml\n",
+    "\n",
+    "with open('ligands.yml') as stream:\n",
+    "    exp_data = yaml.safe_load(stream)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 111,
+   "id": "8d693308",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Define a method for converting between Ki to estimated DG\n",
+    "from openff.units import unit\n",
+    "import math\n",
+    "\n",
+    "def ki_to_dg(\n",
+    "    ki: unit.Quantity, uncertainty: unit.Quantity,\n",
+    "    temperature: unit.Quantity = 298.15 * unit.kelvin\n",
+    ") -> tuple[unit.Quantity, unit.Quantity]:\n",
+    "    \"\"\"\n",
+    "    Convenience method to convert a Ki w/ a given uncertainty to an\n",
+    "    experimental estimate of the binding free energy.\n",
+    "    \n",
+    "    Parameters\n",
+    "    ----------\n",
+    "    ki : unit.Quantity\n",
+    "        Experimental Ki value (e.g. 5 * unit.nanomolar)\n",
+    "    uncertainty : unit.Quantity\n",
+    "        Experimental error. Note: returns 0 if =< 0 * unit.nanomolar.\n",
+    "    temperature : unit.Quantity\n",
+    "        Experimental temperature. Default: 298.15 * unit.kelvin.\n",
+    "        \n",
+    "    Returns\n",
+    "    -------\n",
+    "    DG : unit.Quantity\n",
+    "        Gibbs binding free energy.\n",
+    "    dDG : unit.Quantity\n",
+    "        Error in binding free energy.\n",
+    "    \"\"\"\n",
+    "    if ki > 1e-15 * unit.nanomolar:\n",
+    "        DG = (unit.molar_gas_constant * temperature.to(unit.kelvin)\n",
+    "              * math.log(ki / unit.molar)).to(unit.kilocalorie_per_mole)\n",
+    "    else:\n",
+    "        raise ValueError(\"negative Ki values are not supported\")\n",
+    "    if uncertainty > 0 * unit.molar:\n",
+    "        dDG = (unit.molar_gas_constant * temperature.to(unit.kelvin)\n",
+    "               * uncertainty / ki).to(unit.kilocalorie_per_mole)\n",
+    "    else:\n",
+    "        dDG = 0 * unit.kilocalorie_per_mole\n",
+    "        \n",
+    "    return DG, dDG"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 112,
+   "id": "bbc447a8",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from openff.units import unit\n",
+    "\n",
+    "exp_values = {}\n",
+    "for lig in exp_data:\n",
+    "    exp_units = unit(exp_data[lig]['measurement']['unit'])\n",
+    "    exp_values[lig] = {}\n",
+    "    DG, dDG = ki_to_dg(exp_data[lig]['measurement']['value'] * exp_units,\n",
+    "                       exp_data[lig]['measurement']['error'] * exp_units)\n",
+    "    exp_values[lig]['value'] = DG\n",
+    "    exp_values[lig]['error'] = dDG"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 113,
+   "id": "03439752",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "\n",
+    "# write out the cinnabar input file\n",
+    "with open('cinnabar_input.csv', 'w') as f:\n",
+    "    f.write(\"# Experimental block\\n\")\n",
+    "    f.write(\"# Ligand, expt_DDG, expt_dDDG\\n\")\n",
+    "    for entry in exp_values:\n",
+    "        f.write(f\"{entry},{exp_values[entry]['value'].m:.2f},{exp_values[entry]['error'].m:.2f}\\n\")\n",
+    "    f.write('\\n')\n",
+    "    \n",
+    "    f.write('# Calculated block\\n')\n",
+    "    f.write('# Ligand1,Ligand2,calc_DDG,calc_dDDG(MBAR),calc_dDDG(additional)\\n')\n",
+    "    for entry in results:\n",
+    "        estimate = (results[entry]['complex'].get_estimate()\n",
+    "                    - results[entry]['solvent'].get_estimate())\n",
+    "        err = np.sqrt(results[entry]['complex'].get_uncertainty()**2\n",
+    "                      + results[entry]['solvent'].get_uncertainty()**2)\n",
+    "        molA = results[entry]['molA']\n",
+    "        molB = results[entry]['molB']\n",
     "        f.write(f\"{molA},{molB},{estimate.m:.2f},0,{err.m:.2f}\\n\")"
    ]
   },
@@ -2587,14 +4421,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 45,
+   "execution_count": 124,
    "id": "60413e9e",
    "metadata": {},
    "outputs": [],
    "source": [
     "import cinnabar\n",
     "from cinnabar import plotting as cinnabar_plotting\n",
-    "from cinnabar.wrangle import FEMap\n",
+    "from cinnabar import FEMap, femap\n",
     "%matplotlib inline"
    ]
   },
@@ -2616,13 +4450,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 47,
+   "execution_count": 118,
    "id": "56de38d7-fbde-4610-a1ff-428eaaa70648",
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAARECAYAAAAqQwEUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxN+f8H8Ne97asWikRZGvuafeleMxMV2bcYZOz7voRIRcjOYGxjD2MP5WsrVHaDsYw1ZMmSlJS63fv7o1/NXCWqW6dur+fj0eM7nfM5n/O6fcN9389yRAqFQgEiIiIiIiIiUhtioQMQERERERERkWqx2CciIiIiIiJSMyz2iYiIiIiIiNQMi30iIiIiIiIiNcNin4iIiIiIiEjNsNgnIiIiIiIiUjMs9omIiIiIiIjUDIt9IiIiIiIiIjXDYp+IiIiIiIhIzbDYJyIiIiIiIlIzLPaJiIiIiIiI1AyLfSIiIiIiIiI1w2KfiIiIiIiISM2w2CciIiIiIiJSMyz2iYiIiIiIiNQMi30iIiIiIiIiNcNin4iIiIiIiEjNsNgnIiIiIiIiUjMs9omIiIiIiIjUDIt9IiIiIiIiIjXDYp+IiIiIiIhIzbDYJyIiIiIiIlIzLPaJiIiIiIiI1AyLfSIiIiIiIiI1w2KfiIiIiIiISM2w2CciIiIiIiJSMyz2iYiIciAyMhIikQgikQg7d+7MdN7LywsikQhv375V2T3T+yyqoqKiMHbsWEgkEpiYmEAkEmHTpk2Z2sXFxWHOnDmQSqUoXbo0DA0NUatWLcyfPx9JSUkFH5yIiKgIY7FPRESUS9OnT0dKSorQMQq9Bw8eYPv27dDW1oaLi8tX2z19+hRLly5F/fr1sXbtWhw6dAhdu3aFl5cX2rVrB4VCUYCpiYiIijZNoQMQEREVRc7OzggKCsKaNWswatQooeMUag4ODnjz5g0A4PLlywgICMiyXYUKFRAZGQkDA4OMYz/++CMMDAwwadIkhIWFoUWLFgWSmYiIqKjjyD4REVEu/Pjjj2jTpg18fHwQHx//zfYnTpzATz/9BGNjY+jr66N58+Y4efJkpnZHjhxB3bp1oaOjgwoVKmDhwoVZ9hcbG4sBAwbAzMwMhoaGaNu2LR49egSRSAQvLy+ltvfv30evXr1gYWEBHR0dVKtWDb/99ptSG7lcDl9fX1SpUgV6enowMTFB7dq1sWzZsu//oXyFWPx9bzcMDAyUCv10jRo1AgA8e/Ysz1mIiIiKC47sExER5dL8+fNRr149+Pv7w9vb+6vttm3bhr59+6JDhw7YvHkztLS08Pvvv6NNmzY4duwYfvrpJwDAyZMn0aFDBzRt2hQ7d+5EamoqFixYgOjoaKX+5HI5XF1dcfnyZXh5eaF+/fqIiIiAk5NTpnvfvn0bzZo1Q/ny5bFo0SKULl0ax44dw+jRo/H27VvMmjULALBgwQJ4eXlhxowZcHBwQEpKCu7evYvY2NiMvhQKBVJTU7/rZ6Opqbq3GKdOnQIA1KhRQ2V9EhERqTsW+0RERLlUp04d9OrVC4sXL8bw4cNRunTpTG0+ffqEMWPGoF27dti/f3/GcRcXF9SvXx/Tpk3DhQsXAKTtAWBpaYnjx49DV1cXANCmTRvY2toq9RkcHIxz585h9erVGDp0KADA0dER2tra8PDwUGo7fvx4GBkZ4dy5czA2Ns5o+/nzZ8ybNw+jR4+GqakpwsLCUKtWLaVZAW3atFHqKzQ0FK1atfqun83jx48z5c6NGzduYMGCBejUqRNq166d5/6IiIiKC07jJyIiygNfX1+kpKRg9uzZWZ4PDw9HTEwM+vXrB5lMlvEll8vh5OSES5cuISEhAQkJCbh06RI6d+6cUegDgJGREVxdXZX6DA0NBQB0795d6bibm5vS90lJSTh58iQ6deoEfX19pfu7uLggKSkJ58+fB5A2Vf769esYPnw4jh07hri4uEyvxd7eHpcuXfquLysrq5z/ML8QGRmJdu3aoVy5cli/fn2e+yMiIipOOLJPRESUB7a2thg+fDhWrlyJ8ePHZzqfPgW/a9euX+0jJiYGIpEIcrk8y9kBXx579+4dNDU1YWZmpnTc0tIyUzuZTIYVK1ZgxYoVWd47/RGBHh4eMDAwwLZt27BmzRpoaGjAwcEB8+fPR4MGDQAAhoaGqFu37ldfx3/ldRr/kydP0KpVK2hqauLkyZOZXisRERFlj8U+ERFRHs2YMQMbN27EtGnTMq0rL1myJABgxYoVaNKkSZbXW1paIiUlBSKRCK9evcp0/stj5ubmkMlkiImJUSqCv2xnamoKDQ0N9OnTByNGjMjy3hUqVACQVpyPHz8e48ePR2xsLE6cOIFp06ahTZs2ePbsGfT19QtsGv+TJ08glUqhUCgQEhICa2vrXPVDRERUnLHYJyIiyiNzc3NMmTIF06dPR0JCgtK55s2bw8TEBLdv38bIkSO/2oe2tjYaNWqEffv2wd/fP2Mqf3x8PAIDA5XaSiQSLFiwALt27cKwYcMyju/cuVOpnb6+Plq1aoVr166hdu3a0NbW/q7XY2Jigq5du+L58+cYO3YsIiMjUb169Yxp/N8jt9P4nz59CqlUitTUVISEhMDGxiZX/RARERV3LPaJiIhUYOzYsfjtt98QFBSkdNzQ0BArVqxAv379EBMTg65du8LCwgJv3rzB9evX8ebNG6xevRoA4OPjAycnJzg6OmLChAlITU3F/PnzYWBggJiYmIw+nZyc0Lx5c0yYMAFxcXGwt7dHREQEtmzZAkD5UXfLli1DixYt0LJlSwwbNgy2traIj4/HgwcPEBgYmLHTvaurK2rWrIkGDRqgVKlSePLkCZYuXQobGxvY2dkBSNs/IH1Kf07t2bMHAPDo0SMAwOXLl2FoaAjg3yUOr1+/RqtWrfDy5Uts2LABr1+/xuvXrzP6sLa25ig/ERHRdxIpFAqF0CGIiIiKisjISFSoUAH+/v6YOHGi0rl169Zh8ODBAIA3b95kTOEHgDNnzmDBggWIiIhAfHw8LCwsULduXbi7uyut5w8MDMSMGTNw9+5dlC5dGsOHD0diYiJmz56N//6T/f79e0yYMAH79+9HcnIymjdvDh8fHzRp0gTLli3D6NGjlTL7+Pjg2LFjeP36NUxMTGBnZwcXFxdMnz4dALB48WLs3bsX9+7dQ1xcHEqXLg1HR0d4enqqZHRdJBJ99Vz66woJCcl2mcCsWbOUnhZAREREX8din4iISE3s2LEDvXv3RlhYGJo1ayZ0HCIiIhIQi30iIqIiKCAgAM+fP0etWrUgFotx/vx5+Pv7o169ehmP5iMiIqLii2v2iYiIiiAjIyPs3LkTvr6+SEhIQJkyZeDu7g5fX1+hoxEREVEhwJF9IiIiIiIiIjUj/nYTIiIiIiIiIipKWOwTERERERERqRkW+0RERF8RGRkJkUgEkUiEnTt3Zjrv5eUFkUiEt2/fZhxzd3eHra2tUjtbW1u4u7vnc9q8E4lEBfZou3PnzmHgwIGwt7eHjo4ORCIRIiMjM7VLSEhAz549UaVKFRgZGcHAwAA1atTI2KuAiIiIssYN+oiIiL7D9OnT0aVLF2hpaeX42v3798PY2DgfUhVdJ0+exIkTJ1CvXj0YGxsjJCQky3YpKSlQKBQYP348KlSoALFYjDNnzsDb2xshISE4ceJEwQYnIiIqIljsExERfYOzszOCgoKwZs0ajBo1KsfX16tXLx9SFW2enp6YNWsWAGDhwoVfLfZNTEywa9cupWM///wzPn/+jAULFuDRo0eoWLFifsclIiIqcjiNn4iI6Bt+/PFHtGnTBj4+PoiPj8/x9VlN47916xZat24NfX19lCpVCiNGjMCRI0cgEomUCt/jx4+jQ4cOsLa2hq6uLipXrowhQ4YoLR0A/l1ScOvWLbi5uaFEiRKwtLTEr7/+ig8fPii1jYuLw6BBg2Bubg5DQ0M4OTnh3r17mXK/efMGgwcPRrly5aCjo4NSpUqhefPmKhlNF4vz9hakVKlSAABNTY5bEBERZYX/QhIREX2H+fPno169evD394e3t3ee+nr58iUkEgkMDAywevVqWFhYICAgACNHjszU9uHDh2jatCkGDhyIEiVKIDIyEosXL0aLFi1w8+bNTMsKunTpgh49emDAgAG4efMmPDw8AAAbN24EACgUCnTs2BHh4eGYOXMmGjZsiLCwMDg7O2e6d58+fXD16lXMmTMHP/zwA2JjY3H16lW8e/cuo41cLodcLv/maxaJRNDQ0MjRz+m/FAoFUlNT8enTJ4SHh2PRokVwc3ND+fLlc90nERGROmOxT0RE9B3q1KmDXr16YfHixRg+fDhKly6d676WLFmCmJgYnDlzBtWrVweQtlTAyckp0yZ1Q4cOzfhvhUKBZs2aQSqVwsbGBkFBQWjfvr1S+wEDBmDSpEkA0qa7P3jwABs3bsSGDRsgEolw7NgxnD59GsuWLcPo0aMBAI6OjtDW1sb06dOV+goLC8PAgQMxaNCgjGMdOnRQauPt7Y3Zs2d/8zXb2NhkuQHf99q1axfc3Nwyvu/fvz/Wrl2b6/6IiIjUHYt9IiKi7+Tr64s///wTs2fPxurVq3PdT2hoKGrWrJlR6Kdzc3PDsWPHlI69fv0aM2fOxJEjR/DixQulUfQ7d+5kKva//L527dpISkrC69evYWlpidOnTwMAevfurdSuV69emYr9Ro0aYdOmTTA3N8fPP/8Me3v7TDMJBg8ejHbt2n3zNevo6HyzTXbatGmDS5cuIT4+HhEREZg/fz7evXuH/fv353lJABERkTpisU9ERPSdbG1tMXz4cKxcuRLjx4/PdT/v3r1DhQoVMh23tLRU+l4ul6N169Z48eIFPD09UatWLRgYGEAul6NJkyZITEzM1Ie5ubnS9+lFdnrbd+/eQVNTM1O7rGYq7Nq1C76+vli/fj08PT1haGiITp06YcGCBRntS5cuDQsLi2++ZpFI9M022TE1NUWDBg0AAK1atUKlSpXQs2dPHDx4EJ06dcpT30REROqIH4UTERHlwIwZM6Cvr49p06blug9zc3NER0dnOv7q1Sul7//++29cv34d/v7+GDVqFKRSKRo2bJipUM/pvWUymdK6+6zuDQAlS5bE0qVLERkZiSdPnsDPzw/79u1T2mzQ29sbWlpa3/yqVKlSrjNnpVGjRgCQ5caCRERExJF9IiKiHDE3N8eUKVMwffp0JCQk5KoPiUSChQsX4vbt20pT+Xfu3KnULn00/Msp8L///nuu7gukjYovWLAA27dvz1izDwA7duzI9rry5ctj5MiROHnyJMLCwjKOF9Q0/i+lL0eoXLmySvslIiJSFyz2iYiIcmjs2LH47bffEBQUlOvrN27cCGdnZ3h7e8PS0hI7duzA3bt3Afz7WLqqVauiUqVKmDp1KhQKBczMzBAYGIjjx4/nOnvr1q3h4OCAyZMnIyEhAQ0aNEBYWBi2bt2q1O7Dhw9o1aoVevXqhapVq8LIyAiXLl1CcHAwOnfunNHOysoKVlZWOc7x5s0bhIaGAgBu3rwJAAgKCkKpUqVQqlQpSCQSAGkfbJw9exatW7dGuXLlkJCQgLNnz2LFihVo1qxZpg0DiYiIKA2LfSIiohzS19eHl5cXBg8enKvrraysEBoairFjx2Lo0KHQ19dHp06d4O3tjX79+sHExAQAoKWlhcDAQIwZMwZDhgyBpqYmfv75Z5w4cSLXj5wTi8U4dOgQxo8fjwULFiA5ORnNmzfH0aNHUbVq1Yx2urq6aNy4MbZu3YrIyEikpKSgfPnymDJlCiZPnpyre//XrVu30K1bN6Vjw4cPB5A28yEkJAQAUKtWLRw+fBgeHh54+/YtNDU1YWdnh2nTpmH8+PHQ1ORbGSIioqyIFAqFQugQRERElDYlPiAgAO/evYO2trbQcYiIiKgI48fhREREAvD29oaVlRUqVqyIjx8/4vDhw1i/fj1mzJjBQp+IiIjyjMU+ERGRALS0tODv74+oqCjIZDLY2dlh8eLFGDNmjNDRiIiISA1wGj8RERERERGRmhELHYCIiIiIiIiIVIvFPhERUTYiIyMhEokyvrS0tGBubo6GDRti3LhxuHXrltARC5VHjx6hc+fOMDExgaGhIRwdHXH16tXvulahUGD58uWoWrUqdHR0UKZMGQwbNgzv379Xanfv3j1MnDgR9vb2MDExgZmZGZo3b449e/bkx0siIiIqkljsExERfYdRo0YhIiICoaGh2Lp1Kzp27IhDhw6hTp068Pf3FzpeofDmzRu0bNkS9+7dw8aNG7F7924kJSVBKpXin3/++eb1EydOxLhx49ChQwccPnwYU6dOxY4dO+Do6IiUlJSMdv/73/9w5MgRdOnSBX/++Se2b98OOzs7dOvWDd7e3vn5EomIiIoMrtknIiLKRmRkJCpUqAB/f39MnDhR6VxiYiI6d+6M4OBgHD16FM7OzgWa7dOnT9DX1y/Qe2Zn8uTJWLp0Ke7fvw8bGxsAQFxcHCpVqoQff/wRu3bt+uq1z58/h42NDYYPH47ly5dnHA8ICECvXr2wdu1aDBo0CADw9u1bmJubQyQSKfXRrl07nD59GjExMdDR0cmHV0hERFR0cGSfiIgol/T09LBhw4aMnfX/69WrVxgyZAisra2hra2NChUqYPbs2ZDJZErtoqKi0LVrVxgZGcHExAS9e/fGpUuXIBKJsGnTpox27u7uMDQ0xM2bN9G6dWsYGRnhp59+AgAkJyfD19c3Y/p7qVKl0L9/f7x58yZT5l27dqFp06YwMDCAoaEh2rRpg2vXrqnk57F//378+OOPGYU+ABgbG6Nz584IDAzM9Nr/6/z580hNTYWLi4vS8Xbt2gEA9u7dm3GsZMmSmQp9AGjUqBE+ffqEmJiYvL4UIiKiIo/FPhERUR5YWVnB3t4e4eHhGcXsq1ev0KhRIxw7dgwzZ85EUFAQBgwYAD8/v4zRaQBISEhAq1atcPr0acyfPx+7d++GpaUlevTokeW9kpOT0b59e/z44484ePAgZs+eDblcjg4dOmDevHno1asXjhw5gnnz5uH48eOQSqVITEzMuH7u3Llwc3ND9erVsXv3bmzduhXx8fFo2bIlbt++ndFOoVBAJpN911e6xMREPHz4ELVr186Uu3bt2khMTMSjR4+++nNMTk4GgEwj8lpaWhCJRLhx40Z2/zcAAE6fPo1SpUrBwsLim22JiIjUnabQAYiIiIo6GxsbnD9/HjExMbCwsICXlxfev3+PW7duoXz58gCAn376CXp6epg4cSImTZqE6tWrY/PmzXjw4AGCgoLg5OQEAGjdujU+ffqE33//PdN9UlJSMHPmTPTv3z/j2M6dOxEcHIy9e/eic+fOGcfr1KmDhg0bYtOmTRg2bBiePXuGWbNmYeTIkUrT5B0dHWFnZ4fZs2dnTLPfvHmz0j2yk74a8P3791AoFDAzM8vUJv3Yu3fvvtpP9erVAQBhYWFo1apVxvHw8HAoFIpsrwWA9evXIyQkBMuWLYOGhsZ3ZSciIlJnLPaJiIjy6Mvtbw4fPoxWrVrByspKafTb2dkZEydORGhoKKpXr47Q0FAYGRllFPrp3Nzcsiz2AaBLly6Z7mViYgJXV1ele9WtWxelS5dGSEgIhg0bhmPHjkEmk6Fv375K7XR1dSGRSHD69OmMY66urrh06VLOfxBAltPrv+dcnTp14ODgAH9/f1SpUgWOjo64ffs2hg4dCg0NDYjFX5+MGBQUhBEjRqBr164YNWpUrnITERGpGxb7REREefTkyRPo6OhkjGBHR0cjMDAQWlpaWbZ/+/YtgLSRbktLy0znszoGAPr6+jA2NlY6Fh0djdjYWGhra2d7r+joaABAw4YNs2z332LazMwMJUqUyLLd15iamkIkEmU5Ap++hj6rUf//+vPPP+Hu7o7u3bsDALS1tTFu3DicOHECsbGxWV5z7NgxdO7cGY6Ojti+fXu2HygQEREVJyz2iYiI8uD58+e4cuUKJBIJNDXT/lktWbIkateujTlz5mR5jZWVFQDA3NwcFy9ezHT+1atXWV6XVSFbsmRJmJubIzg4OMtrjIyMMtoBwJ49e5Q20MtKbqbx6+npoXLlyrh582amNjdv3oSenh4qVqyYbV8WFhY4evQoXr9+jVevXsHGxgZ6enpYtWoVunbtmqn9sWPH0LFjR0gkEuzdu/erH3gQEREVRyz2iYiIcikxMREDBw6ETCbD5MmTM463a9cOR48eRaVKlWBqavrV6yUSCXbv3o2goCClx/bt3LnzuzO0a9cOO3fuRGpqKho3bvzVdm3atIGmpiYePnyYaSnAl3I7jb9Tp05YunQpnj17hnLlygEA4uPjsW/fPrRv3z7jw5BvsbCwyNhkb/ny5UhISMDIkSOV2vzvf/9Dx44d0aJFCxw4cICP2iMiIvqCSPHlQkMiIiLKEBkZiQoVKmDUqFHo1asX5HI5Pnz4gGvXrmHjxo148uQJ5s+fj/Hjx2dc8/LlSzRt2hR6enoYPXo0qlSpgqSkJERGRuLo0aNYs2YNrK2tkZCQgLp16yImJga+vr6oXLkygoKCsH//fkRGRmLz5s3o27cvgLRH7+3ZswcfP35UypeamgpXV1dcuHABY8aMQaNGjaClpYWoqCicPn0aHTp0QKdOnQAAfn5+mDlzJgYMGAAnJyeYmpoiOjoaFy9ehIGBAWbPnp2nn9WbN29Qp04dlCxZEt7e3tDR0cG8efNw7do1XLx4EVWrVs1oW7lyZQDAgwcPMo6tW7cOAFCpUiXExsYiKCgIGzZswNy5czF16tSMdufOnUPr1q1haWmJjRs3Qk9PTylH9erVMy13ICIiKm44sk9ERPQdVqxYgRUrVkBDQwPGxsaoWLEiXF1dMWjQoIyd5NOVKVMGly9fho+PD/z9/REVFQUjIyNUqFAho8gGAAMDA5w6dQpjx47F5MmTIRKJ0Lp1a6xatQouLi4wMTH5Zi4NDQ0cOnQIy5Ytw9atW+Hn5wdNTU1YW1tDIpGgVq1aGW09PDxQvXp1LFu2DAEBAfj8+TNKly6Nhg0bYujQoXn+GZUqVQpnz57FxIkT0a9fP8hkMjRt2hQhISFKhT4ApU0C0ykUCixduhRPnjyBWCxGvXr1sH//fnTo0EGp3YkTJ5CYmIjIyEj8+OOPmfo5ffo0pFJpnl8PERFRUcaRfSIiokJm7ty5mDFjBp4+fQpra2uh4xAREVERxJF9IiIiAa1cuRIAULVqVaSkpODUqVNYvnw5fvnlFxb6RERElGss9omIiASkr6+PJUuWIDIyEp8/f0b58uUxZcoUzJgxQ+hoREREVIRxGj8RERERERGRmhELHYCIiIiIiIiIVIvFPhEREREREZGaYbFPREREREREpGZY7BMRERERERGpGRb7RERERERERGqGxT4RERERERGRmmGxT0RERERERKRmWOwTERERERERqRkW+0RERERERERqhsU+ERERERERkZphsU9ERERERESkZljsExEREREREakZFvtEREREREREaobFPhEREREREZGaYbFPREREREREpGZY7BMRERERERGpGRb7RERERERERGqGxT4RERERERGRmmGxT0RERERERKRmWOwTERERERERqRkW+0RERERERERqhsU+ERERERERkZphsU9ERERERESkZljsExEREREREakZFvtEREREREREaobFPhEREREREZGaYbFPREREREREpGZY7BMRERERERGpGRb7RERERERERGqGxT4RERERERGRmmGxT0RERERERKRmWOwTERERERERqRkW+0RERERERERqhsU+ERERERERkZphsU9ERERERESkZljsExEREREREakZFvtEREREREREaobFPhEREREREZGaYbFPREREREREpGZY7BMRERERERGpGRb7RERERERERGqGxT4RERERERGRmmGxT0RERERERKRmWOwTERERERERqRkW+0RERERERERqhsU+ERERERERkZphsU9ERERERESkZljsExEREREREakZFvtEREREREREaobFPhEREREREZGaYbFPREREREREpGZY7BMRERERERGpGRb7RERERERERGqGxT4RERERERGRmmGxT0RERERERKRmWOwTERERERERqRkW+0RERERERERqhsU+ERERERERkZphsU9ERERERESkZljsExEREREREakZFvtEREREREREaobFPhEREREREZGaYbFPREREREREpGZY7BMRERERERGpGRb7RERERERERGqGxT4RERERERGRmmGxT0RERERERKRmWOwTERERERERqRkW+0RERERERERqhsU+ERERERERkZphsU9ERERERESkZljsExEREREREakZFvtEREREREREaobFPhEREREREZGaYbFPREREREREpGZY7BMRERERERGpGRb7RERERERERGqGxT4RERERERGRmmGxT0RERERERKRmNIUOQERERJRJqhx4nwQkpwLaGoCpLqDBMQoiIqLvxWKfiIiICoeEZOB8FHDlJRAVB8jk/57TFAPWxoB9GaCJNWCgLVxOIiKiIkCkUCgUQocgIiKiYixVDhx7CATdB+QKILt3JiIAYhHgbAe0qcTRfiIioq9gsU9ERETCiUkEVl0CXsTn/ForI2B4Q8BMT/W5iIiIijh+HE5ERFTMbNq0CSKRCJGRkQAAd3d32NraFnyQmETAPwx49REAID04FdKDU7//+lcf066PScx1hJCQEIhEoiy/zp8/r9TW3d09y3ZVq1bN9f2JiIjyC9fsExERFXOenp4YM2ZMwd40VZ42oh+fnDZ1H8CqlsNz1odckXb9qkuAR4s8TemfO3cuWrVqpXSsZs2amdrp6enh1KlTmY4REREVNiz2iYiIirlKlSoV/E2PPcw0db+6Wfmc9yNXpPVz7CHgYpfrOHZ2dmjSpMk324nF4u9qR0REJDRO4yciIirmsprGHxsbiwEDBsDMzAyGhoZo27YtHj16BJFIBC8vrxz1n5ycDF9fX1StWhU6OjooVbIU+k8YjjeJH5TafTmNPzIuGqLV7eB/bS/mX9sD222/Qm9tZ0gPTsW92OdISZVh6vlNsNrcFyU61UUn1w54/fp1bn8MREREaoXFPhERESmRy+VwdXXFjh07MGXKFOzfvx+NGzeGk5NTrvrq0KED5s2bh169euHIkSOY5z4Bx59dg/SgBxJln7/Zx2+3jiDs5W381nIY1ktH4e77KLge9caAkGV4k/gBG1uNwYKm/XHi5EkMHDgwNy8ZI0aMgKamJoyNjdGmTRucO3cuy3aJiYkoXbo0NDQ0YG1tjZEjRyImJiZX9yQiIspPnMZPRERESoKDg3Hu3DmsXr0aQ4cOBQA4OjpCW1sbHh4eOepr9+7dCA4Oxt69e9G5c+e0g1f1UMdJFw33jsOmuycxrKZLtn2YaBvggPMMiEVpYxRvk+IwNmwdqppa46CzZ0a7u6lvsDRwN+Li4mBsbPxd+UqUKIExY8ZAKpXC3NwcDx48gL+/P6RSKY4cOYI2bdpktK1Tpw7q1KmTsZY/NDQUS5YswcmTJ3Hp0iUYGhrm5EdDRESUr1jsExERkZLQ0FAAQPfu3ZWOu7m55bjYP3z4MExMTODq6gqZTJa2Md/T96hbsiJK65si5MXNbxb7LuUbZBT6AFDNtBwAoK1NQ6V21bQsAQBPnz7NcnO9rNSrVw/16tXL+L5ly5bo1KkTatWqhcmTJysV++PGjVO61tHREfXq1UPXrl2xbt26TOeJiIiExGKfiIiIlLx79w6ampowMzNTOm5paZnjvqKjoxEbGwttbe0sz79N+pDl8f8y0zVS+l5bnPb2xUxHeSRdGxoAgKSkpBzn/C8TExO0a9cOa9asQWJiYra77Xfq1AkGBgaZHtNHREQkNBb7REREpMTc3BwymQwxMTFKBf+rV69y1ZepqSnmzZuHly9fIikqBl3eV8g4b6RVOB9bp1CkPQ5QJBJ9V1uxmNsgERFR4cJin4iIiJRIJBIsWLAAu3btwrBhwzKO79y5M1PbT58+4cmTJ3jy5AmePn2a8d/pX1FRUVAoFBgyZAgAwN6mGvxc/AvsteTG+/fvcfjwYdStWxe6urrZtt2zZw8+ffrEx/EREVGhw2KfiIiIlDg5OaF58+aYMGECXr16hdKlS+PMmTM4ceIEgLRN9w4fPownT57g7du3GdeJxWKULVsWNjY2sLGxgYODA8qVK4eNGzfi3r17GDlyJFo0bYaT668j6sMbnH5xAx1sG6NTxWaqCa7x7VH4L/Xq1Qvly5dHgwYNULJkSdy/fx+LFi1CdHQ0Nm3alNHuyZMn6NWrF3r27InKlStDJBIhNDQUS5cuRY0aNXL9FAAiIqL8wmKfiIiomEpNTUVUVBRev36NhIQE+Pn5ZYzIv337FikpKfD29s5on77uXi6Xo169eujYsWNGYW9jYwMrKytoaWllus/AgQOxbNkybN26FYsWLYKmXARrfXNIrGqilrmtUlsRcl6wZzDN+ZKA2rVrY9euXVizZg0+fvwIMzMztGjRAlu3bkXDhv9uAGhsbAxLS0ssXrwY0dHRSE1NhY2NDUaPHo1p06bBwMAg97mJiIjygUiRviiNiIiI1EpSUhKePn2a5fT69Cn2Mpkso72pqSlsbGxQvnx5pSI+/ev48eP45ZdfEBYWhmbN8jAaf/IRsO8O8MU7kHp/jkYl49LY02ZazvsUAehcDfipYu5zERERqRGO7BMRERVRsbGx2a6Xj46OzmgrEolQpkyZjMK9SZMmmYp6I6N/d70PCAjA8+fPYWRkhNjYWAQHB8Pf3x8ODg55K/QBoIk1cOAukJpW7d+LfY6zL2/h5rtI/GInzV2fYhHQtFzechEREakRFvtERESFkFwuR3R0tFLx/mVBHxcXl9FeW1sb5cqVg42NDWrUqAEXF5eMIr58+fIoV67cVx9/lxUjIyPs3LkTvr6+SEhIQJkyZeDu7g5fX9+MNv+dFZAVsVic9S71BtqAsx1w+B4AwO/qnwh8chF9q/yI4TXbfndGJc52gP6/Swjkcjnkcnm2l2hq8m0QERGpL07jJyIiEkBycjKioqIyjcanF/RPnz5FcnJyRnsjI6Msp9anf1laWhbo498iIyNRoUKFbNvMmjULXl5eWZ9MlQN+54BXHwF5Ht6KiEVAaUPAowWg8e/r9/LywuzZs7O99PHjx7C1tc39vYmIiAoxFvtERET5ID4+/qtr5Z88eYKXL1/iv/8EW1paZrte3sTERLgXk4Xk5GTcuHEj2zZWVlawsrL6eoOYRMA/DIhPzl3BLxYBxjrAxGaAmfLmfC9evMCLFy+yvbx27do5mu1ARERUlLDYJyIiyiGFQoE3b95ku17+/fv3Ge01NTVhbW2tVLz/t6gvV64c9PRyvpO8WohJBFZdAl7E5/xaKyNgeMNMhT4RERGx2CciIspEJpPh+fPnX10v//TpUyQmJma019fXz3I0Pr2gt7KygoaGhoCvqJBLlQPHHgJB99NG+LN7ZyICUqHAolsH8dOCwbBv1DCbxkRERMUXi30iIip2Pn36lOVofPqx58+fIzU1NaN9yZIlvzq93sbGBmZmZhCJ8vB8eEqTkAycjwKuvASi4gDZfzbY0xQD1saAfRksvbAX46ZPhoaGBhYvXoxRo0bx509ERPQFFvtEREJKlQPvk4DkVEBbAzDVVdpkjHJOoVAgJiYm2/Xyb9++zWgvFotRtmzZr66XL1++PAwMDAR8RcWUXJE2xT/9z4aZXtoafQA7duxA7969M5q2bt0aW7ZsgaWlpVBpiYiICh0W+0REBe07Ry/RxDrtEWWkJDU1FS9fvvxqMf/06VN8/Pgxo72urq5SEf9lQV+2bFloaWllc0cqbPbs2YNu3bplfK+hoYESJUpg27ZtcHZ2FjAZERFR4cFin4iooORwXTLEorRnh7epVKxG+z9//qz0+Lkvi/moqCikpKRktDcxMfnqWnkbGxtYWFhwireaOXjwIDp27JjpeMmSJREdHV2gjyAkIiIqrDSFDkBEVCzkdMdxBYBUBXD4HnD1pVrtOP7hw4evbnz35MkTvHr1Sql9mTJlMgr3Ro0aZSrojY2NBXolJJSsHpfXunVrzJ8/n4U+ERHR/+PIPhGprU2bNqF///54/PgxbG1t4e7ujpCQEERGRhZskC+eJS49OBUAENJh3vddLxYBRtrApOYqK/jXr1+PQYMGwcDAQGnKOwAsX74cO3bswIMHDxAfHw9LS0s0a9YMnp6eqFGjRrb9yuVyvH79+qsb3z158gQfPnzIaK+lpYVy5cp9deM7a2tr6OjoqOQ1k/o4efIkfv75ZwCAtbU1oqOj8fDhQ5QrV07gZERERIUHi30iUltfFvsPHz5EXFwc6tWrV3AhUuWA3zng1ce0qfsAbsc8BQBUNyv//f2IRUBpQ8CjRZ6n9D9//hw1atSAgYEBPnz4kKnYnzVrFsRiMerUqQNTU1M8evQI8+bNw/Pnz3H+/HkYGBh8da3806dP8fnz54y+jIyMvrrxnY2NDUqXLs2RWMqxd+/eYcSIEejTpw9atmyJSpUqoWPHjli3bp3Q0YiIiAoNFvtEpLa+LPYFcfR+2lR8VWn3A+Bil+nw48ePMXXqVPzyyy9wdXXNtgtXV1eIRCKYmZlhz549SsX+x48fs1wnf+fOHfz111+Z+rKwsPjqxnc2NjYwMTHhennKd0uWLMGkSZNw69YtVKlSReg4REREhQKHU4io2HB3d89U9MfGxmLAgAEwMzODoaEh2rZti0ePHkEkEsHLyytH/ScnJ8PX1xdVq1aFjo4OSpUshf4ThuNN4geldtKDUzOm8gNAZFw0RKvbwf/aXsy/tge2236F3trOkB6cinuxz5GSKsPU85tgtbkvSnSqi06uHfD69WsAadPmV65cierVq2P37t3Yv3//V/MpFAqsWrUKp0+fhqurK27fvo3k5GR06tQJ9evXh7m5OYyMjFCjRg24uLhg5MiRCAgIwPPnz2Fnl/YBQ/v27XHs2DHcvXsXnz59QnR0NC5evIg///wTixYtwujRo9GhQwfUrVsXpqamLPSpQAwbNgxWVlbw9PQUOgoREVGhwQ36iKjYksvlcHV1xeXLl+Hl5YX69esjIiICTk5OueqrQ4cOOHv2LCZPnoxmzZrhSfBlzFqzENLoe7jcdQn0NLNfe/7brSOobWaL31oOQ+znj5gQvgGuR73R2PIHaIk1sbHVGDz5+BoTT27CwIEDsXjxYri7uyMsLCyjjzt37uDs2bNf3ck+MTERADB48GBoaGhALpcjMTERDRs2RNeuXZVG6NOfWZ4+a8DCwgIrV67kumgqdHR1deHl5YUBAwbg6tWrqF+/vtCRiIiIBMdin4iKreDgYJw7dw6rV6/G0KFDAQCOjo7Q1taGh4dHjvravXs3goODsXfvXnTu3Dnt4FU91HHSRcO947Dp7kkMq+mSbR8m2gY44DwDYlHapKu3SXEYG7YOVU2tcdD53xHLu6lvsDRwN44cOYIvV2KdP38eDg4OAAAzM7OM6fRt2rTB6dOn8fnzZ2zduhW2traYNGkS9uzZg+Dg4Czz6OrqZqy//+GHHxASEsJCnwqtvn37wt/fH9OmTfvq7zQREVFxwmn8RFRshYaGAgC6d++udNzNzS3HfR0+fBgmJiZwdXWFTCaD7HMyZE/fo27Jiiitb4qQFze/2YdL+QYZhT4AVDNNK6zb2jRUaldVK23EXS6XZyr2NTQ0cPPmTcTHx+Pdu3e4evUq9u/fj5YtW+Lu3bvYt28fGjZsiFKlSn0zT3h4OCIiIrBt2zYYGRmhVatWuHXr1jevIxKCpqYmfH19cezYMYSEhAgdh4iISHAc2SeiYuvdu3fQ1NSEmZmZ0vH06es5ER0djdjY2Cyf/w0Ab5M+ZHn8v8x0jZS+1xan/RVtpmOodFwHGgCAefPmISwsDEFBQUhNTQUApKamwtzcHIaG/17z8eNHjBgxAqNGjYKVlRViY2MBpO0xAKTtW6ClpQUDAwOl+6RPhW7SpAnat2+PypUrY9q0aTh48OA3XwuREDp37owGDRrAw8MD4eHh3DOCiIiKNRb7RFRsmZubQyaTISYmRqngf/XqVY77KlmyJMzNzf+dPvwmAdhwLeO8kZZenvN+6aeffsKUKVMQExODP//8E5s3b8bly5czjfa/ffsW0dHRWLRoERYtWpSpH1NTU3To0AEHDhz46r2MjIxQtWpV3LunwicLEKmYSCSCn58fHB0dERgYiPbt2wsdiYiISDCcxk9ExZZEIgEA7Nq1S+n4zp07c9xXu3bt8O7dO6SmpqJBgwZo0LAhGljYZXxVMbVWSeasmJmZYciQIQgPD0dSUhKsrKyUzpcuXRqnT5/O9NWmTRvo6uri9OnT8PX1zfYeb9++xc2bN1G5cuV8ex1EqvDzzz/jxx9/xLRp0zJmvBARERVHHNknomLLyckJzZs3x4QJExAXFwd7e3tERERgy5YtAACx+Ps/D+3Zsye2b98OFxcXjBkzBo3sG0Dr5Q1EfXiD0y9uoINtY3Sq2Ew1wTW+PjU5q8y6urqQSqWZjm/atAkaGhpK5z58+ABHR0f06tULdnZ20NPTw71797Bs2TJ8/vwZs2bNUsUrIMpXc+fORZMmTbBjxw706dNH6DhERESCYLFPRMWWWCxGYGAgJkyYgHnz5iE5ORnNmzfHtm3b0KRJE5iYmHx3XxoaGjh06BCWLVuGrVu3ws/PD5pyEaz1zSGxqola5rZK7UXIw1piU9UvCUinq6uLOnXqYO3atXj27BmSkpJQunRpSKVS7N27F9WrV8+3exOpSuPGjdGpUyfMnDkTPXr0+OpeGkREROpMpPhycScRUTG3Y8cO9O7dG2FhYWjWLA+j8ScfAfvuAF/8LVvvz9GoZFwae9pMy3mfIgCdqwE/Vcx9LqJi4Pbt26hVqxaWLVuGkSNHCh2HiIiowHFkn4iKtYCAADx//hy1atWCWCzG+fPn4e/vDwcHh7wV+gDQxBo4cBdITav278U+x9mXt3DzXSR+sZPmrk+xCGjKZ90TfUv16tXRp08f+Pr6wt3dXekJFURERMUBN+gjomLNyMgIO3fuRI8ePeDi4oJ169bB3d0dgYGBGW1kMlm2X3K5POvODbQBZ7uMb/2u/okp5zehb5UfMbxm29wFdrYD9LUyvpXL5d/MR1RceXl54f3791i2bJnQUYiIiAocp/ETEWUjMjISFSpUyLbNrFmz4OXllfXJVDngdw549RGQ5+GvW7EIKG0IeLQANP79nNbLywuzZ8/O9tLHjx/D1tY29/cmKsLGjBmDzZs349GjR0qP2CQiIlJ3LPaJiLKRnJyMGzduZNvGysoq0+PulMQkAv5hQHxy7gp+sQgw1gEmNgPMlDfne/HiBV68eJHt5bVr1+YGZVRsvX79GhUrVsSIESMwf/58oeMQEREVGBb7REQFISYRWHUJeBGf82utjIDhDTMV+kT0fWbOnAl/f388ePAAZcuWFToOERFRgWCxT0RUUFLlwLGHQND9tBH+7P72FSFtRN/ZDmhTSWnqPhHlzIcPH1CxYkV069YNa9asEToOERFRgWCxT0RU0BKSgfNRwJWXQFQcIPt3g79UkQJ3Pj5H1d4/QrOFrdJmfESUewsXLsTUqVNx584d2NnZffsCIiKiIo7FPhGRkOSKtCn+yamAtgYce7THiVMn0bNnT+zYsQMikUjohERqITExEXZ2dmjZsiUCAgKEjkNERJTvOC+UiEhIYhFQUj9tXX5JfTx+EgkA2LlzJzcTI1IhPT09zJo1Czt37sRff/0ldBwiIqJ8x5F9IqJC4sOHDzA1NcV//1r+888/0bVrVwFTEakPmUyG6tWrw87ODkeOHBE6DhERUb7iyD4RUSFx8eJFpUJfJBKhd+/euHDhgoCpiNSHpqYmfH19cfToUZw9e1boOERERPmKxT4RUSERHh4ODQ2NjO8VCgWSk5Ph7u4uXCgiNdO1a1fUq1cPHh4e4ORGIiJSZyz2iYgKifDwcKSmpmZ8X7p0aQwbNoyPCiNSIbFYjLlz5yIsLAxHjx4VOg4REVG+4Zp9IqJCYs2aNfj7778hkUgwadIkuLq6YsWKFULHIlI7CoUCrVq1wvv373Ht2jWIxRz7ICIi9cNin4ioEBo4cCAuXLiAmzdvCh2FSC1FRESgWbNm2L59O3r16iV0HCIiIpXjR9lERIWQVCrF33//jbdv3wodhUgtNW3aFK6urvD09ERycrLQcYiIiFSOxT4RUSEkkUgAAGfOnBE4CZH6mjNnDh4/fowNGzYIHYWIiEjlWOwTERVC5cqVQ8WKFRESEiJ0FCK1VatWLfTu3Rs+Pj749OmT0HGIiIhUisU+EVEhJZFIEBoaKnQMIrU2e/ZsvH37lpthEhGR2mGxT0RUSEmlUty4cQPv3r0TOgqR2qpYsSIGDx6MefPm4f3790LHISIiUhkW+0REhVT6uv2zZ88KnIRIvc2YMQPJycnw9/cXOgoREZHKsNgnIiqkbGxsYGtry3X7RPmsdOnSGDt2LJYtW4aXL18KHYeIiEglWOwTERViUqmU6/aJCsCkSZOgo6MDX19foaMQERGpBIt9IqJCTCKR4Pr161xLTJTPTExMMGXKFKxduxaPHj0SOg4REVGesdgnIirEpFIpFAoF1+0TFYBRo0ahVKlSmDVrltBRiIiI8ozFPhFRIWZra4vy5ctz3T5RAdDX18fMmTOxfft23Lx5U+g4REREeSJSKBQKoUMQEdHX9evXDzdv3sTVq1eFjkKk9lJSUlCtWjVUr14dhw4dEjoOERFRrnFkn4iokJNIJPjrr78QGxsrdBQitaelpQUfHx8EBgYiLCxM6DhERES5xpF9IqJC7tGjR6hUqRIOHToEV1dXoeMQqT25XI769eujRIkSCAkJgUgkEjoSERFRjnFkn4iokKtQoQKsra35CD6iAiIWizFnzhycOXMGx44dEzoOFQepcuDtJ+BFfNr/psqFTkREaoAj+0RERUCfPn1w584dXL58WegoRMWCQqGAg4MDPn78iCtXrkAs5vgIqVhCMnA+CrjyEoiKA2T/KfA1xYC1MWBfBmhiDRhoC5eTiIosFvtEREXAhg0bMHjwYMTExKBEiRJCxyEqFs6dO4eWLVti586d6NGjh9BxSF2kyoFjD4Gg+4BcAWT3TlwEQCwCnO2ANpUADX7oRETfj8U+EVER8ODBA9jZ2eHw4cNo27at0HGIio22bdvi/v37uHXrFrS0tISOQ0VdTCKw6lLadP2csjIChjcEzPRUn4uI1BI/HiQiKgIqVaqEsmXLIiQkROgoRMXK3Llzcf/+ffzxxx9CR6GiLiYR8A8DXn3M3fWvPqZdH5Oo2lxEpLZY7BMRFQEikQgSiYSb9BEVsDp16sDNzQ2zZ89GYiKLrKJq06ZNEIlEiIyMBAC4u7vD1tY23+4nEong5eX174FUedqIfnxy2tT93JAr0q5fdSnXG/jt27cPbm5uqFy5MvT09GBra4vevXvj/v37mdpOnz4d9erVg5mZGXR1dVGxYkUMHjwYT548yV1+IipwLPaJiIoIqVSKK1euIC4uTugoRMWKt7c3Xr9+jd9++03oKKQinp6e2L9/f771HxERgYEDB/574NjDtKn7uS3008kVaf0ce5iry+fPn49Pnz5h+vTpCA4Ohq+vL65du4b69evj1q1bSm1jY2Ph5uaGzZs3Izg4GBMnTsThw4fRuHFjvHv3Lm+vg4gKBNfsExEVEffu3UOVKlVw9OhRODs7Cx2HqFgZNmwYdu/ejUePHnGTzCJo06ZN6N+/Px4/fpyvI/pZSkgGpp4AUlX4lltDBMz7Oce79L9+/RoWFhZKx168eAFbW1v07dsX69evz/b6oKAguLi4YMOGDfj1119zHJuIChZH9omIigg7OzuUKVOG6/aJBODp6YnExEQsXLhQ6CikAllN44+NjcWAAQNgZmYGQ0NDtG3bFo8ePco8Jf87KF1zPgqbbh+HaHU7nIq6jkEhy2G+0Q3G67uh78lFSEhJwqtP79H9f/NgsqEHymzug4nhG5CSKlPq83NqCrwvB6BawFDoru4I8zKWaNWqFcLDw78715eFPgBYWVnB2toaz549++b1pUqVAgBoamp+9z2JSDj8k0pEVESIRCJIpVKu2ycSgJWVFUaNGoUlS5Zg5MiRsLS0FDoSqZBcLoerqysuX74MLy8v1K9fHxEREXBycsp751deZjxeb2DIcnSu2Aw7HSfj2tuHmHZhC2RyOf6JjULnis0wuLoTTkT9hfnX9sDKwAzj63QCAMjkqXA+PAtnX93C2Fod8GPZ2pCV0sX5snF4+vQpmjVrlut4jx49wpMnT9CxY8csz8tkMqSkpODu3bsYO3YsfvjhB3Tu3DnX9yOigsNin4ioCJFIJNi9ezfi4+NhZGQkdByiYmXKlCn4/fffMWfOHCxfvlzoOKRCwcHBOHfuHFavXo2hQ4cCABwdHaGtrQ0PD4/cd5wqB6L+3WelnW0jLGw2IK3/cvUQEX0XAQ9CsbjZQIyr0xEA8LN1XRx7dhXb74VkFPsB90Nx+sUNrJOMwsDqbdI60xTD1ccJEItyHU8mk2HAgAEwNDTEuHHjMp1/9eoVypQpk/F948aNcfr0aRgaGub6nkRUcDiNn4ioCJFKpUhNTc3RtE0iUg0zMzNMnjwZa9asydjVndRD+oyp7t27Kx13c3PLW8fvkwDZvzvnt7NpqHS6mkk5AEDbLI4/+fgm4/ugp1egq6GNX6s5/ttIJs/TY/gUCgUGDBiAs2fPYsuWLShXrlymNiVLlsSlS5dw7tw5rFu3DjExMWjVqhVevnyZ6/sSUcFhsU9EVIT88MMPsLS05Lp9IoGMGTMGZmZmOV7DTYXbu3fvoKmpCTMzM6XjeV6ukZyq9K2ZjvKMLG0Nzf8/bpjpeJIsOeP7N0kfYGVgBrHoi7fuX/T/vRQKBQYOHIht27Zh06ZN6NChQ5btNDU10aBBAzRv3hwDBw7EqVOn8OjRI8ybNy9X9yWigsVin4ioCElft89in0gYBgYG8PT0xJYtWzI9qoyKLnNzc8hkMsTExCgdf/XqVd461tbI2/X/r5RuCbxIiIFcIVc+kYv+0wv9P/74A+vXr8cvv/zy3ddaW1vDysoK9+7dy/F9iajgsdgnIipiJBIJLl++jI8fPwodhahYGjRoEGxtbTFjxgyho5CKSCQSAMCuXbuUju/cuTNvHZvqApp5f7vtXN4eSanJ2HT3xL8HNcWAmV6O+lEoFBg0aBD++OMP/P777+jfv3+Orn/w4AGioqJQuXLlHF1HRMLgBn1EREWMVCqFTCZDeHg4WrduLXQcomJHW1sb3t7e6NOnDy5cuIDGjRsLHYnyyMnJCc2bN8eECRMQFxcHe3t7REREYMuWLQAAsTiXBbuGGLA2Bv7OWz43Own+uHsCQ8+swj+xz9GqbG3ILfRxYfZ5VKtWDT179vyufkaPHo0NGzbg119/Ra1atXD+/PmMczo6OqhXrx4A4MaNGxg3bhy6du2KihUrQiwW4+bNm1iyZAnMzc0xceLEvL0gIioQLPaJiIqYqlWrwsLCAqGhoSz2iQTi5uaG+fPnw8PDAydPnoRIlPsd0Ul4YrEYgYGBmDBhAubNm4fk5GQ0b94c27ZtQ5MmTWBiYpLjPjN+J+zLAMfylk9TrIGjbb3gd/VPBDwIxdIbB2FkaIQ6Derl6PGAgYGBAICNGzdi48aNSudsbGwyNp60tLSElZUVFi1ahJcvX0Imk8Ha2hrt2rXDtGnTstzMj4gKH5FCoVAIHYKIiHKme/fueP78OcLCwoSOQlRsHTp0CB06dMD//vc/ODo6fvsCKnJ27NiB3r17Iyws7LufZf/hwweYmJhgxYoVGDlyJJCQDEw9AaSq8C23hgiY7wjoa6muTyJSOxzZJyIqgqRSKcaOHYuEhAQYGBgIHYeoWHJ1dUXTpk3h4eGBn3/+maP7RVxAQACeP3+OWrVqQSwW4/z58/D394eDg8N3F/rnz5/PWPfftGnTtIMG2oCzHXBYhZvaOdux0Ceib+IGfURERZBEIkFKSgoiIiKEjkJUbIlEIvj5+eHKlSvYu3ev0HEoj4yMjLBz50706NEDLi4uWLduHdzd3TOmvgOATCbL9qtXr17Yt28fFi1aBHt7+387b1MJsDICxHn8QEgsSuunTSWlw3K5/JvZiKj44TR+IqIiSKFQwMLCAkOGDIGvr6/QcYiKNScnJ0RGRuLvv/+GpiYnTaqryMhIVKhQIds2s2bNgpeXV9YnYxIB/zAgPhmQ5/ztt0yeCpm+BnRn/JhpF353d3ds3rw52+v5lp+o+GGxT0RURHXt2hXR0dE4e/as0FGIirWrV6/C3t4+Y5dzUk/Jycm4ceNGtm2srKxgZWX19QYxicCqS8CL+BzdWwEgMvktXAJnYUfw/oxd89NFRkbi7du32fbRoEGDHN2TiIo+FvtEREXUypUrMX78eMTGxkJfX1/oOETFWo8ePRAeHo779+9DV1dX6DhUmKXKgWMPgaD7aSP82b0TFyFt6r6zHT42t0Srn39CVFQUwsPDvznLgIiIxT4RURF18+ZN1K5dGydPnsSPP/4odByiYu3evXuoXr06/P39MW7cOKHjUFGQkAycjwKuvASi4gCZ/N9zmmLA2jjtsX1Ny2Vsxvf69Ws0a9YMGhoaCAsLQ8mSJQUKT0RFAYt9IqIiSi6Xw8LCAsOHD4e3t7fQcYiKvcGDB2Pfvn149OgRjI2NhY5DRYlckTbFPzkV0NZIW5P/lc38Hj58iKZNm6JSpUo4efIkZ3YR0VdxN34ioiJKLBZDIpEgNDRU6ChEBGDmzJn4+PEjFi9eLHQUKmrEIqCkftpO+yX1s921v1KlSjh69Chu3ryJnj17cqd9IvoqFvtEREWYRCLB+fPnkZiYKHQUomLP2toaI0eOxKJFi/DmzRuh45Aaa9CgAf78808cPXoUw4cP5077RJQlFvtEREWYVCpFcnIyLly4IHQUIgLg4eEBsViMuXPnCh2F1JyzszPWr1+PdevW8RGsRJQlFvtEREVYzZo1YWZmhpCQEKGjEBEAc3NzTJw4EatWrcLTp0+FjkNqzt3dHb6+vpg5cyY2bNggdBwiKmS4QR8RURHXqVMnvH//ngU/USERHx+PSpUqwdXVlQUY5TuFQoHhw4dj3bp1OHjwINq2bSt0JCIqJDiyT0RUxKWv209KShI6ChEBMDIywowZM7Bp0ybcuXNH6Dik5kQiEVauXAlXV1d0794dFy9eFDoSERUSHNknIiri/vrrL9SrVw8hISGQSCRCxyEiAJ8/f0aVKlXQoEED7NmzR+g4VAwkJibi559/xr179xAeHg47OzuhIxGRwDiyT0RUxNWqVQsmJiZ8BB9RIaKjowMvLy/s3bsXly5dEjoOFQN6eno4dOgQSpYsiTZt2iA6OlroSEQkMI7sExGpgQ4dOiA+Ph6nTp0SOgoR/b/U1FTUrl0bVlZWOH78uNBxqJh48uQJmjZtijJlyiAkJARGRkZCRyIigXBkn4hIDUilUkRERODz589CRyGi/6ehoQFfX1+cOHGCH8RRgbGxsUFQUBDu37+Pbt26ISUlRehIRCQQjuwTEamBq1evwt7eHmfOnEHLli2FjkNE/0+hUKBJkyYAgPPnz0MkEgmciIqLU6dOwcnJCW5ubti0aRN/94iKIY7sExGpgTp16qBEiRJ8/B5RISMSieDn54eLFy/iwIEDQsehYuTHH3/E5s2bsWXLFkyfPl3oOEQkAI7sExGpCVdXVyQmJuLEiRNCRyGiLzg6OuLFixe4ceMGNDQ0hI5DxciiRYswceJErFy5EiNGjBA6DhEVII7sExGpCalUivDwcCQnJwsdhYi+MHfuXNy+fRvbtm0TOgoVMxMmTMC4ceMwatQo7Nu3T+g4RFSAOLJPRKQmLl++jIYNG+LcuXNo3ry50HGI6Atdu3bFpUuXcO/ePejo6Agdh4oRuVwONzc3HDx4ECdOnECLFi2EjkREBYAj+0REaqJu3bowNjbmun2iQsrHxwdRUVH4/fffhY5CxYxYLMaWLVvQtGlTtG/fHrdv3xY6EhEVAI7sExGpkXbt2iE5ORn/+9//hI5CRFkYMGAAAgMD8fDhQz7/nApcbGwsHBwcEBsbi4iICJQtW1boSESUjziyT0SkRiQSCcLCwvhcZaJCatasWfjw4QOWLl0qdBQqhkxMTBAUFAQAcHZ2xocPHwRORET5icU+EZEakUql+PTpEy5fvix0FCLKQvny5TF8+HAsXLgQ7969EzoOFUNly5ZFcHAwnj17ho4dO+Lz589CRyKifMJin4hIjdSrVw9GRkZct09UiE2bNg1yuRzz5s0TOgoVU9WrV0dgYCAiIiLQr18/yOVyoSMRUT5gsU9EpEY0NTXRokULFvtEhVipUqUwYcIErFixAlFRUULHoWKqRYsW2LFjB3bv3o2JEycKHYeI8gGLfSIiNcN1+0SF3/jx42FoaAhvb2+ho1Ax1rlzZ6xYsQJLlizB4sWLhY5DRCrGYp+ISM1IpVIkJCTgypUrQkchoq8wNjbG9OnTsXHjRty7d0/oOFSMjRgxAh4eHpgwYQICAgKEjkNEKsRin4hIzdSvXx8GBgYIDQ0VOgoRZWPYsGGwsrKCp6en0FGomJszZw769u2Lfv364dSpU0LHISIVYbFPRKRmtLS0uG6fqAjQ1dXFrFmzsHv3bly9elXoOFSMiUQirF+/Hj/++CM6duyI69evCx2JiFRApFAoFEKHICIi1Zo3bx7mzJmD9+/fQ1NTU+g4RPQVMpkMNWvWhK2tLYKDg4WOQ8VcfHw8WrVqhRcvXiAiIgI2NjZCRyKiPODIPhGRGpJIJPj48SNHC4kKOU1NTfj6+uLYsWNcekOCMzIywpEjR6CrqwsnJyfExMQIHYmI8oDFPhGRGmrQoAH09fU5lZ+oCOjSpQvs7e3h4eEBTrgkoVlaWuLYsWN4+/YtXF1dkZiYKHQkIsolFvtERGpIS0sLzZs350ghUREgEong5+eHiIgIBAYGCh2HCHZ2djh8+DD++usv9OrVC6mpqUJHIqJcYLFPRKSmpFIpzp49C5lMJnQUIvqGn3/+Ga1atcL06dNZWFGh0LhxY+zevRuBgYEYNWoUZ50QFUEs9omI1JREIkF8fDz++usvoaMQ0Tekj+7//ffffNY5FRpt27bFmjVrsHr1avj5+Qkdh4hyiMU+EZGaatiwIfT09Lhun6iIaNy4MTp27IiZM2ciOTlZ6DhEAICBAwdi9uzZmD59OjZt2iR0HCLKARb7RERqSltbm+v2iYoYX19fREZGYt26dUJHIcrg6emJQYMGYeDAgQgKChI6DhF9Jxb7RERqTCKR4MyZM1wDTFRE1KhRA3379oWPjw8SEhKEjkMEIG2ZyapVq+Di4oJu3brh0qVLQkciou/AYp+ISI1JpVLExcXh+vXrQkchou/k5eWFmJgYLFu2TOgoRBk0NTWxc+dO1KpVC23btsXDhw+FjkRE38Bin4hIjTVs2BC6urpct09UhNja2mLo0KFYsGABYmJihI5DlEFfXx+BgYEwNTVFmzZt8Pr1a6EjEVE2WOwTEakxHR0dNGvWjMU+UREzffp0yGQyLFiwQOgoREpKliyJ4OBgJCQkoG3btvj48aPQkYjoK1jsExGpOYlEgrNnz3LdPlERYmlpiXHjxmHZsmV48eKF0HGIlFSoUAFHjx7F3bt30b17d6SkpAgdiYiywGKfiEjNSaVSxMbG4saNG0JHIaIcmDhxIvT19eHj4yN0FKJM6tWrh3379uH48eMYMmQIFAqF0JGI6Ass9omI1FyjRo2gq6vLR/ARFTElSpSAh4cH1q9fjwcPHggdhygTR0dH/PHHH/jjjz8wa9YsoeMQ0RdECn4MR0Sk9lq1aoUSJUrgwIEDQkchohxITEyEnZ0dHBwcsGPHDqHjEGVpwYIFmDJlCtasWYMhQ4YIHYeI/h9H9omIigGpVIozZ85ALpcLHYWIckBPTw8zZ85EQEAAH6FJhdakSZMwatQoDB8+HAcPHhQ6DhH9P47sU/GSKgfeJwHJqYC2BmCqC2jwMy9SfyEhIWjVqhX++usv1KlTR+g4RJQDKSkpqFGjBn744QccPnxY6DhEWUpNTUXPnj1x+PBhnDx5Es2aNRM6ElGxx2Kf1F9CMnA+CrjyEoiKA2T/GdnUFAPWxoB9GaCJNWCgLVxOonyUlJQEExMTzJ8/H2PGjBE6DhHl0K5du9CzZ0+cPXsWLVq0EDoOUZaSkpLQpk0b/P333wgLC0PVqlWFjkRUrLHYJ/WVKgeOPQSC7gNyBZDdb7oIgFgEONsBbSpxtJ/UkkQigbm5Ofbt2yd0FCLKIblcDnt7exgaGuLMmTMQiURCRyLK0vv379GyZUt8/PgR4eHhsLKyEjoSUbHFiobUU0wi4HcOOHwPSP1GoQ+knU9VpLX3O5d2PZGakUqlCA0N5bp9oiJILBbDz88P586dQ1BQkNBxiL7K1NQUQUFBkMlkcHFxQVxcnNCRiIotjuyT+olJBPzDgPjktBH9nBKLACNtYFJzwExP9fmIBHLq1Cn89NNPuHHjBmrVqiV0HCLKIYVCAalUig8fPuDq1asQizlmQ4XX33//jRYtWqBBgwY4evQotLW5VJKooPFfCVKZTZs2QSQSITIyEgDg7u4OW1vbgg2RKgdWXVIq9KUHp0J6cOr39yFXpF2/6lJaf7nw119/oW3btihfvjz09PRgZmaGpk2bYtu2bZnanjt3DgMHDoS9vT10dHSUfoZEqtSkSRNoa2sjJCRE6ChElAsikQh+fn64fv06du3aJXQcomzVrFkTBw8exNmzZ9G/f3/OKiMSAIt9yjeenp7Yv39/wd702EPgRbzSiP6qlsOxquXwnPUjV6T1c+xhrmLExsaiXLlymDt3Lo4ePYotW7bA1tYWffr0ga+vr1LbkydP4sSJEyhfvjx3rqV8pa+vj8aNGyM0NFToKESUS82aNYOrqys8PT2RkpIidByibEkkEmzbtg0BAQGYMmWK0HGIih1O4yeV2bRpE/r374/Hjx8X/Ig+kLbr/tQTaWvvVUVDBMz7WWW79Ddp0gQvXrzA06dPM47J5fKMqZgLFy7EpEmThPsZktrz9PTEmjVr8Pr1a27wRVRE3bx5E3Xq1MGqVaswdOhQoeMQfdPy5csxZswYLFmyBGPHjhU6DlGxwZF9yjdZTeOPjY3FgAEDYGZmBkNDQ7Rt2xaPHj2CSCSCl5dXjvpPTk6Gr68vqlatCh0dHZQqWwb9TyzBm8QPSu2+nMYfGRcN0ep28L+2F/Ov7YHttl+ht7YzpAen4l7sc6SkyjD1/CZYbe6LEmu7oVObdnj9+nVufwxKSpYsCU1NTaVjXHNJBUkqleLt27e4ffu20FGIKJdq1aqFXr16wdvbG58+fRI6DtE3jR49GpMnT8b48eOxe/duoeMQFRusMqjAyOVyuLq6YseOHZgyZQr279+Pxo0bw8nJKVd9dejQAfPmzUOvXr1w5MgRzPt5MI4/uwbpQQ8kyj5/s4/fbh1B2Mvb+K3lMKyXjsLd91FwPeqNASHL8CbxAza2GoMFTfrjxKW0NfW5IZfLIZPJ8ObNG6xatQrHjh3jNDYSVNOmTaGlpcV1+0RFnLe3N968eYMVK1YIHYXou/j5+aFXr17o06cP/w0iKiCa325CpBrBwcE4d+4cVq9enTHt0NHREdra2vDw8MhRX7t370ZwcDD27t2Lzp07p22kdygFdZws0XDvOGy6exLDarpk24eJtgEOOM+AWJT2mdfbpDiMDVuHqqbWOOjsmdHubtxzLA08gLi4OBgbG+co5/Dhw/H7778DALS1tbF8+XIMGTIkR30QqZK+vj4aNWqEkJAQjBgxQug4RJRLFStWxODBgzF//nwMGTIEJiYmQkciypZYLMbGjRsRHR2Njh074uzZs3wyDFE+48g+FZj0TcG6d++udNzNzS3HfR0+fBgmJiZwdXWFTCaD7M1HyJJTULdkRZTWN0XIi5vf7MOlfIOMQh8AqpmWAwC0tWmo1K5aCWsAUFpn/72mTZuGS5cu4ciRI/j1118xcuRILFy4MMf9EKmSRCJBaGgouGULUdE2Y8YMfP78Gf7+/kJHIfou2tra2Lt3LypUqABnZ2c8e/ZM6EhEao3FPhWYd+/eQVNTE2ZmZkrHLS0tc9xXdHQ0YmNjoa2tDS0tLWiVKQGt3ztA6/cOePXpPd4mffhmH2a6Rkrfa4vTJrqY6RhmeTwpKSnHOcuXL48GDRrAxcUFq1evxuDBg+Hh4YE3b97kuC8iVZFKpXjz5g3u3LkjdBQiyoMyZcpgzJgxWLp0KV69eiV0HKLvYmxsjKNHj0JLSwtOTk54//690JGI1BaLfSow5ubmkMlkiImJUTqemzcoJUuWhLm5OS5dupT2dfwsLnVZkvGV40ftFZBGjRpBJpPh0aNHQkehYqxZs2bQ1NTkI/iI1MCkSZOgra2d6bGuRIVZmTJlEBwcjFevXqFDhw65GlAhom9jsU8FRiKRAAB27dqldHznzp057qtdu3Z49+4dUlNT0aBBAzRo1QwNrKqggYUdGljYoYqptUoyA0h7/J6KnD59GmKxGBUrVlRZn0Q5ZWBggIYNG3KDJCI1YGpqiqlTp2Lt2rX8IJmKlCpVquDw4cO4fPkyfvnlF6SmpgodiUjtcIM+KjBOTk5o3rw5JkyYgLi4ONjb2yMiIgJbtmwBkLNH0PXs2RPbt2+Hi4sLxowZg0aNGkEr6R6iHjzB6Rc30MG2MTpVbKaa4KZ6Ob5k8ODBMDY2RqNGjWBpaYm3b9/izz//xK5duzBp0iSUKlUqo+2bN28yRlhv3kzbayAoKAilSpVCqVKlMj4kIVIlqVSKjRs3QqFQQCRS3QdaRFTwRo0ahWXLlmHWrFnYunWr0HGIvlvTpk2xc+dOdOrUCWPHjsXy5cv5bxKRCrHYpwIjFosRGBiICRMmYN68eUhOTkbz5s2xbds2NGnSJEc7CWtoaODQoUNYtmwZtm7dCj8/P2iKNGCtYwqJVU3UMrdVai9CLv/hEAGwLZHjy5o2bYo//vgDmzdvRmxsLAwNDVGnTh1s3boVv/zyi1LbW7duoVu3bkrHhg9PW4YgkUg4+kr5QiKRwM/PD//88w+qVq0qdBwiygN9fX14enpixIgRmDx5Mnc4pyKlffv2WL16NYYMGQJra2s+ophIhUQKbsdMAtuxYwd69+6NsLAwNGuWh9H4hGRg6gkgVflXut6fo1HJuDT2tJmW8z41RMB8R0BfK/e5iAqhjx8/wsTEBCtXrsx4FCYRFV0pKSmoVq0aatSogYMHDwodhyjHZs2aBW9vb2zZsgV9+vQROg6RWuDIPhWogIAAPH/+HLVq1YJYLMb58+fh7+8PBweHvBX6AGCgDTjbAYfvAQDuxT7H2Ze3cPNdJH6xk+auT2c7FvqklgwNDdGgQQOEhoay2CdSA1paWvD29kbv3r0RHh6e939TiQqYl5cXnj9/jl9//RWWlpZo3bq10JGIijyO7FOBOnz4MLy8vPDgwQMkJCSgTJky6NixI3x9fWFsbAwAkMlk2fYhFou/vr4/VQ74nQNefUT/E0sQ+OQi2ts2wm8th0FPU+e7cyrEIohKGwIeLQCNf+8ll8shl8uzvVZTk5+hUdEwdepUbN68GS9evOAaSSI1IJfLUa9ePZiamuL06dP8c01FjkwmQ4cOHXDmzBmEhITA3t5e6EhERRqLfSpUIiMjUaFChWzbzJo1C15eXl9vEJMI+IcB8cmAPOe/3inyVHwUJcNkjgtEZvpK57y8vDB79uxsr3/8+DFsbW1zfF+ighYUFAQXFxf8888/+OGHH4SOQ0QqcOTIEbRr1w7BwcFo06aN0HGIciwhIQGtWrXCkydPEBERwScYEeUBi30qVJKTk3Hjxo1s21hZWcHKyir7jmISoVh1CXgel+ORjRi9FNRdOxhDpo7B9OnTlc69ePECL168yPb62rVrQ1tbO0f3JBJCXFwczMzMsGrVKgwePFjoOESkAgqFAi1btsSnT59w+fLlHD3phqiwePPmDZo1awaRSITw8HCULFlS6EhERRKLfVJbB/cdwJW5u+DV5BeIFQCy+00XARCL0tbot6kEn7lzMHPmTGzcuBH9+/cvoMREBa9x48aoXLkytm/fLnQUIlKRs2fPwsHBAbt27UL37t2FjkOUKw8fPkSzZs1QoUIFnDx5EgYGBkJHIipyWOyTWkpNTUXt2rVRpkwZnDh4FOcW7kLlD/ooLdMHZP+uuU8VKfBK8xPKtm8ANC2XsRmfQqHA0KFDsWHDBgQGBsLZ2Vmol0KUryZPnozt27cjKiqK63uJ1Ejbtm1x//593Lp1C1pa3GiWiqbLly9DKpWiVatW2L9/P/dFIsohFvuklrZs2YJ+/frhwoULSE5OhoODA4yNjREb8x5j+w5B3LtYbNy6Cbb1q+HJs6c4ePAg2rdvr9SHTCZDly5dcOLECYSEhKBhw4YCvRqi/HP06NGMoqBy5cpCxyEiFfnrr79Qr149rF27FoMGDRI6DlGuBQcHw9XVFe7u7li7di0/mCbKAS7kIrXz+fNnzJw5E506dYKZmRnatWsHhUKBDx8+IO5jPF7LP+JJ8jukmurgZfQrAED37t1x9epVpX40NTUREBCA2rVro23btnjw4IEQL4coX7Vo0QJisRghISFCRyEiFapbty569uyJ2bNnIzExUeg4RLnm5OSE9evXY/369fD29hY6DlGRwmKf1M7atWvx7NkzTJw4EW3atEF8fHzGuYsXL2b8961bt5CcnAwASElJgbOzM6KiopT60tfXR2BgIExNTeHk5ITXr18XzIsgKiDGxsaoX78+i30iNeTj44Po6GisWrVK6ChEedKvXz/MnTsXXl5eWLdundBxiIoMFvukVj5+/AhfX1/07t0bU6dOxZMnTyCXp63R19DQQEREREbbiIiIjKlgcrkcMTExcHJywsePH5X6LFmyJI4dO4aEhAS0bds203miok4ikSA0NBRc1UWkXipXrowBAwZg7ty5+PDhg9BxiPJk6tSpGD58OIYOHYrDhw8LHYeoSGCxT2pl6dKliI2NhYmJCc6ePYvU1NSMc3K5HOfOncv4Pjw8XOmRRDKZDLdu3cL48eMz9Wtra4ujR4/in3/+Qffu3ZGSkpK/L4SoAEmlUkRFReHRo0dCRyEiFfP09MSnT5+waNEioaMQ5YlIJMLy5cvRoUMHdO/eHefPnxc6ElGhx2Kf1Ma7d+/g7++PYcOGoUuXLnBxccl4TItIJIJCoUBERETG6OWZM2eQmpqaUfDr6urC0dEx00Z96erVq4d9+/bh+PHjGDx4MEdBSW2kr9sPDQ0VOgoRqVjZsmUxevRoLF68mEvRqMjT0NDA9u3bUb9+fbRr1w737t0TOhJRocbd+EltTJ48GatWrcKjR49gYWEBAAgKCoKLiwumTJmC27dvIyYmBtbW1njz5g309fWRkpKCxo0bw9vbG3/88Qfc3d2/eZ/t27fjl19+wYwZM+Dj45PPr4qoYNjb26NGjRrYsmWL0FGISMViYmJQsWJF9OvXD8uWLRM6DlGexcTEoEWLFkhMTERERARKly4tdCSiQokj+6QWnj9/jhUrVmD8+PEZhT4AnD17FhYWFvDz88OhQ4dw7ty5jJH8wMBABAcHY/bs2ahZs6bSFP/s9O7dGwsWLICvry/WrFmTL6+HqKBJpVKu2ydSU2ZmZpg0aRLWrFmDJ0+eCB2HKM/MzMwQHByM5ORkuLi4KG3GTET/YrFPasHb2xsGBgaYMGGC0vHQ0FBIJJJvPpM1fYOy7zVx4kSMHj0aI0aMwIEDB3ITmahQkUgkePr0KSIjI4WOQkT5YMyYMTA1NYWXl5fQUYhUonz58ggKCsLDhw/RtWvXjCcsEdG/WOxTkXf//n1s2LABHh4eKFGiRMbxhIQEXLx4EVKp9Jt9SKVSPHjwAM+fP/+ue4pEIixZsgRdunSBm5sbwsLCchufqFBo2bIlRCIRH8FHpKYMDQ0xY8YMbNmyBbdv3xY6DpFK1K5dGwcOHMDp06cxcOBAzk4j+gKLfSryPD09UaZMGQwfPlzpeEREBGQy2XcV+w4ODgCQo9F9sViMLVu2oHHjxnB1dcWdO3dylJuoMDE1NUWdOnW4SR+RGhs8eDDKly+PGTNmCB2FSGVatWqFLVu2YOvWrZg2bZrQcYgKFRb7VKRdu3YNu3btwqxZs6Cnp6d0LiQkBKVKlUK1atW+2Y+FhQWqV6+e41FNXV1dHDhwAFZWVnBycsKLFy9ydD1RYSKVSjmyT6TGtLW14e3tjf379+PChQtCxyFSmZ49e2Lx4sWYN28eVq5cKXQcokKDxT4VadOnT8cPP/yQ5S7637teP136BmU5ZWJiguDgYMjlcjg7O+PDhw857oOoMJBIJHjy5AnX7ROpsV69eqFGjRocASW1M27cOIwfPx6jR4/G3r17hY5DVCiw2Kci68yZMwgKCoKvry80NTWVzn369AkXLlyARCL57v4kEgnu3buXq9F5a2trBAUF4enTp+jcuTM3iaEiycHBASKRiFP5idSYhoYG5s6di1OnTuHEiRNCxyFSKX9/f/To0QO9e/fG2bNnhY5DJDgW+1QkKRQKeHh4oH79+ujSpUum8xEREUhJSfmu9frp0j8YyG2hU7NmTRw8eBDnzp2Du7s75HJ5rvohEoqZmRlq167NYp9Izbm6uqJp06bw8PDghmakVsRiMTZt2oRmzZqhffv2uHXrltCRiATFYp+KpCNHjiA8PBxz586FWJz51zg0NBTm5uaoXr36d/dpaWmJqlWr5qnQcXBwwPbt27Fz505MmTIl1/0QCUUikXDdPpGaE4lEmDt3Li5fvox9+/YJHYdIpXR0dLB//36UL18eTk5OiIqKEjoSkWBY7FORI5fLMW3aNEilUrRu3TrLNiEhIZBIJFl+EJAdVWxQ1rVrVyxbtgwLFy7E0qVL89QXUUGTSqV4/Pgxnj59KnQUIspHUqkUbdq0wYwZMyCTyYSOQ6RSJUqUQFBQEMRiMZydnREbGyt0JCJBsNinIicgIAA3b96En59flpvvJSYm5ni9fjqpVIp//vkHr169ylPGUaNGYfLkyRg3bhx27dqVp76IClLLli0B5H45CxEVHXPnzsXdu3exZcsWoaMQqZyVlRWCg4Px/PlzdOzYEUlJSUJHIipwLPapSElOTsbMmTPRvn17NGnSJMs258+fR3Jyco7W66fL67r9//Lz88Mvv/yCvn374vTp03nuj6gglCxZErVq1eJUfqJioH79+ujWrRu8vLxYCJFaqlatGgIDA3HhwgX07duX+ylRscNin4qU9evX4/Hjx5gzZ85X24SGhsLMzAw1a9bMcf+lS5dGlSpVVFLsi8VibNiwARKJBB07dsTNmzfz3CdRQZBIJBzZJyomfHx88OLFC6xZs0boKET5onnz5ggICMDevXsxfvx4bkpJxQqLfSoyEhIS4OPjg19++SXbQj4kJAQODg45Xq+fTpUblGlra2Pv3r2oVKkSnJycuA6aigSpVIqHDx9yUyOiYqBKlSro378/5syZg/j4eKHjEOWLjh07YuXKlVi2bBkWLVokdByiAsNin4qM5cuX4927d5g9e/ZX2yQlJeH8+fO5msKfTiqV4s6dO4iOjs51H/9lZGSEo0ePQltbG05OToiJiVFJv0T5xcHBAQDX7RMVF7NmzUJ8fDwWL14sdBSifDNs2DBMnz4dkyZNwo4dO4SOQ1QgWOxTkfD+/XssWLAAQ4YMQYUKFb7a7sKFC/j8+XOuNudLl37tmTNnct3Hl0qXLo3g4GC8fv0aHTp0QGJiosr6JlK1UqVKoUaNGly3T1RMWFtbY+TIkVi0aBHevHkjdByifOPj44N+/frB3d0dJ0+eFDoOUb5jsU9FwoIFC5CcnIwZM2Zk2y4kJASmpqaoXbt2ru9lZWUFOzs7lRc6VapUweHDh3HlyhX88ssvSE1NVWn/RKoklUo5sk9UjEydOhVA2uayROpKJBJh3bp1+Omnn9CpUyf89ddfQkciylcs9qnQe/nyJZYtW4axY8fC0tIy27ahoaFo2bJlrtfrp8uvDcqaNGmCXbt24cCBAxgzZgw3iaFCSyKR4P79+3j+/LnQUYioAJQsWRITJ07EqlWr8OzZM6HjEOUbLS0t/Pnnn/jhhx/g7OyMyMhIoSMR5RsW+1To+fj4QFdXF5MmTcq23efPnxEREZGn9frppFIpbt26lS/TGV1dXbF69Wr89ttvmD9/vsr7J1IFVT6GkoiKhnHjxsHY2DjbvXGI1IGhoSGOHDkCAwMDODk54d27d0JHIsoXLPapUHv48CHWrVuHqVOnwsTEJNu2Fy9eRFJSkkqK/fxYt/9fgwcPxsyZM+Hh4YEtW7bkyz2I8sLCwgLVqlVjsU9UjBgZGWH69On4448/cPfuXaHjEOUrS0tLBAcHIyYmBq6urvj06ZPQkYhUjsU+FWozZ86EhYUFRo4c+c22ISEhKFGiRJ7W66eztrZGpUqV8nWDMi8vLwwYMAADBgzAsWPH8u0+RLkllUq5SR9RMTN06FBYW1vD09NT6ChE+a5y5co4fPgwrl+/Djc3N8hkMqEjEakUi30qtG7cuIGAgADMnDkT+vr632wfGhoKBwcHaGhoqOT++b1BmUgkwpo1a9CmTRt06dIFV65cybd7EeWGRCLBvXv38PLlS6GjEFEB0dHRwezZs7Fnzx5cvnxZ6DhE+a5Ro0b4888/ceTIEYwcOZL7KZFaYbFPhdb06dNRqVIl/Prrr99s+/nzZ4SHh+fpkXtfkkgkuHnzJt6+fauyPr+kqamJXbt2oUaNGnBxccGjR4/y7V5EOcV1+0TFU58+fVCtWjVMmzZN6ChEBcLFxQXr1q3D77//jjlz5ggdh0hlWOxToRQWFobDhw/Dx8cHWlpa32x/6dIlJCYmqmS9frr8XrefzsDAAIcPH0aJEiXg5OTEZxxToVG6dGlUrVqVxT5RMaOhoQFfX18cP34cp0+fFjoOUYHo378/fHx84OnpiY0bNwodh0glWOxToaNQKODh4YG6deuie/fu33VNaGgojI2NUbduXZXlKF++PCpUqFAghU6pUqUQHByMDx8+oF27dkhISMj3exJ9D4lEwnX7RMVQp06d0LBhQ3h4eHBaMxUb06dPx5AhQzB48GAcPXpU6DhEecZinwqd4OBgnD17FnPmzIFY/H2/oiEhIWjZsqXK1uunK8gNyipWrIijR4/i9u3b6NGjBzeJoUJBKpXi7t27iI6OFjoKERUgkUgEPz8/XLhwAQcPHhQ6DlGBEIlE+O2339CuXTt069YNFy9eFDoSUZ6w2KdCRS6Xw8PDAy1btoSzs/N3XZOcnKzy9frppFIpbt68iZiYGJX3nRV7e3vs3bsXx44dw9ChQzmaQoLjun2i4uunn37Czz//jOnTpyM1NVXoOEQFQkNDAzt27ECdOnXQtm1bPHjwQOhIRLnGYp8Kld27d+P69evw8/ODSCT6rmsuX76MT58+qXS9fjqJRAKFQpHv6/b/q3Xr1tiwYQM2bNiA2bNnF9h9ibJSpkwZ/PDDD5zKT1RMzZ07F7dv38a2bduEjkJUYPT19REYGAhzc3O0adOGs9uoyGKxT4VGSkoKPD090bZtWzRv3vy7rwsNDYWRkRHq1aun8kw2NjawtbUt8FHNvn37ws/PD7Nnz8batWsL9N5EX5JIJBzZJyqmGjZsiM6dO2PWrFn4/Pmz0HGICoy5uTmCg4Px6dMntGvXDh8/fhQ6ElGOsdinQmPjxo14+PAh5s6dm6PrQkJC0KJFC2hqauZLLqE2KJsyZQpGjBiBYcOGITAwsMDvT5ROKpXi9u3beP36tdBRiEgAvr6+ePbsGT98pmLH1tYWQUFB+Oeff9CtWzekpKQIHYkoR1jsU6GQmJgIb29vuLm5oXbt2t99XUpKCsLCwvJlCn86qVSK69ev4/379/l2j6yIRCIsW7YMHTt2RI8ePXD+/PkCvT9RuoJ6DCURFU7VqlVDv3794OPjw9FNKnbq1q2L/fv34+TJkxg0aBD3U6IihcU+FQorV67E69ev4e3tnaPrrly5goSEhHzZnC9d+rr9s2fP5ts9vkZDQwPbtm2Dvb092rVrh3/++afAMxCVLVsWlStX5rp9omLMy8sLHz58wNKlS4WOQlTgfvrpJ2zatAmbN2+Gp6en0HGIvhuLfRJcbGws/Pz8MGjQIFSqVClH14aEhMDQ0BD169fPp3RpU7jKly8vWKGjp6eHgwcPwsLCAk5OTnj16pUgOah4k0qlXLdPVIyVL18ew4cPh7+/P969eyd0HKIC16tXL/j7+2POnDlYvXq10HGIvguLfRLcwoULkZSUlKtPSkNDQ9G8eXNoaWnlQ7I0IpFI8A3KzMzMEBwcjOTkZLi4uCAuLk6wLFQ8SSQS/P3333jz5o3QUYhIINOmTYNcLse8efOEjkIkiAkTJmDMmDEYMWIE9u/fL3Qcom9isU+Cio6OxpIlSzB69GiUKVMmR9fKZDKcO3cuX9frp5NKpbh27RpiY2Pz/V5fU758eQQHB+Phw4fo0qULkpOTBctCxQ/X7RNRqVKlMH78eKxcuRLPnz8XOg5RgROJRFi8eDG6deuGXr16ISwsTOhIRNlisU+C8vX1hba2NqZMmZLja69evYqPHz8WWLGvUChw7ty5fL9XdmrVqoUDBw7gzJkzGDBgAORyuaB5qPgoV64cKlasyKn8RMXchAkTYGBgkOM9dojUhVgsxubNm9G4cWO4urrizp07Qkci+ioW+ySYx48f4/fff8fkyZNhamqa4+tDQkJgYGAAe3v7fEinrEKFCrC2ti4UG5S1atUKW7ZswbZt2zBt2jSh41AxIpVKC8WfASISjrGxMaZNm4YNGzbg3r17QschEoSuri4OHDiAsmXLwsnJCS9evBA6ElGWWOyTYLy8vGBmZobRo0fn6vqCWK+fTiQSFapCp0ePHliyZAnmz5+PFStWCB2HigmJRIKbN29ycy6iYm748OEoU6YMZs6cKXQUIsGYmJggKCgIcrkczs7O+PDhg9CRiDJhsU+C+Pvvv7F161bMnDkTBgYGOb5eJpPh7Nmz+frIvS9JJBJcu3at0PxlPnbs2IyNYvbs2SN0HCoGuG6fiIC0UU0vLy/s2rUL165dEzoOkWCsra0RHByMp0+folOnTvj8+bPQkYiUsNgnQcyYMQO2trYYOHBgrq7/66+/EB8fXyDr9dNJpVLI5XLB1+3/14IFC9CzZ0/88ssvLMAo39nY2KBChQpct09E6NevH6pUqcLlZFTs1ahRA4cOHUJ4eDjc3d25nxIVKiz2qcCdP38eBw8ehI+PD7S1tXPVR0hICPT09NCgQQMVp/u6SpUqwcrKqlAVOmKxGH/88QeaN2+O9u3b4++//xY6Eqk5iURSaJazEJFwNDU14ePjg+DgYH7YTMVey5YtsX37duzatQuTJ08WOg5RBhb7VKAUCgU8PDxQq1YtuLm55bqfkJAQNG/ePNcfFuRGYVu3n05HRwf79++Hra0tnJ2d8ezZM6EjkRqTSqW4ceMGYmJihI5CRALr0qUL7O3t4eHhAYVCIXQcIkF16dIFy5cvx6JFi7BkyRKh4xABYLFPBez48eMICQnBnDlzIBbn7tcvNTW1wNfrp5NKpbh69Sri4uIK/N7ZMTY2xtGjR6GhoQFnZ2fExsYKHYnUlEQigUKhwNmzZ4WOQkQCE4vFmDt3LsLDw3H48GGh4xAJbuTIkZgyZQrGjx+PnTt3Ch2HiMU+FRy5XI5p06ahWbNmaNeuXa77+euvvxAXF1eg6/XTSSQSpKamIiwsrMDv/S1WVlYIDg7Gy5cv0bFjRyQlJQkdidSQra0tbGxsCt0MFyIShqOjI6RSKaZPn861ykQA/Pz80KdPH/Tr1w+nT58WOg4Vcyz2qcDs3bsXV65cgZ+fH0QiUa77CQ0NhZ6eHho2bKjCdN/Hzs4OZcqUKVTr9v+ratWqOHToEC5cuIC+ffvyjRflC4lEUmj/DBBRwRKJRPDz88PNmzcREBAgdBwiwYlEIqxfvx5SqRQdO3bEjRs3hI5ExRiLfSoQMpkMnp6ecHJygoODQ576CgkJQdOmTaGjo6OidN9PJBIV+g3KmjdvjoCAAOzduxfjxo3jOkpSOalUir/++gvv378XOgoRFQJNmjRBhw4d4OnpieTkZKHjEAlOW1sbe/bsQaVKleDs7IynT58KHYmKKRb7VCA2b96Mf/75B3Pnzs1TP+nr9YWYwp9OKpXi8uXLiI+PFyzDt3Ts2BG//fYbli9fjoULFwodh9SMVCqFQqEoVI+hJCJh+fr6IjIyEuvXrxc6ClGhYGRkhKNHj0JHRwdOTk7c2JYEwWKf8l1SUhK8vLzQo0cP1KtXL0993bhxA7GxsYJszpcufd1+eHi4YBm+x9ChQzF9+nRMnjwZ27dvFzoOqRFbW1uUK1euUM9wIaKCVbNmTfTp0wc+Pj5ISEgQOg5RoVC6dGkEBwfj9evXaN++PRITEwEADx8+xP/+9z+B01FxwGKf8t2qVavw8uVL+Pj45LmvkJAQ6OrqolGjRipIljtVqlSBpaVlkSh0fHx84O7ujv79++PEiRNCxyE1kf4YSq7bJ6L/mj17Nt69e4fly5cLHYWo0Pjhhx9w5MgRXL16Fb1798bZs2dhb2+Ptm3b4uPHj0LHIzXHYp/yVVxcHObOnYsBAwbAzs4uz/2FhoaiSZMm0NXVVUG63Elft18UCh2RSIS1a9fi559/RqdOnXDt2jWhI5GakEgkuHbtGh/zSEQZbG1tMXToUCxYsIB7ehD9R+PGjbF7924cOHAAUqkU8fHxkMlkReK9JBVtLPYpXy1atAgJCQmYOXNmnvuSy+U4c+aMoOv100mlUly6dKlITFXU0tLC7t27UbVqVbi4uODx48dCRyI1IJVKIZfLuW6fiJRMnz4dKSkpWLBggdBRiAqV58+fA0h7PyuXy6GpqYnjx48LnIrUHYt9yjdv3rzB4sWLMXLkSJQtWzbP/d28eRPv378XdL1+OqlUCplMVujX7aczNDTEkSNHYGBgACcnJ7x9+1boSFTEVaxYEWXLluWoBBEpsbS0xNixY7Fs2TK8fPlS6DhEhcKWLVswdOhQpSckyWQyHDlyRMBUVByw2Kd8M3fuXIjFYkydOlUl/YWEhEBHRwdNmjRRSX95UbVqVVhYWBSJdfvpLCwsEBwcjPfv38PV1RWfPn0SOhIVYenr9ovSnwEiKhiTJk2Cnp6eSvbqIVIHFStWRNWqVQEAmpqaGccfPHiAqKiorC9KlQNvPwEv4tP+N1VeEFFJzbDYp3zx5MkTrFq1CpMmTYK5ublK+iwM6/XTpa/bL2qFTuXKlXHkyBHcuHEDbm5ukMlkQkeiIkwikeDq1auIi4sTOgoRFSIlSpTA1KlTsW7dOjx8+FDoOESCa9GiBW7fvo3w8HD07t0bOjo6Gef++OOPfxsmJAMnHwELwoBxx4CZpwHfM2n/O+5Y2vGTj9LaEX0HFvuUL2bPng0TExOMHTtWJf3J5XKEhoYWiin86SQSSZFZt/9fDRs2xJ49e3DkyBGMGDFCaUoZUU5w3T4Rfc3IkSNhYWGhkj17iNSBSCRC06ZNsWnTJrx69QqLFy+Gqalp2kzLVDlw9D4w9QSw7w4QGQvIvhjJl8nTju+7k9bu6H2O9tM3sdgnlbtz5w42b96MGTNmwNDQUCV93rp1CzExMYVic750UqkUKSkpiIiIEDpKjjk7O2P9+vVYu3YtfH19hY5DRVTlypVhZWXFdftElImenh5mzZqFgIAAXL9+Xeg4RIWKiYkJxo0bh5iYGPhNmgn4nQMO3wNSFcC3xmAUSGt3+F7adTGJBRGZiigW+6RyM2bMQLly5TB48GCV9RkSEgJtbe1CsV4/XfXq1VGyZMkiW+i4u7vD19cXM2fOxMaNG4WOQ0VQUV3OQkQFo3///qhUqRKmT58udBSiTDZt2gSRSITIyEgAae+LbG1t8+1+IpEIXl5eygdjEgH/MODVx9x1+upj2vV5KPj37dsHNzc3VK5cGXp6erC1tUXv3r1x//79TG0/f/4Mf39/1KxZEwYGBrC0tISzs3OR2bC6OGKxTyp16dIl7Nu3D7Nnz1Zaj5RXISEhaNy4MfT09FTWZ16pQ6Ezbdo0DB06FIMHD+aOsJQrUqkUV65cQXx8vNBRiKiQ0dLSgo+PD44cOYKwsDCh4xBly9PTE/v378+3/iMiIjBw4MB/D6TKgVWXgPhkQJ7LJZVyRdr1qy7lekr//Pnz8enTJ0yfPh3BwcHw9fXFtWvXUL9+fdy6dUup7aBBgzB16lR07NgRgYGB+O233/DmzRtIJBJcvHgxd6+B8pVIwQW7pEKOjo548eIFbty4AQ0NDZX0KZfLYWlpiaFDh6pkZ99evXohOjoaJ0+ezHNfK1euxIQJE/D+/Xvo6+vnuT8hpKamokuXLjh+/DhOnz6NRo0aCR2JipB//vkHVatWRVBQEJycnISOQ0SFjFwuh729PQwNDXHmzBmIRCKhIxEBSBvZ79+/Px4/fpyvI/pfdfR+2lR8VWn3A+Bil+PLXr9+DQsLC6VjL168gK2tLfr27Yv169cDSBvVNzAwgJubG7Zu3ZrR9uXLl7CyssLo0aOxbNmyvL0GUjmO7JPKnDx5EidOnMCcOXNUVugDwO3bt/H27dtCtV4/nUQiQXJyMs6fPy90lFzT0NBAQEAA6tati7Zt22Y5bYvoa3744QeULl26SM9wIaL8IxaLMXfuXJw7dw5BQUFCxyH6qqym8cfGxmLAgAEwMzODoaEh2rZti0ePHmU9Jf8blK5JSMamxasgWt0Op6KuY1DIcphvdIPx+m7oe3IRElKS8OrTe3T/3zyYbOiBMpv7YGL4BqSkKj9F6XNqCrwvB6BawFDotq8Bc3NztGrVKkfT6r8s9AHAysoK1tbWePbsWcYxsVgMsViMEiVKKLU1NjaGWCwuFE/LosxY7JNKKBQKTJs2DY0bN0aHDh1U2ndoaCi0tLTQtGlTlfarCjVqpP3FWlTX7afT09PDoUOHULJkSTg5OSE6OlroSFREpC9nKep/Bogo/zg5OaFly5aYNm0a5HLuHk5Fg1wuh6urK3bs2IEpU6Zg//79aNy4sWpmsZ2PytiIb2DIcpTQNsBOx8mYYd8DO+6HYlDICrQ94oU65hWwp40H+lX5CYuu78eKvwMzupDJU+F8eBZ8ruxEO5tG2O80HZvGzUOzZs3w9OnTPMV79OgRnjx5gho1amQc09LSwvDhw7F582YcOHAAcXFxiIyMxKBBg1CiRAkMGjQoT/ek/KEpdABSDwcOHMDFixdx6tQplU/RCwkJQaNGjQrlNHmxWAwHBwe1GNU0NzdHcHAwmjZtirZt2yIkJERlT1Mg9SaVSjFy5Eh8/PiRvzNElIlIJIKfnx9atGiB3bt3o2fPnkJHIvqm4OBgnDt3DqtXr8bQoUMBpC1X1dbWhoeHR946v/Iyo9hvZ9sIC5sNSOu/XD1ERN9FwINQLG42EOPqdAQA/GxdF8eeXcX2eyEYX6cTACDgfihOv7iBdZJRGFi9TVpn2iZwnZG3olsmk2HAgAEwNDTEuHHjlM4tWbIEJUqUQJcuXTI+uCtfvjxOnTqFypUr5+m+lD84sk95lpqaiunTp8PR0RGtWrVSad8KhQKhoaGFcgp/OqlUivPnzyMxseg/+sTGxgZHjx7FvXv30LVrV6SkpAgdiYoAqVSK1NRU7sZLRF/VvHlztGvXDjNmzOC/LVQkpM9Y6969u9JxNze3vHWcKgei4jK+bWfTUOl0NZNyAIC2WRx/8vFNxvdBT69AV0Mbv1Zz/LdRVFzuN/tD2vvuAQMG4OzZs9iyZQvKlSundH7OnDlYuHAhvLy8cPr0aRw8eBBVqlSBo6Mjrl27luv7Uv5hsU95tnXrVty5cwdz585Ved937tzJ2OWzsEpft3/hwgWho6hE3bp1sX//fpw6dQoDBw4E9/Ckb6lSpQosLS3VYoYLEeWfOXPm4NGjR3zcKxUJ7969g6amJszMzJSOW1pa5q3j90mA7N/lLGY6RkqntTU0//+4YabjSbLkjO/fJH2AlYEZxKL/lHMyea4fw6dQKDBw4EBs27YNmzZtyrQs986dO5g5cyZmz54NT09PSKVStG/fHkeOHIGJiQnGjx+fq/tS/mKxT3ny+fNnzJo1C127dkWDBg1U3n9oaCg0NTXRrFkzlfetKrVq1YKpqalaFTo//fQTNm/ejC1btmDGjBlCx6FCjuv2ieh71K5dG7169YK3tzc+ffokdByibJmbm0MmkyEmJkbp+KtXr/LWcXJq3q7/f6V0S+BFQgzkii/2wchF/+mF/h9//IH169fjl19+ydTm+vXrUCgUaNhQecaBlpYW6tSpg7///jvH96X8x2Kf8mTNmjWIiopSySPxshISEoKGDRvCwMAgX/pXhfR1++pW6Li5uWHhwoWYO3cuVq1aJXQcKuTSn7GbkJAgdBQiKsRmz56N169fY+XKlUJHIcpW+qzSXbt2KR3fuXNn3jrWVs0Tq5zL2yMpNRmb7p7IU/8KhQKDBg3CH3/8gd9//x39+/fPsp2VlRUAZHoC1efPn3H16lVYW1vn6L5UMLhBH+VafHw85syZg/79+6Nq1aoq71+hUCAkJAQDBgxQed+qJpVKMXXqVCQlJanVo0fGjx+PqKgojBw5EmXKlEGnTp2EjkSFlFQqhUwmQ3h4OBwdHb99AREVS5UqVcKgQYMwb948DB48GCYmJkJHIsqSk5MTmjdvjgkTJiAuLg729vaIiIjAli1bAKQN9nxNQkIC/ve//8HMzAxWVlYoW7bsvydNdQHNvI+3utlJ8MfdExh6ZhX+iX2OVmVrQy4GLiy/gGrVq3/3RpijR4/Ghg0b8Ouvv6JWrVpKxbyOjg7q1asHAGjRogUaNmwILy8vfPr0CQ4ODvjw4QNWrFiBx48fY+vWrXl+TaR6HNmnXFu6dCni4uIwa9asfOn/n3/+wevXrwv1ev10UqkUnz9/xsWLF4WOolIikQiLFi1Ct27d4ObmhnPnzgkdiQqpatWqoVSpUmo3w4WIVM/T0xNJSUlYuHCh0FGIvkosFiMwMBA9e/bEvHnz0KFDB5w9exbbtm0DgGw/qDpx4gQ6d+4MqVSKH374IWOG6sKFC1HRrjJSy+R9xqqmWANH23rBo1437H8cgQ5BPuh7cjHOhYXBxsbmu/sJDEx7nN/GjRvRtGlTpa//DvKIxWIcP34cEyZMwJ9//on27dtj2LBhAICjR49mOfWfhCdScPctyoW3b9+iYsWKGDhwIBYvXpwv91izZg1GjhyJ2NhYlT7Oq1evXoiOjsbJkydV1mdqaipKliyJcePGYebMmSrrt7D4/PkznJyccP36dZw7dw7Vq1cXOhIVQt26dcPLly/5oRARfZOHhweWL1+Ohw8fonTp0kLHIfpuO3bsQO/evREWFvbVPaU+fPgAS0tLfP78OdM5Q0NDvNt9CdqHH2Y8fk8lRAA6VwN+qqjCTqmo48g+5cq8efMAIO/PGc1GaGgoGjZsWCSe262hoQEHBwe12qTvv3R0dLB//35YW1vDyckJz58/FzoSFULp6/a58RYRfcvkyZOhra2NOXPmCB2F6KsCAgKwcOFCHDt2DMePH4ePjw+GDh0KBweHbDePfvnyJSpWzFx0m5mZ4fbt29B2qAiIRaoNKxYBTct9ux0VKyz2KceioqKwcuVKTJgwAaVKlcqXe6Sv1y8KU/jTSSQSREREZPkprjowMTFBUFAQAMDFxQUfPnwQOBEVNlKpFCkpKYiIiBA6ChEVcqamppgyZQp+//13PH78WOg4RFkyMjLCzp070aNHD7i4uGDdunVwd3fPmPoOADKZDDKZDG/fvsWqVavQpEkTVKtWDU//j727Dosq+/8A/h46BBGLFGxFUcQARLjXWkHsxsTuXAsQRCl1bV07sDtRwVpnEBQVCztBpERFDASp+f3BF37rWoADZ+Lzeh6efYSZe9+yzsz93HM+58TFfXUsTU1NXLp0KX/vem01wLm2ZMM61wa0VAv/mJeXV5jtR19E/lGxT4pt3rx50NHRKdX9NJ88eYLk5GTwPF9q55A0nueRmZkpd337/2ZsbIyQkBDExcWhe/fucntjg5SMhYUFKlWqRH37hJAimTRpEipWrFhqa/8Q8rs6deqEqKgopKWlITs7G3FxcVi5ciV0dXUBAM+ePYOqqipUVVVRuXJljB8/HleuXAGAr3an0dLSQnh4OOrWrfv/B+9QEzDS+f0RfiVB/nE61Pzq28OGDSvM9qMvIv9oNX5SLI8fP8bWrVuxePFi6OjolNp5hEIhlJWVYW9vX2rnkLTGjRujfPnyEIlEcHBwYB2n1DRo0ADHjx9H+/btMWTIEOzevfunK9ISxVGwDaW8trMQQiRLS0sL3t7eGD9+PGbOnImGDRuyjkRIkTx58gRBQUHYtm0bAMDMzAxdunSBs7PzV7NeN27ciK1bt+LkyZOwtrb++iDKSsC45sBfEcDHLCCvBA38SgJAVz3/OMpfX4v5+PhgwoQJxT8mkSu0QB8plr59++Ly5ct4/PhxqW4x179/fzx79qzw7qikjy3pBfoKdO7cGRkZGTh37tyvHyzjDh8+jF69emHq1KlYsmQJ6zhESqxatQrTp09HWloaNDU1WcchhEi5rKws1K9fH5aWljh69CjrOIT80IcPH3DgwAFs3boVERERKF++PFxdXeHm5oYWLVpAIPh2hD43Nxdv375FlSpVfnzg1AxgzTUg8WPxQxnp5Bf6+vR5S76PhuNIkd24cQP79++Hj49PqRb6YrEYIpFIpvr1C/A8j0uXLiErK4t1lFLXo0cPrFy5EkuXLi21HRmI7OE4DllZWV/t00sIIT+ipqaG+fPn49ixY7TeB5E6eXl5+OeffzBo0CAYGBhg5MiR0NbWxp49e5CUlIS1a9fCxsbmu4U+kL+A808LfSC/UHdvBXSqAygL8lfV/xkB8h/XqU7+86jQJz9BxT4pMg8PD9SrVw+DBw8u1fM8ffoUiYmJMtWvX4DjOGRkZODatWuso5SJCRMmYPbs2fjzzz+xd+9e1nGIFGjYsCH09fVpKj8hpMhcXV3RqFEjeHh4gCacEmnw/PlzzJ07FzVq1EDbtm1x5coVeHl5IS4uDqdPn0a/fv0kO3tNWQnoWBtY0C5/+zxzPUDl6zItG7mIevMUnzpUAxa2z3+8MpVy5OeoZ58UiVAoxOnTp3Hw4EGoqJTuPxuRSAQlJSW0atWqVM9TGqysrKCrqwuRSCRT6w38joCAACQmJmLw4MGoUqUK2rRpwzoSYaigb58W6SOEFJWSkhL8/f3RuXNnnD17Fn/88QfrSEQBffr0CQcPHsTWrVsRFhYGHR0d9OvXD25ubrCzs/vh6L1EaasBbWvkf+WJ86f4Z+UCasrgOrXF5SuRsHpihct/XIYGaIE98mt0O4j8klgshru7O5o1a4YePXqU+vmEQiGsra0LVzqVJSoqKmjVqpVCjWoKBAJs2rQJrVu3Rvfu3XH79m3WkQhjPM8jMjISmZmZrKMQQmSEi4sLWrZsCXd3d+Tl5bGOQxREXl4eRCIR3NzcYGBgULiC/c6dO5GcnIwNGzagZcuWZVPo/5eSAKikBRjpQFxRE4+ePAYA3L59G0OHDqVZMKRIqNgnvxQcHIzIyEgEBgaW+ptdQb++LE7hL8DzPCIiIpCdnc06SplRVVXFwYMHUatWLTg7O+PFixesIxGGeJ7Hly9fSmWBTUKIfBIIBFiwYAFu3LiBQ4cOsY5D5FxsbCzmz5+PWrVqged5hIeHY/bs2YiJicG5c+cwYMAAaGlpsY5Z6MWLF0hNTQWQf628d+9e+Pj4sA1FZAIV++SncnNz4eHhgTZt2qBdu3alfr7nz58jPj5eJhfnK8BxHD5//oyoqCjWUcqUjo4OTp48CQ0NDTg7Oxd+KBHFY2lpiQoVKijUDBdCyO9zcHCAs7Mz5syZg5ycHNZxiJxJT0/Hjh070KZNG1SvXh1//fUXWrdujbCwMDx58gRz5syBmZkZ65jf9b3FK+fPn4+dO3cySENkCRX75Kd2796Ne/fuISAgoEzOJ8v9+gWsra1Rrlw5hSx0DAwMcPr0abx+/RpdunRBRkYG60iEAerbJ4SUlL+/Px4/foygoCDWUYgcEIvFCA8Px/Dhw2FgYIDBgwdDLBZj27ZtSEpKwubNm+Hg4MBmmn4xXL58GcrKyoV/Llg/a/HixawiERlBxT75oaysLHh7e6N79+6wsbEpk3MKhUJYWVlBT0+vTM5XGgr69hW10KlduzZOnDiBmzdvon///sjNzWUdiTDAcRwuX75MffuEkGJp0qQJ+vXrh3nz5tENY1JicXFx8Pf3R506deDg4IB//vkH06dPx/Pnz3HhwgUMHjwY5cqVYx2zyK5fv/7V9ZSjoyP27NmDc+fOMUxFZAEV++SHNmzYgLi4OPj5+ZXJ+cRiMYRCoUz36xco6P9SpL79f7OxscH+/fsRHByMSZMm0SIyCojneWRmZuLq1ausoxBCZMz8+fORlJSENWvWsI5CZMjnz5+xe/dutG/fHubm5ggICIC9vT0uXLiAZ8+eYe7cuahevTrrmCUSGBiIffv2ITk5GZaWlqhevTr69euHSpUqsY5GpBwV++S70tPT4efnh8GDB8PCwqJMzhkbG4uXL1/KdL9+AZ7nkZ6ejhs3brCOwoyLiwvWrVuHNWvWIDAwkHUcUsYaNWqE8uXLK+wMF0JIydWuXRvDhw9HYGAgPnz4wDoOkWJisRiXL1/GqFGjYGhoiAEDBuDLly/YvHkzkpOTERQUBJ7noaQk2yWPo6Mj+vTpg6pVq4LjOIVsFSUlI9v/8kmpWbFiBd69e1emK30KhUIIBAI4ODiU2TlLi7W1NbS1tRX+zXjEiBHw8fGBp6cn9V8qGGVlZTg6Oir8a4AQUjLe3t5IT0/HkiVLWEchUighIQELFixA/fr10bJlS5w+fRqTJ0/GkydPEBYWhqFDh0JHR4d1zFLB8zyePXuG+Ph41lGIDKBin3wjNTUVixYtwpgxY8p0VVKRSAQrKytUqFChzM5ZWlRVVdGqVSsqdJB/wTZy5EiMGDECoaGhrOOQMlTQt//lyxfWUQghMsbY2BgTJ07EkiVLkJKSwjoOkQKZmZnYt28fnJycUK1aNcyfPx/NmzfHuXPnEBMTU7iVnrxzdHQEAJo5R4qEin3yjYULFyInJweenp5lel6hUCgXU/gLcByH8PBwhd8+SCAQYM2aNejYsSN69eqlcFsSKjKe55GRkYFr166xjkIIkUGzZs2CsrJyme0IRKSPWCzG1atXMXbsWBgaGqJfv374+PEj1q9fj6SkJOzYsQNt27aV+Wn6xVG5cmU0aNCABpRIkSjOK4MUSUJCAlauXIlp06ahSpUqZXbe2NhYvHjxQi4W5yvA8zw+ffqk0H37BVRUVLB37140bNgQLi4uePbsGetIpAxYWVlBV1eXRh8IISVSsWJFzJw5E2vXrsWLFy9YxyFlKCkpCX/99RcaNmwIGxsbBAcHY9y4cXj06BEiIiIwYsQIlC9fnnVMZniep89WUiRU7JOv+Pr6QktLC3/++WeZnlckEslNv36BZs2aQUtLi96M/0dLSwsnTpyAnp4eOnToQNMyFYCysjIcHBxo9IEQUmKTJ0+Gnp5ema4hRNj48uULDh48CBcXF5iYmMDLywuNGzfG6dOn8eLFi8Kt9Ej+7NEnT54gMTGRdRQi5ajYJ4WePn2KzZs3w8PDo8zvlopEIjRq1Aj6+vplet7SpKqqCnt7eyp0/qVSpUoIDQ3Fp0+f0KlTJ3z69Il1JFLKeJ7HpUuXkJWVxToKIUQGlStXDnPmzMH27dtx//591nGIhInFYly/fh0TJkyAoaEhevfujbdv32LNmjVITk7G7t278ccff0BZWZl1VKlS0PZKA0rkV6jYJ4W8vb1RtWpVjBs3rszPLW/9+gV4nqe+/f+oXr06QkJC8ODBA/Tp0wfZ2dmsI5FSxHEcPn/+TGs1EEJKbNSoUahWrRq8vLxYRyES8urVKyxduhSNGjVCs2bNcPjwYYwaNQr3799HZGQkRo8eDT09PdYxpVaVKlVQv359GlAiv0TFPgEA3Lp1C3v27MHcuXOhqalZpueOi4tDTEyMXPXrF+A4Dh8+fMCtW7dYR5EqTZo0weHDh3H27FmMGTMGYrGYdSRSSpo0aQIdHR26ICGElJi6ujrmzZuHw4cP4+rVq6zjkBLKysrCkSNH0KVLFxgbG8Pd3R0WFhY4deoU4uLiCrfSI0XD8zx9tpJfomKfAAA8PT1Rp04dDB06tMzPXTAFSZ769Qs0b94cmpqaNM3qO9q3b4+tW7diy5YtmDt3Lus4pJSoqKigVatW9BoghPyWAQMGoEGDBvDw8GAdhRTTrVu3MGXKFBgbG6NHjx5ISkrCypUrkZSUhH379sHZ2RkqKiqsY8ocjuPw+PFjJCUlsY5CpBgV+wQXL17EqVOn4Ovry+TNVigUwtLSEpUqVSrzc5c2NTU1tGzZku68/sDAgQOxcOFC+Pr6Yv369azjkFLC8zwiIiKoZYMQUmLKysrw9/fH+fPnce7cOdZxyC+8fv0aK1asgJWVFZo0aYK9e/fCzc0Nd+7cwbVr1zBu3Di5WqeJBerbJ0VBxb6CE4vFcHd3R5MmTdCrVy8mGUQikVxO4S/A8zzCwsKQm5vLOopUmjFjBiZOnIhx48bh2LFjrOOQUsDzPNLT03H9+nXWUQghMqxLly6wtbWFh4cHtX9JoezsbBw/fhzdu3eHkZERZsyYgVq1aiE4OBgvX74s3EqPSIaBgQHq1q1LxT75KSr2FdypU6cQERGBwMBAKCmV/T+H+Ph4PHv2TC4X5ytQ0Ld/+/Zt1lGkkkAgwLJly9CjRw/069cPly9fZh2JSJi1tTXKlStHM1wIIb9FIBAgMDAQ165dw5EjR1jHIf9z584d/PnnnzAxMUHXrl3x4sULLF26FImJiTh48CA6deoEVVVV1jHlEvXtk1+hYl+B5eXlwcPDAxzH4Y8//mCSoeBupKOjI5Pzl4UWLVpAQ0OD3ox/QllZGTt27EDz5s3RqVMnPHz4kHUkIkHUt08IkRSe5/HHH39gzpw5tNMNQ2/fvsXq1avRtGlTNGrUCDt27MCAAQNw69Yt3LhxAxMnTpTL9kxpw/M8Hj58iFevXrGOQqQUFfsKbO/evYiOjkZgYCAEAgGTDEKhEA0aNEDlypWZnL8sqKurw87OjgqdX9DQ0MCxY8dgaGgIJycnWnBGznAch/DwcOrbJ4T8toCAADx48AA7duxgHUWh5OTk4OTJk+jVqxcMDQ0xdepUmJqa4ujRo4iPj8fSpUvRuHFj1jEVCvXtk1+hYl9BZWdnw9vbG126dIGdnR2zHEKhUK779QtQ337RVKhQASEhIcjJyYGzszM+fPjAOhKREJ7n8enTJ9y4cYN1FEKIjGvatCl69+4NHx8ffPnyhXUcuXf//n3MnDkTpqam6NSpE548eYJFixYhISEBR48eRdeuXaGmpsY6pkIyNDREnTp1aPYo+SEq9hXU5s2b8fz5c/j7+zPLkJCQgKdPn8p1v34BnueRlpaGO3fusI4i9UxNTREaGorY2Fj06NEDWVlZrCMRCWjatCm0tbVp9IEQIhG+vr5ISEjAunXrWEeRS+/evcPatWthY2ODBg0aYPPmzejduzdu3LhRuJVelSpVWMckyB/dp89W8iNU7Cugz58/Y/78+RgwYADTVVEL3pgUodhv0aIF1NXV6c5rETVs2BDHjh3DxYsXMXToUOTl5bGORH6Tqqoq7O3t6TVACJGIunXrws3NDX5+fvj48SPrOHIhNzcXoaGh6NevHwwNDTFx4kRUqVIFBw8eRGJiIlauXIkmTZowa/0k38fzPO7fv4+UlBTWUYgUomJfAa1atQpv3rzBvHnzmOYQiUSwsLBQiDvDGhoasLOzo0KnGDiOw86dO7Fnzx7Mnj2bdRwiAQV9+7SoFiFEEubOnYuPHz9i2bJlrKPItEePHsHd3R3VqlWDs7Mz7ty5Az8/P8THxyM4OBg9e/aEuro665jkBwoGzcLCwhgnIdKIin0F8+7dOyxYsACjRo1CjRo1mGYRCoUKMapfgOM4hIWF0Sh1MfTu3RvLly/HX3/9hRUrVrCOQ34Tz/P4+PEjbt68yToKIUQOmJqaYvz48Vi8eDHevHnDOo5Mef/+PTZs2ICWLVuiXr16WLduHbp164Zr167h7t27mD59OgwMDFjHJEVgbGyMWrVq0YAS+S4q9hXMX3/9haysLMyZM4dpjqSkJDx+/FghFucrwPM83r17R337xTRp0iTMmDEDU6dOxf79+1nHIb+hWbNm0NLSot5CQojEuLu7AwACAwMZJ5F+ubm5OHv2LAYMGAADAwOMHTsWenp62LdvH5KSkvD333+jWbNmNE1fBvE8T5+t5Luo2FcgSUlJWLFiBaZMmcL8bm3BG5KjoyPTHGXJxsYGampq9GZcAgsWLED//v0xaNAg+v3JMDU1NbRs2ZJGHwghElOpUiVMnz4df//9N16+fMk6jlR68uQJ5syZg+rVq+OPP/7AjRs34OPjg5cvX+LUqVPo06cPNDQ0WMckv4HjONy9exevX79mHYVIGSr2FYifnx/U1dUxY8YM1lEgEolQr1495jcdypKmpiZsbW2p0CkBJSUlbNmyBY6OjujatSvNjpBhPM/j4sWLtA0lIURipk6dCl1dXeZrEUmTDx8+YPPmzXBwcECdOnWwevVqdOzYEZGRkbh//z5mzZoFIyMj1jGJhFDfPvkRKvYVxPPnz7FhwwbMmjULenp6rOMoXL9+AZ7nqW+/hNTU1HDo0CFUr14dzs7ONIIjoziOw4cPH3Dr1i3WUQghckJHRwceHh7YunUrHj16xDoOM3l5efjnn38wePBgGBoaYuTIkdDS0sLu3buRlJSEdevWwcbGhqbpyyFTU1PUqFGDZj+Sb1CxryDmzp2LypUrY+LEiayjIDk5GQ8fPlSofv0CHMfh7du3uHfvHusoMklXVxenTp2CqqoqnJyc8O7dO9aRSDE1b94cmpqaNMOFECJRY8aMgYmJCby8vFhHKXPPnz/H3LlzUaNGDbRt2xaRkZHw9PREXFwcTp8+DVdXV2hqarKOSUoZz/P02Uq+QcW+Arhz5w527doFb29vaGlpsY5TOMVIEUf2bW1tqW//NxkaGiI0NBTJycno2rUrMjMzWUcixaCurg47Ozt6DRBCJEpDQwM+Pj44cOAArl+/zjpOqfv06ROCgoLA8zxq1qyJZcuWoX379oiIiMCjR4/g4eEBExMT1jFJGeI4Dnfu3MHbt29ZRyFShIp9BeDp6YkaNWpg+PDhrKMAyJ/CX6dOHRgaGrKOUua0tLTQokULuvP6m+rWrYsTJ04gKioKAwcOpP5vGVPQzkL/3wghkjRo0CDUq1cPHh4erKOUiry8PIhEIgwdOhQGBgYYNmwYVFRUsGPHDiQnJ2Pjxo1o2bIlTdNXUNS3T76Hin05d+nSJQQHB8PX1xeqqqqs4wDIX5xPEafwFyjYHkUsFrOOItPs7Oywd+9eHDlyBFOmTKHfpwzheR7v379HdHQ06yiEEDmioqICf39/nDlzBhcuXGAdR2JiY2Mxf/581K5du/Bm6axZsxATE4Nz585h4MCBUjFzk7BlZmaG6tWr08w58hUq9uWYWCyGu7s7GjdujL59+7KOAwBISUnB/fv3FXIKfwGO4/DmzRvcv3+fdRSZ16VLF6xZswarV6/GokWLWMchRdSiRQtoaGjQDBdCiMR1794dzZs3h7u7u0zfBE5PT8eOHTvQtm1bVK9eHYsWLQLHcQgLC8PTp0/h5eUFMzMz1jGJlOE4jj5byVeo2Jdjp0+fRlhYGAICAqCkJB3/qxW5X7+AnZ0dVFVV6c1YQkaPHg0vLy/Mnj0bO3bsYB2HFAH17RNCSotAIEBAQACuXLmC48ePs45TLGKxGOHh4RgxYgQMDQ0xePBg5OXlISgoCMnJydiyZQscHBxomj75IZ7nER0djdTUVNZRiJSQjgqQSFxeXh48PDzQqlUrODs7s45TSCgUolatWjA2NmYdhRltbW00b96cCh0JmjdvHoYNG4Zhw4bhzJkzrOOQIigYoaJtKAkhktauXTu0bdsWnp6eMrE2yMuXL+Hv7486derAwcEB58+fx7Rp0/D8+XNcuHABQ4YMQbly5VjHJDKA4ziIxWJcvHiRdRQiJajYl1MHDhzAzZs3ERgYKFV3gBW9X78A9e1LlkAgwLp16/DHH3+gZ8+euHHjButI5Bd4nse7d++ob58QUioCAgJw79497Nq1i3WU78rIyMDu3bvxxx9/wMzMDAEBAWjZsiUuXLiAZ8+ewcfHB9WrV2cdk8gYc3NzmJmZ0exRUoiKfTmUnZ0NLy8vuLi4oFWrVqzjFHr9+jXu3r2r0FP4C/A8j5SUFDx8+JB1FLmhqqqK/fv3o379+ujYsSNiYmJYRyI/YWNjA3V1dZrhQggpFS1atED37t0xd+5cZGVlsY4DIH+a/uXLlzF69GgYGBhgwIAByMzMxKZNm5CcnIxt27aB53mpab0ksonjOPpsJYXo3UQOBQUF4cmTJ/D392cd5SvUr///WrZsCRUVFbrzKmHa2to4efIkdHR00KFDB7x584Z1JPIDGhoasLW1pdcAIaTU+Pn5IS4uDhs2bGCaIyEhAQsWLED9+vXRsmVLhISEYNKkSXjy5AnCwsIwbNgw6OjoMM1I5AfP87h16xbevXvHOgqRAlTsy5mMjAz4+PjA1dUVjRs3Zh3nKyKRCDVr1oSpqSnrKMwV9O1ToSN5lStXRmhoKN6/f49OnTrh8+fPrCORH6C+fUJIabKwsMDgwYPh6+uLT58+lem5MzMzsW/fPjg7O6NatWqYN28emjVrhnPnziE2Nha+vr6oVatWmWYiioHn+cLFHgmhYl/O/P3330hJScH8+fNZR/mGUCikUf1/KZhmRX37klezZk2cPHkSd+/eRd++fZGTk8M6EvkOnueRmpqKu3fvso5CCJFTPj4+SEtLw4oVK0r9XGKxGFevXsW4ceNgaGiIfv364cOHD1i3bh2Sk5Oxc+dOtG3blqbpk1Jlbm4OU1NTGlAiAKjYlyvv379HYGAgRowYIXV3i9++fYs7d+7Q4nz/wvM8Xr16hUePHrGOIpeaNWuGgwcPIjQ0FOPGjaObKlLI1tYWampq1FtICCk1ZmZmGDt2LBYtWoS3b9+WyjmSkpLw119/oWHDhrCxscHx48cxduxYPHr0CBERERg5ciTKly9fKucm5L8EAkHhQtCEULEvRxYvXoyMjAx4eXmxjvIN6tf/VsuWLaGsrExvxqXIyckJmzZtwsaNG6Vytoui09TUhI2NDY0+EEJKlYeHB3Jzc7Fw4UKJHfPLly84ePAgOnXqBFNTU3h5eaFRo0Y4ffo0Xrx4gYCAANSpU0di5yOkODiOw82bN5GWlsY6CmGMin058erVKyxbtgyTJk2CkZER6zjfEIlEqF69OqpVq8Y6itTQ0dFBs2bNqNApZUOGDEFAQAB8fHywadMm1nHIf/A8T337hJBSVaVKFfz5559YtWoVEhISSnwcsViM69evY+LEiTAyMkLv3r3x5s0brF69GsnJydizZw/++OMPKCsrSzA9IcXH8zzy8vKob59QsS8vAgICoKKiglmzZrGO8l3Ur/99BdOsaIp56Zo9ezbGjRuHMWPG4MSJE6zjkH/hOA5v3rzB/fv3WUchhMixP//8E9ra2vD19S32c1NSUrB06VI0btwYzZo1w6FDhzBixAjcv38fkZGRGDNmDPT09CQfmpASqlGjBoyNjWn2KKFiXx7ExsZi7dq1mDlzJipUqMA6zjdSU1MRHR1N/frfwXEckpKS8OTJE9ZR5JpAIMDKlSvRpUsX9OnTB1euXGEdifyPnZ0dVFVVaYYLIaRU6erqwt3dHZs2bSrSZ25WVhaOHj2Krl27wtjYGO7u7qhXrx5OnTqFuLg4LFy4EPXr1y+D5IQUX0HfPn22Eir25YCPjw/09fUxefJk1lG+6+LFixCLxTSy/x329vbUt19GlJWVsWvXLlhbW8PFxQWPHz9mHYkA0NLSQosWLeg1QAgpdQWr5Ht7e//wMbdv38aUKVNgbGyM7t27IzExEcuXL0dSUhL2798PZ2dnqKiolGFqQkqG4zjcuHEDHz58YB2FMETFvoy7d+8eduzYAS8vL2hra7OO811CoRBmZmYwNzdnHUXq6Orqwtramu68lhFNTU0cP34cVapUgZOTE5KTk1lHIqB2FkJI2dDU1MTcuXOxd+9e3Lp1q/D7b968wYoVK9CkSRNYWVlhz549GDJkCO7cuYNr165h/Pjx0NfXZxeckBKgvn0CULEv8+bMmQMzMzOMHDmSdZQfEolENIX/JwqmWVGhUzb09fURGhqKL1++wMXFBR8/fmQdSeHxPI/Xr1/jwYMHrKMQQuScm5sb6tSpA3d3dwQHB6NHjx4wMjLCjBkzUKNGDQQHByM+Ph6LFy9Gw4YNWcclpMRq1aoFIyMjmjmn4KjYl2FXrlzB0aNHMX/+fKipqbGO813v3r3DrVu3aAr/T3Ach8TERDx79ox1FIVRrVo1hISE4OnTp+jVqxeysrJYR1JodnZ2UFFRoRkuhJBS9/DhQ9SpUwehoaHo0qULYmNjsXjxYiQmJuLQoUPo1KkTVFVVWcck5LcJBAJwHEefrQqOin0ZJRaL4e7ujoYNG8LV1ZV1nB8KDw+HWCymkf2faNWqFZSUlOjNuIw1atQIR48exYULFzBixAiaWcGQtrY29e0TQkpNamoqVq9ejWbNmsHS0hKXL19GlSpVYGVlhevXr2PSpEmoVKkS65iESBzP87h+/TrNYlRgVOzLqHPnzuHChQvw9/eX6v1chUIhTE1NqV//J8qXL48mTZpQocNA69atsX37duzYsQMeHh6s4yi0gtEHuulCCJGEnJwcnDp1Cr1794ahoSGmTp0KExMTHDlyBImJidi+fTtu3bqFkydPso5KSKnhOA65ubmIiIhgHYUwQsW+DBKLxfDw8ICdnR06d+7MOs5PFfTrCwQC1lGkGvXts9OvXz8sXboUCxYswOrVq1nHUVg8zyMlJQUPHz5kHYUQIsPu37+PmTNnwtTUFC4uLnj06BEWLFiAhIQEHD16FN26dYOamhr++OMP8DwPDw8P5OXlsY5NSKmoU6cODAwMaPaoAqNiXwYdPnwYUVFRCAwMlOoiOi0tDTdv3qR+/SLgeR7x8fGIiYlhHUUhTZ06FdOmTcOkSZNw6NAh1nEUUsuWLWkbSkJIibx79w5r166FjY0NGjRogM2bN6N37964ceMGbt++jalTp6JKlSpfPUcgECAwMBB37tzBnj17GCUnpHQV9O3TZ6viomJfxuTk5MDT0xMdOnSQ+iI6PDwceXl51K9fBK1atYJAIKA7rwz99ddf6Nu3LwYMGICLFy+yjqNwypUrh+bNm9NrgBBSJLm5uTh9+jT69esHQ0NDTJw4EVWqVMHBgweRmJiIlStXokmTJj8dFLG1tUWXLl3g7e1NC7USucXzPK5du4ZPnz6xjkIYoGJfxmzfvh2PHj1CQEAA6yi/JBKJYGJigho1arCOIvX09PTQpEkTKnQYUlJSQlBQEFq2bIkuXbrg3r17rCMpnILRB2pnIYT8yKNHj+Du7o5q1arByckJd+7cgZ+fH+Lj4xEcHIyePXtCXV29yMfz9/dHTEwMNm/eXIqpCWGH53nk5ubi0qVLrKMQBqjYlyGZmZmYO3cu+vTpA2tra9ZxfkkoFILjOKluNZAmVOiwp66ujiNHjhReRMbHx7OOpFB4nkdycjIeP37MOgohRIq8f/8eGzZsQMuWLVGvXj2sW7cO3bp1w7Vr13D37l1Mnz4dBgYGJTp2w4YNMXDgQMyfPx/p6ekSTk4Ie3Xr1kXVqlVpQElBUbEvQ9auXYukpCT4+vqyjvJLHz58wI0bN2gKfzHwPI+4uDjExsayjqLQypcvj5CQECgpKcHZ2RlpaWmsIykMe3t76tsnhADIn6Z/7tw5DBgwAAYGBhg7diz09PSwb98+JCUl4e+//0azZs0kMqAwb948vH37FqtWrZJAckKkS0HfPhX7iomKfRnx4cMHBAQEYNiwYahTpw7rOL9U0K8v7esKSBMHBwcIBAIqdKSAkZERQkNDkZCQgG7duuHLly+sIykEHR0dNG3alC5ICFFgT58+xZw5c1C9enW0b98eN27cgI+PD16+fIlTp06hT58+0NDQkOg5q1evjtGjR2PhwoV49+6dRI9NiDTgOA7Xrl2j2SsKiIp9GbF06VJ8/PgR3t7erKMUiUgkgpGREWrVqsU6isyoUKECGjduTIWOlKhfvz6Cg4Nx5coVDB48mLZmKiM8z1M7CyEK5uPHj9i8eTMcHBxQu3ZtrF69Gh07dkRkZCTu37+PWbNmwcjIqFQzzJkzB1lZWVi0aFGpnocQFnieR05ODvXtKyAq9mXA69evsWTJEkyYMAEmJias4xQJ9euXTEGhQ6SDvb09du/ejYMHD2LatGlUgJYBjuOQmJiIp0+fso5CCClFeXl5uHDhAgYPHgwDAwOMHDkSWlpa2L17N5KSkrBu3TrY2NiU2XVE1apVMXXqVKxYsQJJSUllck5Cykr9+vVRuXJlusZUQFTsS6mgoCAcPXoUYrEYgYGBUFJSgru7O+tYRfLx40dcv36d+vVLgOM4xMbG4sWLF6yjkP/p3r07Vq9ejRUrVmDp0qWs48i9Vq1aQUlJiWa4ECKnnj9/jrlz56JGjRpo06YNIiMj4enpibi4OJw+fRqurq7Q1NRkkm369OnQ0NCAn58fk/MTUlqob19xUbEvpSZPnozu3bujUaNGWLVqFaZPn46KFSuyjlUkERERyM3NpX79EnB0dKS+fSk0duxYeHh4YPr06di9ezfrOHJNV1cX1tbW9BogRI58+vQJQUFB4HkeNWvWxLJly9C+fXtERETg0aNH8PDwkIqZi3p6epg9ezY2bNiAZ8+esY5DiETxPI+rV6/i8+fPrKOQMkTFvpTKysoCANy7dw85OTk4f/48oqKiGKcqGqFQCAMDA5lYSFDa6Ovrw9LSku68SiE/Pz8MGTIEbm5uOH/+POs4co3neQiFQmqbIESGicVihIWFYejQoTAwMMCwYcOgoqKCHTt2IDk5GRs3bkTLli2lrt1vwoQJqFKlCubOncs6CiESxXEcsrOzcfnyZdZRSBmiYl9K5eTkAEDhxW5YWBiaN2+OyMhIlrGKRCQSged5qfsAlxUFhQ6RLgKBABs3bkTbtm3RvXt33Lp1i3UkucXzPBISEvD8+XPWUQghxfTixQvMnz8ftWrVAsdxCAsLw6xZsxATE4Nz585h4MCB0NLSYh3zh7S0tODt7Y3du3cjOjqadRxCJMbCwgKVKlWimXMKhop9KSQWiwuL/X9/r2vXrrC0tGSUqmg+ffqEa9eu0RT+38BxHGJiYhAXF8c6CvkPVVVVHDhwAHXq1IGzszNiY2NZR5JL1LdPiGz5/PkzduzYgbZt28Lc3ByLFi0qLPSfPn0KLy8vmJmZsY5ZZMOGDUPNmjXh6enJOgohEqOkpARHR0f6bFUwVOxLoX8X+kpKStDQ0MDGjRtx5MgRaGtrM0z2a5cuXUJubi4tzvcbHB0dAYDuvEqpcuXK4eTJk9DW1oaTkxPevn3LOpLcKV++PJo0aUKvAUKkmFgsRkREBEaMGAEDA4PCLUqDgoKQnJyMLVu2wMHBQSZn+amqqsLX1xcnTpxAREQE6ziESAzP87hy5QoyMjJYRyFlhIp9lnLzgDefgcSP+f/Nzd/Hu6BfHwAaNmyIW7duYcSIETLxgSkUClG1alXUrVuXdRSZValSJTRs2JAKHSlWtWpVhIaGIjU1FZ07d6YPzVJQsGow9e0TIl1evnwJf39/1KlTB61atcL58+cxbdo0PH/+HBcuXMCQIUNQrlw51jF/W58+fWBlZQV3d3d6HyJyg+M4ZGVlyURbMJEMFdYBFE56FhAZD1xPAuI/ADl5//8zFSXARBcaVlVgoFMRrTq0xq5du6CmpsYubzGJRCJwHCcTNyakGc/zCAkJYR2D/EStWrVw4sQJtG7dGq6urjh48CBUVOgtVVJ4nsfSpUsRExODGjVqsI5DiELLyMjAkSNHEBQUhHPnzkFTUxO9evXCxo0b4ejoCCUl+Rs7UlJSgr+/P1xcXBAaGgpnZ2fWkQj5bQ0bNoS+vj6EQiFat27NOg4pA/L37iytcvOAU0+A2eeAww+A2LSvC30g/8+xaVA+9hhJQ7bjwNAAqCnLTvGQnp6Oq1evUr++BPA8j2fPniE+Pp51FPITLVq0wIEDB3DixAlMmDCBRn8kqGD6L81wIYQNsViMyMhIjB49GgYGBhgwYAAyMzOxadMmJCcnY9u2beB5Xi4L/QLOzs5wcHCAh4cH8vLyfv0EQqSckpISOI6jz1YFIr/v0NIkNQMIDAdOPAZyxcCv6gEx8h934nH+81JlY4rw5cuXkZOTQ/36EkB9+7KjY8eO2LhxI9avXw9/f3/WceSGnp4erKysaCEhQspYYmIiFi5cCAsLC9jZ2SEkJASTJk3CkydPEBYWhmHDhkFHR4d1zDIhEAgQGBiIW7du4cCBA6zjECIRHMchMjISmZmZrKOQMkDFfmlLzQD+igCSP5Xs+cmf8p8vAwW/UChE5cqVUb9+fdZRZF7lypXRoEEDKnRkxNChQ+Hr6wsvLy9s3bqVdRy5QaMPhJSNzMxM7N+/H87OzjA1NYWPjw+aNm2Ks2fPIjY2Fr6+vqhVqxbrmEzY29vDxcUFc+bMQXZ2Nus4hPw2nufx5csXXLlyhXUUUgbkttgPCgqCQCAo3BrLzc0N5ubmZRsiNw9Ycw34mAXk5Q/n88dmgz82u+jHyBPnP3/NtcIF/H7Xpk2bIBAIvruAjpubGwQCwTdf9erV++VxhUIh9etLEBU6ssXT0xOjR4/GyJEjcerUKdZx5ALP83jx4gVtcUhIKRCLxbh27RrGjx8PIyMj9O3bFx8+fMC6deuQnJyMnTt3ol27dnI9Tb+oAgIC8OzZM7qZS+SCpaUlKlSoQANKCkJh3sG9vLxw5MiRsj3p6Wf5K+3n/f+8/TUO47DGYVzxjpMnzj/O6We/HSkhIQHTp0+HkZHRDx+jqamJy5cvf/W1b9++nx738+fPuHr1Kk3hlyCe5/HkyRMkJiayjkKKQCAQYPXq1XBxcUHv3r1x7do11pFkHvXtEyJ5ycnJWLx4MSwtLdGiRQscO3YMY8aMwcOHDxEREYGRI0eifPnyrGNKlUaNGsHV1RXz5s2j3VeIzFNSUoKjoyMV+wpCYYr9mjVrokmTJmV3wvQsIOTJN9+20K8GC/1qJTtmyJP84/6GMWPGwNHREe3bt//hY5SUlGBra/vVV+PGjX963MuXLyM7O5sW55Mg6tuXPSoqKtizZw8aN24MFxcXPH36lHUkmaavr49GjRrRBQkhv+nLly84dOgQOnXqBBMTE8yZMweWlpYIDQ3FixcvEBAQQFvm/sL8+fORkpKC1atXs45CyG+jvn3FoTDF/vem8aelpWH48OHQ19dHuXLl4OLigufPn0MgEMDHx6dYx8/KyoKfnx/q1asHdXV1VDY2xNBzy/A64/1Xj/vvNP7YD68gWNsJf908hIU3D8J85zBobugB/thsPE5LQHZuDmZHBsFo22CU39Ab3Tt0QkpKSol+Bzt37oRIJMKaNWtK9PyfEYlEqFSpEiwsLCR+bEVVtWpV1K9fnwodGaOlpYXg4GDo6+vDycmpxK9Xko/nebrhRUgJiMVi3LhxA5MmTYKRkRF69eqFN2/eYPXq1UhKSsKePXvQoUMHKCsrs44qE2rWrImRI0diwYIFeP/+/a+fQIgU43kemZmZuHr1KusopJQpTLH/X3l5eejcuTN2796NWbNm4ciRI7CxsYGTk1OJjtW1a1csWLAA/fv3x8mTJ7Gg3SicfXkT/DF3ZOR8+eUx/r53EhFJ9/G3w1hs4ifi4bt4dD41H8OFK/A64z22tJ6MRbZDce5aOEaMGFHsjCkpKZgyZQoWLFgAExOTnz42IyMDBgYGUFZWhomJCSZMmIDU1NSfPkcoFMrtXrssUaEjmypWrIjQ0FCkp6fDxcUFnz6VcIFOAo7jEBMTgxcvXrCOQohMSElJwbJly9C4cWM0bdoUBw4cwIgRI3Dv3j1ERkZizJgxqFChAuuYMsnLywsZGRlYvHgx6yiE/JZGjRpBT0+PrjEVgOxs4i5hoaGhCA8Px9q1azFmzBgAQPv27aGmpgZ3d/diHWv//v0IDQ3FoUOH0KNHj/yF9I5no7FTVTQ/NBVBD89jbMOOPz2Gnpo2jjrPgZIgv1h+k/kBUyI2ol4FExxz9ip83MMPCVgefBQfPnyArq5ukTOOGzcOdevWxdixY3/6uMaNG6Nx48Zo2LAhgPwR+2XLluH8+fO4du3adxf1y8jIwJUrV+jDrxRwHIe1a9ciKSkJhoaGrOOQYjA3N0dISAgcHR3Ru3dvHD9+HKqqqqxjyZx/t7MMHjyYcRpCpFNWVhZOnTqFoKAgnDx5EkpKSoWDEH/88QdUVBT2ck+iDA0NMWnSJCxbtgwTJkxA1apVWUcipESUlZXh4OAAoVAILy+vXz+ByCyFHYYtuJPVp0+fr77v6upa7GOdOHECenp66Ny5M3JycpDz+hNysrJhVakGDLQqQJh455fH6FitWWGhDwD1K5gCAFzMmn/1uPrl80fl4+Liipzv0KFDCA4OxsaNG3+5Uv7UqVMxdepUtG/fHu3bt4efnx+2b9+Ohw8fYuPGjd99TmRkJLKysqhfvxQU/E7DwsIYJyElYWVlhSNHjuD8+fMYNWoUxGLxr59EvlKxYkVYWlrS6AMh33H79m1MnToVxsbG6N69OxISErB8+XIkJiZi//796NixIxX6EjZr1iyoqqrC39+fdRRCfgvP87h8+TK+fPn1DGQiuxS22H/79i1UVFSgr6//1fdLcpf21atXSEtLg5qaGlRVVaFqWB6q67tCdX1XJH9+hzeZv+7t0tfQ+erPakr5H8766uW++/2iLqjx6dMnjB8/HhMnToSRkRHS0tKQlpaGrKz8hf7S0tKQnp7+02N0794d2traiIyM/O7PhUIh9PX1C2cDEMkxMDBA3bp1qW9fhrVt2xZBQUEICgqiu+clxPM8vQYI+Z83b95g5cqVaNKkCaysrLB7924MGTIE0dHRhVvpVaxYkXVMuVWhQgXMnDkT69atQ0xMDOs4hJQYx3HIyMig3YPknMLe7q1YsSJycnKQmpr6VcGfnJxc7GNVqlSpsEcXAJCWCayLKvy5jqrmb+ctqTdv3uDVq1dYsmQJlixZ8s3PK1SogK5du+Lo0aM/PY5YLP5hP75IJALHcdSvX0qo0JF9/fv3R2JiImbMmAFjY+NfttOQr/E8j1WrVuHly5cwNTVlHYeQMpednY3Q0FAEBQUhODgYANC5c2fMnz8fTk5O1CJUxiZNmoQVK1bAx8cH27ZtYx2HkBKxsrKCrq4uhEIhWrVqxToOKSUKW50VTI/+7/7xe/fuLfaxOnXqhLdv3yI3NxfNmjVDs9Yt0cyoLppVqY1mVWqjboWfL4hXLMo/n4b/XwYGBrhw4cI3Xx06dICGhgYuXLgAPz+/nx7j4MGD+Pz5M2xtbb/5WWZmJiIjI2kKfyniOA4PHz7Eq1evWEchv+HPP//E5MmTMWHChF/eXCNfo20oiaK6e/cupk+fDlNTU3Tp0gUxMTFYvHgxEhMTcejQIXTu3JkKfQa0tbXh7e2NHTt24O7du6zjEFIiBX379Nkq3xR2ZN/JyQn29vb4888/8eHDBzRt2hSXL1/G9u3bAaBYo9T9+vXDrl270LFjR0yePBktWrSAauZjxD99gQuJ0ehqboPuNVpKJniF4s0S0NDQAM/z33w/KCgIysrKX/3sxYsX6N+/P/r164datWpBIBBAJBJh+fLlaNCgwXd3Abhy5Qq+fPny3XMQySi4kSISib5ZY4LIDoFAgKVLlyIpKQmurq44d+4c7O3tWceSCZUqVULDhg0hEokwcOBA1nEIKVWpqanYs2cPtm7diuvXr6NSpUoYOHAg3Nzc0LhxY9bxyP+MGDECixcvxpw5c+gGLpFZPM/D29sbWVlZUFNTYx2HlAKFHdlXUlJCcHAw+vXrhwULFqBr1664ePEidu7cCQDQ09Mr8rGUlZVx/PhxeHh44PDhw+jevTu67fTEgpsHoKGsCsuK5l89XoDijc7/64mAefmSPbcIdHV1UbVqVSxduhQ9e/ZE165dcejQIUyaNAkRERHQ1tb+5jlCoRAVKlSApaVlqeVSdEZGRqhTpw7deZUDSkpK2LZtG2xsbNC5c2c8ePCAdSSZwXEctbMQuZWTk4NTp06hT58+MDQ0xJQpU2BiYoIjR44gISGhcCs9Ij3U1NQwf/58HDt27IdrGhEi7Qr69qOion79YCKTBGJaHvoru3fvxoABAxAREYGWLX9jND49C5h9Dsj9+tfb5MAk1NQ1wMEOHsU/prIAWNge0JKeKXtt2rSBrq6uTN3V7t+/P169eoXz58+zjlJko0aNQkREBO7du8c6CpGAtLQ0ODg44MOHD7h8+TKMjIxYR5J6Bw8eRO/evREfHw9jY2PWcQiRiAcPHiAoKAg7duxAUlISLC0tMXToUAwYMABVqlRhHY/8Qm5uLpo0aYKKFSvin3/++eWOR4RIm5ycHOjr62P27Nnw8ChBbUKknsKO7APAnj17sHjxYpw+fRpnz56Fr68vxowZA0dHx98r9AFAWw1wrl34x8dpCdj84AzuvI2FXdV6JTumc22pKvS/fPmCy5cvU79+GeB5Hvfv30dKSgrrKEQC9PT0EBISgry8PDg7O+P9+1/v2KHoqG+fyIt3795h3bp1sLGxgYWFBTZt2oRevXrh+vXrhVvpUaEvG5SVleHv7w+hUIizZ8+yjkNIsamoqFDfvpxT6GJfR0cHe/fuRd++fdGxY0ds3LgRbm5uhSvdAvl3vH72lZeX9+MTdKgJGOkASgIE3jiAWZFBGFy3DcY1dCleUCVB/nE61Pzq23l5eb/MV5quXr2KzMxM6tcvAwU3VMLCwhgnIZJiYmKC0NBQxMXFoUePHrTP7S9UqVIFFhYWNJWfyKTc3FycPn0arq6uMDQ0xIQJE1ClShUcPHgQiYmJWLlyJaytrWlkWAZ16tQJdnZ28PDwAE2WJbKI4zhEREQgOzubdRRSChS62O/UqROioqKQlpaG7OxsxMXFYeXKldDV1QUAxMbGQlVV9adf8+fP//EJlJWAcc0BHTVsbTcVb4buxpbWU6Cpol70kEoCQFc9/zjKX//vmj9//i/zxcbGluA3UzRCoRDly5dHo0aNSu0cJJ+xsTFq1apFhY6cadCgAY4fP46IiAgMHTr05zcPCTiOo9EHIlMePXoEDw8PmJmZwcnJCdHR0fDz88PLly8RHByMnj17Ql29GNcEROoIBAIsWLAA169fx6FDh1jHIaTYeJ5Heno6rl+/zjoKKQUKuxp/URgZGeHatWu/fMxP6WsCM+yBNdeAxI/FD2FQLr/Q1/92Ff5Ro0ahU6dOv5fvNwiFQjg6OkJZWbnUzkH+HxU68snBwQG7du1C7969YWRkhMWLF7OOJLV4nsfatWuRlJQEQ0ND1nEI+a73799j//792Lp1Ky5fvgw9PT30798fbm5uaNasGY3eyyFHR0c4OTlhzpw56NatG1RU6PKayA5ra2uUK1cOQqHwu9tsE9lGC/SVldw84PQzIOQJkCcGfvZbFyB/RN+5dv7UfWXpm4Dx5csXVKhQAX5+fpg2bRrrOMUiiwv0AcDOnTsxaNAgvH79GpUqVWIdh0jY6tWrMXHiRCxduhRTp05lHUcqvXr1CgYGBtizZw/69evHOg4hhfLy8vDPP/8gKCgIhw8fxpcvX9ChQwe4ubmhS5cu0NDQYB2RlLKbN2/C2toamzZtwvDhw1nHIaRYnJ2dIRaLERoayjoKkTDpqyLllbIS0LE2sKAd0KM+YK4HqPzn16+ilP/9HvXzV93vWFsqC30AuHbtGjIyMmhxvjJEffvybcKECZg1axamTZuGffv2sY4jlapWrYp69epROwuRGk+fPoWXlxfMzc3Rvn17REVFYe7cuYiLiyvcSo8KfcXQpEkT9O3bFz4+PsjMzGQdh5Biob59+UXzjMqathrQtkb+V54YSM0AsnIBNeX8qfpKsjG9TyQSQVdXF1ZWVqyjKAxTU1PUqFEDQqEQPXr0YB2HlILAwEAkJiZi8ODBqFKlClq3bs06ktTheZ6KfcLUx48fceDAAWzduhXh4eEoX748+vXrBzc3N9jY2NA0fQXm6+uL+vXrY82aNTI365EoNp7n4e7ujhs3bsDGxoZ1HCJB0jlsrCiUBEAlrfyV9itpyUyhD+T36zs4OFC/fhnjeZ769uWYQCDApk2bwPM8unXrhujoaNaRpA7HcXj48CGSk5NZRyEKJC8vDxcuXMCQIUNgYGCAESNGQEtLC7t370ZSUhLWrVsHW1tbKvQVXO3atTF8+HAEBATgw4cPrOMQUmRNmzaFtrY2XWPKISr2SbFlZWXh0qVLtOUeAxzHITo6Gm/fvmUdhZQSNTU1HDx4EDVr1oSzszPi4uJYR5IqBe0sdEFCykJMTAx8fHxQs2ZNtGnTBpcvX4anpydevHhRuJWepua3C+gSxeXt7Y309HQsXbqUdRRCikxVVRX29vY0c04OUbFPii0qKgqfP3+mfn0GCn7nFy9eZJyElCYdHR2cOnUK6urqcHJyQmpqKutIUsPQ0BB16tShYp+UmvT0dGzbtg08z6NGjRpYunQp2rVrh/Dw8MKt9ExNTVnHJFLK2NgYEyZMwJIlS/D69WvWcQgpMp7nER4ejpycHNZRiARRsU+KTSQSQUdHB02aNGEdReGYmZnB3Nyc7rwqAAMDA4SGhiIlJQVdunRBRkYG60hSg/r2iaSJxWKEhYVh2LBhMDAwgJubG1RUVLBjxw4kJSVh48aNsLe3p2n6pEhmz54NJSUlBAQEsI5CSJFxHIePHz/i5s2brKMQCaJinxRbQb8+7SPLBhU6iqNOnTo4efIkbty4gQEDBiA3N5d1JKnA8zwePHiAlJQU1lGIjHvx4gV8fX1Rq1YtcBwHkUiEmTNnIjY2FufOncPAgQOhra3NOiaRMRUrVsSMGTOwZs0aasUiMqNZs2bQ0tKimXNyhop9UizZ2dmIiIigKfwMFfTt09RuxWBjY4P9+/fj2LFjmDRpEsRiMetIzFHfPvkdnz9/xs6dO9GuXTtUr14dCxcuLCz0C7bSMzMzYx2TyLgpU6ZAT08PPj4+rKMQUiRqampo2bIlDSjJGSr2SbFcv34d6enptDgfQzzPQywWU9++AunUqRPWrVuHNWvWYOHChazjMGdkZITatWtTsU+KTCwWIyIiAiNHjoSBgQEGDRqE3NxcbN26FcnJydiyZQscHR1pmj6RmHLlymHOnDnYtm0bHjx4wDoOIUXC8zwuXrxIMwnlCBX7pFiEQiHKlSsHa2tr1lEUlrm5OczMzKjQUTAjR47E3Llz4e7uju3bt7OOwxzHcTT6QH7p5cuXCAgIQN26ddGqVSucPXsW06ZNw7Nnzwq30itXrhzrmEROjRo1CqampvDy8mIdhZAi4TgOHz58wK1bt1hHIRJCxT4pFpFIhFatWlG/PmNU6CimuXPnYsSIERg+fDhOnz7NOg5TPM/j3r17tNo1+UZGRgb27NmDDh06wMzMDP7+/rCzs8M///yD58+fw8fHBzVq1GAdkygAdXV1zJs3D4cOHcK1a9dYxyHkl5o3bw5NTU26xpQjVOyTIsvJyUF4eDj160sBnudx69YtpKWlsY5CypBAIMDatWvh5OSEnj174vr166wjMVPwPhQWFsY4CZEGYrEYkZGRGDNmDAwNDdG/f39kZGRg06ZNSE5OxrZt29C6dWsoKdFlDylbAwcOhIWFBTw8PFhHIeSX1NXVYWdnR7NH5Qh96pEiu3HjBj59+kT9+lKA4zjq21dQKioq2Lt3Lxo2bIiOHTvi+fPnrCMxYWJigpo1a9Log4JLTEzEwoULYWFhATs7O5w6dQoTJ07EkydPCrfS09HRYR2TKDBlZWX4+/vj3LlzOH/+POs4hPwSz/MICwujvn05QcU+KTKhUAhtbW00bdqUdRSFV716dZiamlKho6C0tbURHByM8uXLo0OHDgo7lb1gBXWiWDIzM7F//3507NgRpqam8PHxQdOmTXH27FnExsYWbqVHiLTo2rUrbGxs4OHhQTuqEKnH8zzev3+P6Oho1lGIBFCxT4pMKBTC3t4eqqqqrKMoPIFAQIWOgqtcuTJCQ0Px8eNHdOrUCenp6awjlTme53Hnzh28efOGdRRSysRiMa5du4bx48fDyMgIffv2xfv377Fu3TokJycXbqVH0/SJNBIIBAgMDMTVq1dx9OhR1nEI+akWLVpAQ0ODBpTkBH0qkiIp6NenKfzSg+d53Lx5E+/fv2cdhTBSo0YNnDp1Cvfv30ffvn2Rk5PDOlKZKujbp3YW+ZWcnIzFixfD0tISLVq0wLFjxzBmzBg8fPiwcCu98uXLs45JyC+1bt0a7du3h6enJ02PJlKN+vblCxX7pEhu3ryJjx8/0uJ8UoTjOOTl5SE8PJx1FMKQtbU1Dh06hNOnT2PMmDEKNUW0WrVqqF69Oo0+yJmsrCwcOnQInTt3homJCebMmQNLS0uEhobixYsXhVvpESJrAgIC8ODBA+zYsYN1FEJ+iuM4hIWFIS8vj3UU8puo2CdFIhKJoKWlhWbNmrGOQv6nZs2aMDY2pkKH4I8//sCWLVuwefNm+Pj4sI5Tpniep9eAHBCLxbhx4wYmTZoEIyMj9OrVC69fv8bq1auRlJRUuJWesrIy66iElFizZs3Qq1cvzJ07F1++fGEdh5Af4nke7969o759OUDFPikSoVCIli1bQk1NjXUU8j8CgQA8z9M0KwIAGDRoEBYsWID58+djw4YNrOOUGY7jcOfOHaSmprKOQkogJSUFy5Ytg5WVFZo2bYoDBw5g+PDhuHfvXuFWehUqVGAdkxCJ8fX1RXx8PNatW8c6CiE/ZGNjA3V1dbrGlANU7JNfys3NxcWLF6lfXwpxHIfr16/jw4cPrKMQKTBz5kxMmDABY8eORXBwMOs4ZaJgG8qwsDDWUUgRZWdn4+jRo+jWrRuMjY0xe/Zs1K1bFydPnsTLly8Lt9IjRB7Vq1cPbm5u8Pf3x8ePH1nHIeS7NDQ0YGtrSzPn5AAV++SXbt26hQ8fPlC/vhTieR55eXmIiIhgHYVIAYFAgOXLl6N79+7o27cvIiMjWUcqdebm5jAzM6PRBxlw+/ZtTJ06FcbGxujevTsSEhKwfPlyJCYmFm6lp6KiwjomIaVu7ty5+PDhA5YvX846CiE/xPM89e3LASr2yS+JRCJoamqiefPmrKOQ/6hVqxYMDQ3pzisppKysjJ07d6JZs2bo1KkTHj16xDpSqaO+fen15s0brFy5EtbW1rCyssLu3bsxePBgREdHF26lV7FiRdYxCSlT1apVw7hx4/DXX3/R1qFEanEch9TUVNy9e5d1FPIbqNgnv1TQr6+urs46CvmPgr59KnTIv2loaODYsWOoWrUqnJyckJSUxDpSqeJ5Hrdv38a7d+9YRyHIn6YfHByMnj17wsjICNOnT0f16tVx/PhxxMfHF26lR4gic3d3h1gsxoIFC1hHIeS7bG1toaamRjPnZBwV++SncnNzERYWRlP4pVhB3z71/pF/q1ChAkJDQ5GdnY2OHTvK9boOBX37Fy9eZB1Fod29exfTp0+HqakpunTpgpiYGCxevBiJiYmFW+mpqqqyjkmIVKhcuTKmT5+O1atXIz4+nnUcQr6hqakJGxsbGlCScVTsk5+Kjo7G+/fvaXE+KcbzPHJzc6lvn3zD1NQUISEhiImJQc+ePZGVlcU6UqkwNzdHtWrVaPSBgdTUVPz9999o3rw5LC0tsW3bNri6uuLWrVuFW+lVqlSJdUxCpNK0adOgo6ODefPmsY5CyHdR377so2Kf/JRQKISGhgZatGjBOgr5gTp16sDAwIAKHfJdlpaWOHr0KMLCwjBs2DC5/MAWCATgOI5GH8pITk4OTp06hT59+sDQ0BBTpkyBsbExjhw5goSEBCxbtgyNGzdmHZMQqaejowMPDw9s3boVjx8/Zh2HkG9wHIc3b97g/v37rKOQEqJin/yUSCSCnZ0d9etLMSp0yK/wPI8dO3Zg9+7dcHd3Zx2nVPA8j5s3byItLY11FLn14MEDzJo1C9WqVYOLiwsePnyIBQsWICEhoXArPTU1NdYxCZEpY8eOhZGREby8vFhHIeQbdnZ2UFVVpWtMGUbFPvmhvLw86teXETzPIyoqCp8+fWIdhUipPn36YNmyZVi0aBFWrlzJOo7EFfTth4eHs44iV9LS0rBu3TrY2trCwsICmzZtQs+ePXH9+vXCrfSqVKnCOiYhMktDQwM+Pj7Yv38/bty4wToOIV/R0tJCixYtaPaoDKNin/zQnTt38O7dO+rXlwEcxyEnJweXLl1iHYVIscmTJ2P69OmYMmUKDhw4wDqORNWoUQMmJiY0+iABubm5OH36NFxdXWFgYIAJEyagUqVKOHjwIBITE7Fq1SpYW1tDIBCwjkqIXBg8eDDq1asHDw8P1lEI+QbP8xCJRBCLxayjkBKgYp/8kFAohLq6OmxsbFhHIb9Qr149VKlShQod8ksLFy6Eq6srBg4cKFd36gvaWeTp71TWHj9+DA8PD5iZmcHJyQnR0dHw8/PDy5cvceLECfTs2ZNauggpBSoqKvDz88Pp06fpc5xIHZ7n8fr1azx48IB1FFICVOyTHxIKhbC1tYWGhgbrKOQXqNAhRaWkpIStW7fCwcEBXbt2xd27d1lHkhie53Hjxg28f/+edRSZ8eHDB2zatAn29vaoW7cu1q5diy5duuDq1auFW+kZGhqyjkmI3OvRoweaNWsGd3d3GkElUsXOzg4qKip0I0pGUbFPvqugX5+m8MsOnudx9epVpKens45CpJyamhoOHz4Mc3NzODk54eXLl6wjSQTP88jLy6NtKH8hLy8P58+fx8CBA2FgYIDRo0dDV1cX+/btQ1JSEtasWYPmzZvTNH1CypBAIEBAQAAiIyMRHBzMOg4hhbS1talvX4ZRsU++6+7du0hNTaXF+WRIQd/+5cuXWUchMkBXVxchISFQUVGBs7OzXKxiX7NmTRgZGdHoww88e/YMXl5eqF69Otq1a4eoqCjMnTsXcXFxCAkJQZ8+fWgmFyEMtWvXDm3atIGnpydyc3NZxyGkUMGuTzTrRPZQsU++SyQSQU1NDba2tqyjkCKysLBApUqVqNAhRWZoaIjQ0FAkJSWha9euyMzMZB3ptwgEAvA8T6+Bf/n48SO2bt0KR0dH1KpVCytXroSTkxMuX75cuJWesbEx65iEEPz/6P7du3exe/du1nEIKcTzPFJSUvDo0SPWUUgxUbFPvksoFMLGxgaampqso5AiKih0aJoVKY569eohODgYV69exaBBg5CXl8c60m/hOA43btzAhw8fWEdhJi8vD0KhEEOGDIGBgQGGDx8ODQ0N7N69G8nJyVi/fj1sbW1pmj4hUsjGxgbdunWDt7c3srKyWMchBADQsmVLKCsr0810GUTFPvkG9evLLo7jcOXKFXz+/Jl1FCJDWrZsib179+Lw4cOYOnWqTE/T43keubm5Ctm3HxMTAx8fH9SsWROtW7fGpUuX4OnpiRcvXuDMmTNwdXWlG7iEyAA/Pz/ExcVhw4YNrKMQAgAoV64cmjdvTsW+DKJin3zj/v37ePPmDfXryyCe55GdnY3IyEjWUYiM6dq1K9asWYOVK1di8eLFrOOUWO3atWFgYKAwM1zS09Oxfft2tG7dGjVq1MDSpUvRtm1bhIeHF26lZ2pqyjomIaQYGjRogEGDBsHPz48W3SVSo2DXJ1keEFBEVOyTb4hEIqiqqsLOzo51FFJMFhYWqFixIt15JSUyevRozJkzBzNnzsTOnTtZxykRRejbF4vFuHjxIoYNGwYDAwMMGTIESkpK2LFjB5KSkgq30qNp+oTILh8fH7x79w4rVqxgHYUQAPkDSsnJyXj8+DHrKKQYqNgn3xAKhWjRogW0tLRYRyHFpKSkVLhiKiElMX/+fAwdOhRDhw7F2bNnWccpEZ7nERUVhU+fPrGOIlFxcXHw9fVF7dq14ejoCJFIhJkzZyI2NrZwKz1tbW3WMQkhEmBubo4xY8Zg0aJFSE1NZR2HENjb20NZWVlhZs7JCyr2yVfEYjFEIhH168uwgr79jIwM1lGIDBIIBFi/fj3at2+PHj164ObNm6wjFRvHcXLTt//582fs2rUL7dq1g7m5ORYuXAgHBweIRCI8efIEXl5eMDMzYx2TEFIKPD09kZOTg4ULF7KOQgh0dHTQtGlTGlCSMVTsk688ePAAr1+/pmJfhvE8j6ysLOrbJyWmqqqKAwcOoH79+ujYsSNiYmJYRyqWunXromrVqjI7+iAWi3Hp0iWMHDkSBgYGGDhwIHJycrB161YkJycXbqWnpEQf4YTIsypVqmDatGlYuXIlEhISWMchpHDXJ+rblx10pUC+IhQKoaKiQv36Mqxhw4bQ19eX2UKHSAdtbW2cOHEC5cqVg5OTE968ecM6UpEJBAKZbGeJj49HYGAg6tWrB3t7e5w9exbTpk3Ds2fPCrfSK1euHOuYhJAy9Oeff0JLSwu+vr6soxACjuOQmJiIp0+fso5CioiKffIVkUiEFi1aUN+nDFNSUoKjo6PMFTpE+lSpUgWhoaF49+4dOnfuLFNbOvI8j2vXrkn9StYZGRnYu3cvOnTogGrVqsHX1xc2Njb4559/8Pz5c/j4+KBGjRqsYxJCGClfvjzc3d2xefNmKrAIc61atYKSkhINKMkQKvZJIbFYDKFQSFvuyQGe5xEZGYnMzEzWUYiMq1mzJk6dOoU7d+7A1dUVOTk5rCMVCcdxyMnJwaVLl1hH+YZYLMaVK1cwZswYGBoawtXVFZ8/f8amTZuQnJxcuJUeTdMnhADA+PHjUbVqVXh7e7OOQhScrq4urK2taUBJhtCVBCn06NEjpKSkUL++HOA4Dl++fMGVK1dYRyFyoFmzZjh48CBOnjyJ8ePHy0SvXv369VG5cmWpuiBJTEzEwoULYWFhAVtbW5w6dQoTJ07EkydPCrfS09XVZR2TECJlNDU1MXfuXOzZswe3bt1iHYcouILtbWXhWoBQsU/+RSgUQllZGS1btmQdhfymRo0aoUKFClJV6BDZ5uTkhE2bNmHDhg3w8/NjHeeXCvr2WU81zMzMxIEDB9CxY0eYmprCx8cH1tbWOHv2LGJiYuDr64tatWoxzUgIkX5Dhw5F7dq14enpyToKUXAcxyEhIQHPnz9nHYUUARX7pJBQKETz5s1pASg5oKSkVLg9FyGS4ubmBn9/f3h7e2Pz5s2s4/wSz/O4evVqma81IBaLERUVhfHjx8PIyAh9+vRBWloa1q1bh+Tk5MKt9JSVlcs0FyFEdqmoqMDPzw+nTp3CxYsXWcchCqygb58GlGQDFfsEQP7FqUgkoin8coTneVy+fBlfvnxhHYXIEXd3d4wdOxajR4/GyZMnWcf5KZ7nkZ2djcuXL5fJ+ZKTk7F48WJYWlqiefPmOHbsGMaMGYOHDx8WbqVXvnz5MslCCJE/vXr1QpMmTeDu7k5TqAkzenp6aNKkCQ0oyQgq9gkA4PHjx0hOTqbF+eQIx3HIzMzE1atXWUchckQgEGDVqlXo3Lkz+vTpI9X/viwsLFCpUqVSHX3IysrC4cOH0blzZ5iYmGDOnDlo2LAhQkND8eLFCwQEBKBu3bqldn5CiOJQUlJCQEAAIiIicOrUKdZxiAIr2N6WbjpJPyr2CYD8LfeUlZVhb2/POgqRkMaNG6N8+fI0zYpInLKyMnbv3g0rKyu4uLjgyZMnrCN9V0HfvqRfA2KxGDdv3sSkSZNgZGSEnj17IiUlBatXr0ZSUlLhVno0TZ8QImkdOnQAx3Hw8PBAXl4e6zhEQfE8j5cvXyI2NpZ1FPILVOwTAPn9+k2bNoWOjg7rKERClJWV4ejoSNOsSKnQ1NREcHAwKlWqhA4dOuDVq1esI30Xx3ES69tPSUnB8uXLYWVlBWtraxw4cADDhw/HvXv3CrfSq1ChggRSE0LI9wkEAgQGBiI6Ohp79+5lHYcoKAcHBwgEAhpQkgFU7BPq15djHMfh0qVL1LdPSoW+vj5CQ0ORmZmJjh074uPHj6wjfYPneWRlZSEyMrJEz8/OzsaxY8fQrVs3GBsbY9asWahTpw5OnjyJly9fFm6lRwghZcXOzg6dO3eGt7c3srOzWcchCkhPTw9WVlY0oCQDqNgnePr0KRITE6lfXw7xPI+MjAxcu3aNdRQip8zMzBASEoKnT5+id+/eUnfh2aBBA+jr6xf7giQ6OhpTp06FsbExunXrhvj4eCxfvhyJiYmFW+mpqKiUUmpCCPk5f39/PH/+XCZ2RiHyqTTa5IjkUbFPIBKJoKSkhFatWrGOQiTMysoKurq6dOeVlKrGjRvjyJEj+OeffzBixAipWrBHSUmpyBckb968wapVq2BtbY3GjRtj9+7dGDx4MKKjowu30qtYsWLphyaEkF+wtLTEgAEDMH/+/DLfXpQQIH9A6cWLF9S3L+Wo2CcQCoWwtraGrq4u6yhEwpSVleHg4EB3Xkmpa9OmDbZv347t27fD09OTdZyv8DyPK1euIDMz85uf5eTk4MSJE+jZsyeMjIwwbdo0mJub4/jx44iPjy/cSo8QQqTNvHnz8Pr1a6xatYp1FKKACvr2aUBJulGxr+DEYjGEQiH168uxgr79rKws1lGInOvXrx+WLFmCwMBA/P3336zjFOI4Dl++fPmqb//evXuYPn06TExM0LlzZzx//hyLFy9GYmJi4VZ6qqqqDFMTQsjP1ahRA6NHj8aCBQvw7t071nGIgtHX10ejRo1oQEnKUbGv4J4/f46EhAQq9uUYz/P4/PkzoqKiWEchCmDatGmYOnUqJk6ciCNHjrCOAyB/umuFChUQGhqKNWvWoHnz5mjYsCG2bduGfv364ebNm4Vb6VWuXJl1XEIIKbI5c+YgKysLf/31F+soRAHxPE8j+1KOin0FJxQKqV9fzjVp0gQ6Ojr0ZkzKzOLFi9GnTx+4uroiPDycaZacnBycPn0ampqaWLRoESZNmgQjIyMcOXIECQkJhVvpEUKILDIwMMDkyZOxYsUKJCUlsY5DFAzHcYiJiUFcXBzrKOQHqNhXcCKRCE2aNEH58uVZRyGlREVFBa1ataJpVqTMKCkpYdu2bWjZsiW6dOmC+/fvl3mGBw8eYNasWahWrRo6duwIsVgMZWVlPHv2rHArPTU1tTLPRQghkjZz5kyoq6vDz8+PdRSiYBwdHQGABpSkGBX7CqygX5+23JN/PM8jIiJC6rZFI/JLXV0dR44cgYmJCZycnJCQkFDq50xLS8P69etha2sLCwsLbNq0CT179sT169dx4sQJ5OTk4MWLF6WegxBCypKenh5mzZqFDRs24Pnz56zjEAVSsWJFWFpa0oCSFKNiX4HFxsbi5cuX1K+vADiOQ3p6Oq5fv846ClEg5cuXR0hICADA2dkZ79+/l/g5cnNzcebMGbi6usLAwADjx49HpUqVcPDgQSQmJn61lZ6enh5dkBBC5NLEiRNRuXJlzJ07l3UUomCob1+6UbGvwIRCIQQCARwcHFhHIaXM2toa5cqVo0KHlDljY2OEhoYiPj4e3bp1w5cvXyRy3MePH8PDwwNmZmbo0KEDoqOj4efnh5cvXxZupaeurl74+IJtKOmChBAij7S0tODt7Y1du3bhzp07rOMQBcJxHJ49e4b4+HjWUch3ULGvwIRCIaysrKCnp8c6CillqqqqsLe3p0KHMGFhYYHjx4/j8uXLGDJkCPLy8kp0nA8fPmDTpk2wt7dH3bp1sXbtWnTp0gVXr17F3bt3MX36dBgaGv7w+TzP49KlSxK74UAIIdJk+PDhqFGjBjw9PVlHIQqE+valGxX7CkwkEtEUfgXC8zzCw8ORk5PDOgpRQK1atcLu3buxf/9+TJ8+vcjPy8vLw/nz5zFw4EAYGBhg9OjR0NXVxb59+5CUlFS4lZ5AIPjlsXieR2ZmJq5du/Y7fxVCCJFKqqqqmD9/PoKDg3Hp0iXWcYiCqFy5Mho0aECzR6UUFfsKKjY2Fi9evKDF+RQIx3H49OkTbty4wToKUVA9evTAqlWrsGzZMixduvSnj3327Bm8vLxQvXp1tGvXDlFRUfD29kZcXBxCQkLQp08faGhoFOv8jRs3Rvny5emChBAit/r164dGjRrB3d0dYrGYdRyiIHiep89WKUXFvoISiUTUr69gmjVrBi0tLXozJkyNHz8e7u7u+PPPP7Fnz56vfvbx40ds3boVjo6OqFWrFlauXAknJydcunQJDx48wOzZs2FsbFzicxf07dNrgBAir5SUlBAQEICwsDCcPn2adRyiIHiex9OnT8tk5x1SPFTsKyihUIhGjRpBX1+fdRRSRlRVVdGqVSvqqSLM+fv7Y/DgwRgyZAjOnTsHoVCIIUOGwMDAAMOHD4eGhgZ27dqF5ORkrF+/HnZ2dkWapl8UHMfh0qVLyMrKksjxCCFE2nTs2BH29vbw8PAo8RophBQH9e1LLyr2FRT16ysmjuNw8eJF6tsnTAkEAnh6eqJatWr4448/0Lp1a1y6dAkeHh548eIFzpw5g/79+0NTU1Pi5+Z5HhkZGdS3TwiRWwKBAAsWLMDNmzdx4MAB1nGIAqhSpQosLCyo2JdCVOwroLi4OMTExFC/vgLieR4fP37EzZs3WUchCig9PR3bt29H69atUbduXbx69Qr6+vqoWLEizp49C09PT5iampZqBisrK+jo6NAFCSFErrVq1QodO3aEl5cXsrOzWcchCoDjOGqTk0JU7Cuggovcgik3RHE0a9YMmpqaVOiQMiMWi3Hx4kUMGzYMBgYGGDJkCJSUlLB9+3YkJyfj3r17KF++PJydnZGamlrqeVRUVKhvnxCiEPz9/fHkyRMEBQWxjkIUAM/zePz4MZKSklhHIf9Cxb4CEgqFsLS0RMWKFVlHIWVMTU0N9vb2VOiQUhcXFwdfX1/Url0bjo6OEAqFmDFjBmJiYnD+/HkMGjQI2traqFq1KkJDQ/HmzRt07twZGRkZpZ6N53lERETQaBchRK5ZWVnB1dUVPj4+ZfLeShQb9e1LJyr2FZBQKKR+fQVW0Lefm5vLOgqRM58/f8auXbvQrl07mJubY+HChYWj6E+fPoW3tzfMzc2/eV7t2rVx8uRJ3Lp1C/379y/1f5scx+Hz58+Iiooq1fMQQghr8+fPR0pKCv7++2/WUYicMzAwQL169ajYlzJU7CuYly9f4vnz51TsKzCe5/HhwwfcunWLdRQiB8RiMS5duoSRI0fCwMAAAwcORE5ODrZs2YLk5GRs3boVHMdBSennHzctWrTA/v37ERwcjIkTJ5bq/tDW1tYoV64cXZAQQuRerVq1MGLECAQGBuL9+/es4xA5R3370oeKfQVD/fqkefPm1LdPflt8fDwCAgJQt25d2Nvb4+zZs5g6dSqePXsGoVAINzc3lCtXrljHdHFxwfr167F27VoEBgaWUvL8vv1WrVrRBQkhRCF4eXkhIyMDixcvZh2FyDme5/Hw4UMkJyezjkL+h4p9BSMSidCwYUNUqlSJdRTCiLq6Ouzs7KjQIcWWkZGBvXv3okOHDqhWrRr8/Pxga2uL8+fP4/nz55g3bx5q1KjxW+cYPnw45s2bB09Pz1JdVIrneYSHh1PfPiFE7hkZGWHixIlYtmwZXr16xToOkWMFO32FhYUxTkIKULGvYIRCIW25R8DzPPXtkyIRi8W4cuUKxowZA0NDQ7i6uuLz58/YuHEjkpOTsX37drRp0+aX0/SLw8vLC6NGjcKIESMQEhIiseP+G8dxSE9Px40bN0rl+IQQIk1mzZoFFRUVBAQEsI5C5JihoSHq1KlDA0pShIp9BZKQkICnT59Svz4Bx3FIS0tDdHQ06yhESiUmJmLhwoWwsLCAra0tTp48iQkTJuDx48e4ePEihg8fDl1d3VI5t0AgwN9//w0XFxf07t0b165dk/g5mjZtCm1tbbogIYQoBH19fcycORNr165FbGws6zhEjvE8T62iUoSKfQVC/fqkQIsWLaChoUGFDvlKZmYmDhw4gI4dO8LU1BQ+Pj6wtrbGmTNnEBsbCz8/P9SuXbtMsqioqGDPnj2wtLSEi4sLnj17JtHjq6qqwt7eni5ICCEKY/LkydDX14ePjw/rKESOcRyH+/fvIyXpFfDmM5D4Mf+/uXmsoykkKvYViEgkgoWFBapUqcI6CmFMQ0MDtra2VOgQiMViREVFYfz48TAyMkKfPn2QlpaGtWvXIjk5Gbt27UL79u2hrKxc5tm0tLQQHByMChUqoEOHDkhJSZHo8QvaWXJyciR6XEIIkUba2trw8vLCjh07cO/ePdZxiDxKz0JnrQa40W8VKgVcB7wvAH5h+f+dehpYFAGcfw6kZ7FOqjCo2FcgQqGQpvCTQjzPIywsDHl5dKdVESUnJ2Px4sWwtLRE8+bNcfToUYwePRoPHz7EpUuXMGrUKJQvX551TFSqVAmnT59Geno6XFxc8OnTJ4kdm+d5fPr0CTdv3pTYMQkhRJqNHDkSZmZmmDNnDusoRJ7k5gGnngCzz0HnbDysKlSHUu5/ttDNyQNi04DDD4DZ5/IfT6P9pY6KfQWRlJSEx48f0+J8pBDHcXj37h3u3LnDOgopI1lZWTh8+DA6d+4MExMTzJkzBw0bNkRISAji4uIQGBiIunXrso75DXNzc5w6dQqPHj1Cnz59JLaCfrNmzaClpUXtLIQQhaGmpoZ58+bh6NGjuHLlCus4RB6kZgCB4cCJx0CuGBADgp89Xoz8x514nP+81IwyCqqYqNhXEAXTtanYJwVsbW2hrq5OhY4CuHnzJiZPngwjIyP07NkTKSkpWLVqFZKSkrB37144OTkxmaZfHE2aNMHhw4dx9uxZjBkzBmKx+NdP+oWCvn16DRBCFEn//v3RsGFDuLu7S+S9lCiw1AzgrwgguYSz7pI/5T+fCv5SQ8W+ghAKhahXrx6qVq3KOgqREtS3L99ev36N5cuXw8rKCtbW1ti/fz+GDRuGe/fu4cqVKxg7diwqVKjAOmaxtGvXDkFBQdiyZQvmzp0rkWNyHIfw8HDq2yeEKAxlZWX4+/vjwoULOHfuHOs4pISCgoIgEAgKd1dwc3ODubl5qZ1PIBB8vbhjbh6w5hrwMQvIK+FNozxx/vPXXCvxlP7Dhw/D1dUVtWrVgqamJszNzTFgwAA8efLkq8fFxsZCIBD88MvJyalkfwcpp8I6ACkbIpGI+vXJNziOw+rVq5GXlyfRfdIJG9nZ2Th16hSCgoJw4sQJKCkpoUuXLvD390eHDh2goiL7b/kDBgxAYmIiZs6cCWNjY4wePfq3jsfzPObMmYNbt26hWbNmEkpJCCHSrXPnzrCzs4O7uzvatWsHgeCnE6+JDPDy8sLkyZNL7fiXL1+GiYnJ/3/j9LP8lfZ/V544/zinnwEdi7/jz8KFC2FgYABPT0/UqFEDL1++REBAAKytrREZGYkGDRoAAAwNDXH58uVvnn/06FEsXLgQ3bt3/+2/ijSS/Ss/8kvJycl4+PChxEbCiPzgeR7z58/H3bt30ahRI9ZxSAlFR0cjKCgIO3fuxOvXr9G0aVMsW7YMrq6uqFixIut4Ejd9+nTEx8dj3LhxMDAwQNeuXUt8rObNm0NTUxMikYiKfUKIwhAIBAgMDATP8zh06BB69erFOhL5TTVr1izV49va2v7/H9KzgJAnP35wSYQ8ATgzQFutWE8LDg7+ZqexNm3awNzcHMuWLcOmTZsAAOrq6l//Hf7H3d0dWlpacHV1LXl2KUZDeQogLCwMAPXrk2/Z2tpCTU2NpvLLoDdv3mDVqlVo2rQpGjdujF27dmHQoEGIjo5GVFQUJkyYIJeFPpB/kbps2TL07NkT/fr1w6VLl0p8LDU1NbRs2ZL69gkhCofjOHTo0AFz5syhViY58L1p/GlpaRg+fDj09fVRrlw5uLi44Pnz599OyS+Cr54TGY+g+2chWNsJ/8TfxkjhSlTc4grdTb0x+PwSpGdnIvnzO/Q5swB6m/vCcNsgTL+0Gdm5X/87+5KbjflRe1B/zxhorO2GioZV0bp162J9rn9vS3EjIyOYmJjg5cuXP33us2fPIBKJ0KdPH+jq6hb5nLKEin0FIBQKUadOHRgaGrKOQqSMpqYmbGxsqNCRETk5OThx4gR69eoFIyMjTJs2DWZmZjh27Bji4+OxZMkSWFpaso5ZJpSUlLB9+3a0aNECnTt3xsOHD0t8LJ7ncfHiReTm5kowISGESL+AgAA8evQI27dvZx2FSFheXh46d+6M3bt3Y9asWThy5AhsbGwk05t+PSl/VX0AI4QrUV5NG3vbz8Scpn2x+4kII4Wr4HLSB40rVsfBDu4YUrctltw+glV3gwsPkZOXC+cTc+F7fS86mbXAkQ6eCOoxGy1btkRcXNxvxXv+/DlevHhROIX/R7Zs2QKxWIwRI0b81vmkGU3jVwBCoZD69ckPcRyHdevWUd++FLt37x6CgoKwY8cOvHr1ClZWVvjrr7/Qv39/VK5cmXU8ZjQ0NHD06FE4ODjAyckJly5dgpGRUbGPw3EcvLy8cPv2bVhbW5dCUkIIkU7W1tbo06cP5s6di/79+0NDQ4N1JCIhoaGhCA8Px9q1azFmzBgAQPv27aGmpgZ3d/eSHzg3D4j/UPjHTuYtsLjl8PzjmzbB5VcPseepCEtbjsDUxt0AAO1MrHD65Q3seizEtMb5vfF7nohwITEaG7mJGGHRIf9gKkro7OsEKJV8DYmcnBwMHz4c5cqVw9SpU3/818jNxbZt21CvXj3Y29uX+HzSjq7s5VxKSgoePHhAxT75IZ7n8ebNG9y/f591FPIvqampWLNmDVq0aIGGDRsiKCgI/fr1w82bNwu30lPkQr9AhQoVEBoaitzcXHTs2BEfPnz49ZP+o0WLFtDQ0KB2FkKIQvL19UVSUhLWrl3LOgqRoILPtD59+nz1/d/uTX+XCeT8/8r5ncyaf/Xj+nqmAACX73z/xafXhX8OibsODWU1DKvf/v8flJP3W9vwicViDB8+HBcvXsT27dthamr6w8eGhoYiISEBw4cPL/H5ZAEV+3Ku4IVO/frkR+zs7KCqqkqFjhTIyclBSEgI+vbtC0NDQ0yaNAmGhoY4fPgwEhISCrfSI18zMTFBSEgIXrx4gR49eiArK6tYz1dXV4ednR21sxBCFFKdOnUwdOhQBAQElOiGKZFOb9++hYqKCvT19b/6/m9vw531dcubvrrOV39WU1b53/fLffP9zJz//3x+nfkeRtr6UBL8pxzNKllLXcF0/J07dyIoKOiXi/du3rwZqqqqGDx4cInOJyuo2JdzIpEItWvXLtHUVqIYtLS00KJFCyp0GHr48CFmz54NMzMzdOzYEffv30dgYCASEhJw7NgxdO/eHWpqxVudVtE0bNgQx44dw8WLFzF06FDk5RVvv16e5xEWFkZ9+4QQhTR37lx8/PgRS5cuZR2FSEjFihWRk5OD1NTUr76fnJz8ewdWU/695/9PZY3ySExPRZ74P5/XJTh+QaG/detWbNq0CQMHDvzp41NSUnDixAl06dLluwv8yRMq9uWcUCikUX3ySzzPQyQSQSwWs46iMNLS0rB+/XrY2dmhfv362LhxI3r06IGoqChER0dj2rRpv3/3XcE4Ojpi165d2LNnD2bNmlWs53Ich7S0NNy5c6eU0hFCiPQyMTHBhAkTsGTJErx+/frXTyBSr+D6f9++fV99f+/evb934AoagMrvl5DO1ZoiMzcLQQ/P/f83VZQAfc1iHUcsFmPkyJHYunUr1q9fj6FDh/7yOdu3b0d2drbcT+EHqNiXa69fv8a9e/eoX5/8EsdxeP36NR48eMA6ilzLzc3FmTNn0L9/fxgaGmLcuHGoWLEiDhw4gMTExMKt9ASCki9Mo+h69eqFFStWYPHixVi+fHmRn2djYwN1dXWa4UIIUVizZ8+GQCBAYGAg6yhEApycnGBvb48///wTCxcuxLlz5+Dr64vNmzcDQMkXZVZWAkx+f5s619ocWhs1wpiwNZh1eStC467j1Kd7mDvPp1g3JCZNmoTNmzdj6NChsLS0RGRkZOHXzZs3v/uczZs3w9TUFB06dPjtv4e0o9X45VhYWBgA6tcnv9ayZUuoqKhAKBTCwsKCdRy58/jxY2zbtg3bt29HfHw86tevj/nz52PgwIG0JWYpmDhxIuLj4zFt2jQYGRl9szjR92hoaMDW1hYikQhTpkwp/ZCEECJlKlWqhBkzZsDPzw9TpkxBtWrVWEciv0FJSQnBwcH4888/sWDBAmRlZcHe3h47d+6Era0t9PT0in3MwsGIpobA6d/Lp6KkjFMuPgi8cQB7noqwPPoYdMrpoHGzJsXaHjA4OH87vy1btmDLli1f/czMzAyxsbFffe/SpUt4+PAhvL29FWIXKoGY5u3KrUmTJuHUqVN4+vQp6yhSpX///nj16hXOnz/POopUadmyJUxNTb+Z7kVK5sOHD9i/fz+CgoIQEREBPT09uLq6ws3NDc2bN6fR+1KWl5eHIUOGYP/+/Th9+nSRZjj5+Phg1apVeP36tUJcABBCyH99/PgRNWvWROfOnQtHgIl82b17NwYMGICIiAi0bNmySM95//499PT0sGrVKkyYMAFIzwJmnwNyJVhGKguAhe0BLVXJHZPQNH55JhQKaQo/KTKe5yEUCqlv/zfk5eXh/PnzGDRoEAwMDDB69Gjo6Ohg7969SEpKKtxKjwr90qekpITNmzeD4zh069atSL34PM8jNTUVd+/eLYOEhBAifXR0dODp6YmgoCA8fPiQdRzym/bs2YPFixfj9OnTOHv2LHx9fTFmzBg4OjoWudCPjIyEj48PgPwdnAAA2mqAc23JhnWuTYV+KaBiX069efMGd+7coSn8pMg4jkNKSgoePXrEOorMefbsGby9vVG9enW0a9cOV69ehbe3N+Li4gq30tPQ0GAdU+Goqanh0KFDqFGjBpydnfHy5cufPt7GxgZqamrUt08IUWhjxoyBiYkJ5syZwzoK+U0FAw59+/ZFx44dsXHjRri5uRVOfQfyt/392Vf//v1x+PBhLFmyBE2bNv3/g3eoCRjpAEq/OYChJMg/ToeaX307Ly/vl9nIr1GxL6cuXrwIgPr1SdHZ29tDWVmZCp0i+vjxI7Zu3QqO41CrVi2sWLECTk5Ohb1gs2fPhrGxMeuYCk9HRwenTp2CqqoqnJyc8O7dux8+VlNTE7a2tvQaIIQoNHV1dcybNw+HDh1CVFQU6zjkN3Tq1AlRUVFIS0tDdnY24uLisHLlSujq5i+wFxsbC1VV1Z9+DR48GC9evMC0adO+PriyEjCuOaCjVvKCX0kA6KrnH0f567J02LBhv8xGfo169uXU5MmTERwcjOfPn7OOInWoZ//H7OzsYG5ujj179rCOIpXy8vIQFhaGoKAgHDx4EJ8/f0a7du3g5uaGbt26QUtLi3VE8gOPHj2Cvb09LCwscObMmR/OtPD29saaNWuQkpJCffuEEIWVm5sLS0tLmJiY4MyZM6zjkFKSlZWF6Ojonz7GyMgIRkZGP35Aagaw5hqQ+LH4AYx08gv972y3Fxsbizdv3vz06c2aNSv+ORUMFftyysrKCtbW1t+sSkmo2P+Z2bNnY9u2bUhMTKS+8n+JiYnB9u3bsW3bNsTExKBWrVpwc3PDoEGDaLViGRIZGYk2bdqgY8eO2LdvH5SVlb95zD///IO2bdsiOjoalpaWDFISQoh0OHLkCHr06IHz58+jTZs2rOMQaZabB5x+BoQ8AfLEwM+qSwHyR/Sda+dP3VemG+uliX67cig1NRXR0dE0hZ8UG8/zSE5OxuPHj1lHYS49PR3bt29HmzZtUKNGDSxevBht2rTBxYsX8fjxY3h6elKhL2NsbW2xd+9eHDlyBFOmTPnuYpS2trZQVVWFSCRikJAQQqRHt27d0KJFC7i7u9PiveTnlJWAjrWBBe2AHvUBcz1A5T9lpopS/vd71M9fdb9jbSr0y4AK6wBE8i5evAixWEzFPim2gr59kUiEunXrso5T5sRiMcLDwxEUFIT9+/fj06dPaNOmDbZv344ePXpAW1ubdUTym7p06YK1a9di9OjRMDExwaxZs776uZaWFmxsbCAUCvO3FyKEEAUlEAgQEBCAdu3a4dixY+jWrRvrSETaaasBbWvkf+WJ86f4Z+UCasr5U/V/dzE/Umx0O0UOCYVCmJmZwdzcnHUUImN0dHTQtGlThVugLC4uDn5+fqhduzYcHR1x4cIFzJgxAzExMYVb6VGhLz9GjRoFb29vzJ49Gzt27Pjm5zzPQyQS0UgWIUThtW3bFu3atYOnpydyc3NZxyGyREkAVNLK78uvpEWFPiNU7MshoVAInudZxyAyiuM4hSh0Pn/+jF27dqF9+/YwNzfHggUL4ODgAKFQiKdPn8Lb25tumMkxHx8fDB8+HMOGDftm8SmO4/DmzRvcv3+fUTpCCJEeAQEBuH//Pnbu3Mk6CiGkmKjYlzPv3r3D7du3qdgnJcbzPBITE/H06VPWUSROLBbj0qVLGDVqFAwNDTFw4EBkZ2djy5YtSE5OLtxKj1Zhl38CgQDr1q1Dhw4d0LNnT9y4caPwZ3Z2dtS3Twgh/9O8eXP06NED3t7e+PLlC+s4hJBioCtaOUP9+uR3tWrVCkpKSnJV6MTHxyMwMBD16tWDvb09zpw5gylTpuDp06cQCoVwc3NDuXLlWMckZUxFRQX79u2DhYUFOnbsWLhVqba2Npo3b65w7SyEEPIjfn5+iI+Px/r161lHIYQUAxX7ckYkEqFatWo0/ZiUmK6uLqytrWW+0MnIyMDevXvh5OQEMzMz+Pr6wsbGBufPn8fz588xb9481KxZk3VMwpi2tjZOnDgBXV1dODk5Fe7pS337hBDy/+rXr48hQ4bAz88PHz+WYD91QggTVOzLGaFQCI7jaI908ltktdARi8W4cuUKxo4dC0NDQ7i6uiI9PR0bNmxAcnJy4VZ6NE2f/FvlypURGhqK9+/fo1OnTkhPTwfHcUhJScHDhw9ZxyOEEKng4+OD9+/fY/ny5ayjEEKKiK545UhaWhpu3bpF/frkt3Ech/j4+MJpzdIuMTERixYtQoMGDWBra4sTJ05gwoQJePz4MS5evIjhw4dDV1eXdUwixWrUqIFTp07h3r176NevH1q0aAEVFRWZn+FCCCGSUq1aNYwbNw6LFy/G27dvWcchhBQBFftyJDw8HHl5edSvT35bQd++NBc6X758wYEDB+Di4gJTU1PMnTsXTZo0wZkzZxAbG1u4lR4hRdW0aVMcOnQIoaGhmDFjBpo1ayZXa1cQQsjv8vDwQF5eHhYsWMA6CiGkCKjYlyMikQgmJiaoUaMG6yhExunp6cHKykrqCh2xWIyoqChMmDABhoaG6NOnD969e4e1a9ciKSmpcCs9ZWVl1lGJjPrjjz+wefNmbNq0qXBkX9baWQghpLRUrlwZf/75J1atWoX4+HjWcQghv0DFvhyhfn0iSTzPS02hk5ycjCVLlqBRo0Zo3rw5jhw5gtGjR+PBgweFW+np6emxjknkxODBgxEYGIjw8HC8evUKjx8/Zh2JEEKkxrRp01CuXDnMnz+fdRRCyC9QsS8n3r9/jxs3blC/PpEYjuPw8uVLxMbGMjl/VlYWDh8+jC5dusDExASenp5o0KABQkJCEBcXV7iVHiGlYdasWRg5ciQAYOXKlYzTEEKI9NDV1YWHhwe2bNlCN0MJkXJU7MuJiIgI5OXlUbFPJMbBwQECgaDM+/Zv3ryJyZMnw8jICD179sSrV6+watUqJCUlFW6lR9P0SWkTCARYu3YtKlSogPXr1yMyMpJ1JEIIkRrjxo2DoaEhvLy8WEchhPwEFftyQigUwsjIiPYNJxJToUKFMuvbf/36NZYvXw4rKytYW1tj//79GDZsGO7evVu4lV6FChVKPQch/6asrIyhQ4dCWVkZLi4uNIJFCCH/o6GhAR8fH+zfvx83btxgHYcQ8gNU7MsJkUgEnuepX59IFMdxpTayn52djWPHjqF79+4wMjLCzJkzUbt2bZw4cQIvX74s3EqPEJbatWuHrKws6OnpoUOHDkhOTmYdiRBCpMKQIUNQt25deHp6so5CCPkBKvblwMePH3H9+nXaco9IHM/zePHihUT79qOjozFt2jQYGxujW7duePnyJZYtW4akpKTCrfRUVFQkdj5Cfoe9vT2UlJQwatQoZGVloWPHjvj48SPrWIQQwpyKigr8/PwQGhoqdbv3EELyUbEvByIiIpCbm0v9+kTiCvr2f/dD/M2bN1i1ahWaNm2Kxo0bY9euXRg0aBBu375duJVexYoVJZSaEMnR1dVF06ZNER0djdDQUDx79gy9evVCVlYW62iEEMJcz5490bRpU7i7u0vF7j2EkK9RsS8HhEIhDAwMULt2bdZRiJzR19dHo0aNSjSVPycnBydOnECvXr1gZGSEadOmwczMDMeOHUN8fHzhVnqESDue5yESidCwYUMcPXoUQqEQI0aMoAtbQojCEwgECAgIwOXLl3HixAnWcQgh/0HFvhwQCoXUr09KDcdxxRrZv3fvHmbMmAETExN07twZT58+xV9//YXExMTCrfRUVVVLMTEhksVxHBISEvDs2TO0bt0a27dvx44dO+Dh4cE6GiGEMNe+fXu0bt0aHh4eyM3NZR2HEPIvVOzLuE+fPiEqKoqm8JNSw/M8YmJiEBcX98PHpKamYs2aNWjRogUaNmyIoKAg9OvXDzdv3sStW7cwefJkVK5cuQxTEyI5rVq1gpKSUuFNr759+2LZsmVYsGABVq9ezTgdIYSwVTC6f/fuXezZs4d1HELIv1CxL+MK+vVpcT5SWhwdHQHgm9H9nJwchISEoG/fvjA0NMSkSZNgaGiIw4cPIyEhoXArPUJkXfny5dGkSZOv2lmmTJmCP//8E5MmTcKhQ4fYhSOEEClga2uLrl27wtvbm9Y0IUSKULEv40QiEapWrYq6deuyjkLkVMWKFWFpaVlY6Dx8+BCzZ8+GmZkZOnbsiPv37yMwMBAJCQmFW+mpqamxDU2IhPE8D6FQ+FWf/qJFi9CvXz8MGDAAFy9eZJiOEELY8/f3R2xsLDZu3Mg6CiHkf6jYl3FCoRAcx1G/PilVdnZ2CA4Ohp2dHerXr4+NGzeiR48eiIqKKtxKr2rVqqxjElJqOI5DfHw8YmJiCr+npKSErVu3wt7eHl26dMG9e/cYJiSEELYaNGiAQYMGwdfXF+np6azjEEJAxb5MS09Px7Vr16hfn5SK3NxcnDlzBv3798fWrVvx+vVraGlp4cCBA0hMTCzcSo9uNBFFULAN5X93plBXV8eRI0dgZmYGJycnxMfHswlICCFSYN68eUhNTcXKlStZRyGEgIp9mXbp0iXk5ORQvz6RqMePH8PT0xPm5ubo0KEDbt26BXd3dwDA0KFD0atXL6irqzNOSUjZ0tPTg5WV1Xd3ptDV1cWpU6egrKwMZ2dnpKWllX1AQgiRAubm5hgzZgwWLlyI1NRU1nEIUXhU7MswkUiEypUro379+qyjEBn34cMHbNq0Ca1atULdunXx999/o1OnTrhy5Qru3buHefPmoUGDBsXago8QeVPQt/89RkZGCA0NRWJiIrp164bMzMyyDUcIIVLC09MTOTk5WLRoEesohCg8KvZlGPXrk9+Rl5eH8+fPY9CgQTAwMMCoUaNQrlw57N27F8nJyVi7di1atGhR+O/rZ4UOIYqA53nExcUhNjb2uz+vV68ejh8/jitXrmDw4MHIy8sr24CEECIFqlatiilTpmDFihVITExkHYcQhUbFvoz6/Pkzrl69Sv36pNiePXsGb29vVK9eHe3atcPVq1fh5eWFuLg4hIaGom/fvtDQ0PjmeRzH4enTp0hISGCQmhD2ftS3/2/29vbYs2cPDh06hGnTpn21ej8hhCiKGTNmQEtLC76+vqyjEKLQqNiXUZcvX0Z2djYV+6RIPn78iK1bt4LjONSqVQsrVqxAhw4dcOnSJTx8+BDu7u4wMTH56TEK1oagqfxEUVWoUAGNGzf+5QyXbt264e+//8aKFSuwZMmSsglHCCFSpHz58pg9ezY2bdqEp0+fso5DiMKiYl9GCYVCVKpUCRYWFqyjECmVl5cHoVAINzc3GBoaYvjw4VBTU8OuXbuQlJSEDRs2wM7OrshtIFWqVIGFhQUV+0ShcRxXpNfAmDFj4OnpiRkzZmD37t1lkIwQQqTLhAkTUKVKFXh7e7OOQojComJfRolEIurXJ98VExODefPmoVatWmjdujXCw8Mxe/ZsxMbG4uzZs+jfvz+0tLRKdGyO46hvnyg0nucRGxuLFy9e/PKxvr6+cHNzg5ubG86fP18G6QghRHpoampi7ty52LNnD27fvs06DiEKiYp9GZSRkYErV67QlnukUHp6OrZv3442bdqgRo0aWLx4MVq3bo2LFy/iyZMnmDNnDqpVq/bb5+F5Ho8fP0ZSUpIEUhMiexwcHAAUrZ1FIBBgw4YNaNeuHbp3745bt26VcjpCCJEuQ4cORa1ateDp6ck6CiEKiYp9GRQZGYmsrCzq11dwYrEYFy9exPDhw2FgYIAhQ4YAALZv347k5GRs3rwZrVq1kujsD0dHRwDUt08UV8WKFdGoUaMiz3BRVVXF/v37UbduXTg7O/9wJX9CCJFHqqqq8PX1xcmTJxEeHs46DiEKh4p9GSQUCqGvr48GDRqwjkIYiIuLg5+fH2rXrg1HR0dcuHAB06dPR0xMDP755x8MGjQI2trapXJuAwMD1KtXj6byE4XG83yxbniVK1cOJ0+ehLa2NpycnPD27dtSTEcIIdKlT58+sLKygru7O+1QQkgZo2JfBgmFQnAcByUl+t+nKD5//oxdu3ahffv2MDc3R2BgIFq1agWhUIinT59i7ty5MDc3GwuLPwAAivlJREFUL5MsRV2gjBB5xXEcnj9/jpcvXxb5OVWqVEFoaChSU1PRuXNnfP78uRQTEkKI9FBSUkJAQADCw8MREhLCOg4hCoWqRRmTmZmJK1eu0BR+BSAWi3Hp0iWMGjUKhoaGGDhwILKysrBlyxYkJycjKCiIyU0fnufx8OFDJCcnl+l5CZEWJW1nqVWrFk6ePInbt2/D1dUVOTk5pRGPEEKkjpOTExwcHODh4YG8vDzWcQhRGFTsy5jIyEh8+fKFFueTY/Hx8QgMDES9evVgb2+P06dPY/LkyXj69ClEIhHc3Nygo6PDLF/Bv72wsDBmGQhhqVKlSmjYsGGJ2lmaN2+OgwcP4uTJk5gwYQJNaSWEKASBQIDAwEDcvn0b+/btYx2HEIVBxb6MEYlEqFChAiwtLVlHIRKUkZGBvXv3wsnJCWZmZvD19UWLFi1w/vx5xMTEYP78+ahZsybrmAAAQ0ND1KlTh/r2iULjeb7ErwFnZ2ds2rQJ69evh7+/v2SDEUKIlLK3t0enTp3g5eWF7Oxs1nEIUQhU7MsYoVAIR0dH6teXA2KxGFeuXMHYsWNhaGgIV1dXfPr0CRs2bEBycjJ27NiBNm3aSOX/6+IuUEaIvOE4Ds+ePUN8fHyJnu/m5gY/Pz94eXlhy5YtEk5HCCHSyd/fH8+fP8fmzZtZRyFEIUhfFUF+KDMzE5GRkdSvL+MSExOxaNEiNGjQALa2tjhx4gTGjx+Px48fIzw8HMOHD4euri7rmD/FcRzu37+PlJQU1lEIYUIS21B6eHhgzJgxGDVqFE6dOiWpaIQQIrUaNWqE/v37Y/78+bRQKSFlgIp9GXL16lVkZmZSv74M+vLlCw4cOAAXFxeYmppi7ty5sLKywpkzZxAbGwt/f3/Url2bdcwiK/g3SKP7RFFVqVIFFhYWv/UaEAgEWL16NTp16oTevXvj6tWrEkxICCHSad68eXj9+jVWr17NOgohco+KfRkiEomgp6eHRo0asY5CikAsFiMqKgoTJkyAoaEh+vTpg9TUVKxduxZJSUnYvXs32rdvD2VlZdZRi83Y2Bi1atWiYp8otN/p2y+grKyMPXv2wMrKCi4uLnj69KlkwhFCiJSqWbMmRo4ciQULFiAtLY11HELkGhX7MkQoFMLBwUEmi0NFkpycjCVLlqBRo0Zo3rw5Dh8+jFGjRuHBgwe4fPkyRo0aBT09PdYxf5skCh1CZBnP83jy5AkSExN/6ziampo4fvw4KlWqhA4dOuDVq1cSSkgIIdLJy8sLmZmZ+Ouvv1hHIUSuUbEvI758+YJLly5Rv76UysrKwuHDh9GlSxeYmJjAw8MDFhYWCAkJQVxcHBYsWIB69eqxjilRHMfh3r17eP36NesohDAhib79AhUrVkRoaCgyMjLg4uKCT58+/fYxCSFEWhkaGmLy5MlYvnw5kpOTWcchRG5RsS8jrl27hszMTCr2pczNmzcxefJkGBkZoWfPnkhOTsaqVauQlJSEffv2wcnJCSoqKqxjloqCvv2wsDDGSQhho2rVqqhfv77EZriYmZnh1KlTePz4MXr37k1bUxFC5NrMmTOhpqYGPz8/1lEIkVtU7MsIoVCI8uXLo3HjxqyjKLzXr19j+fLlsLKygrW1Nfbt24ehQ4fi7t27uHr1KsaOHQt9fX3WMUudqakpatasSX37RKFxHCfR14CVlRWOHDmC8+fPY+TIkRCLxRI7NiGESJMKFSpg1qxZ2LBhA2JiYljHIUQuUbEvI0QiEfXrM5SdnY1jx46he/fuMDIywsyZM1GrVi2cOHEC8fHx+Ouvv9CgQQPWMcscx3HUt08UGs/zePToEZKSkiR2zLZt22Lbtm3Ytm0bvLy8JHZcQgiRNpMmTULFihUxd+5c1lEIkUtU7MuArKwsRERE0JZ7DERHR2PatGkwNjZGt27dEBcXh2XLliEpKQkHDx6Ei4uL3E7TLwqe53Hnzh28efOGdRRCmCitdhZXV1csXrwY/v7+WLt2rUSPTQgh0kJLSwve3t7YuXMn7ty5wzoOIXKHin0ZEBUVhYyMDOrXLyNv3rzBqlWr0LRpUzRu3Bg7d+7EwIEDcfv2bVy/fh0TJkxAxYoVWceUCgWFzsWLFxknIYQNAwMD1K1bt1RmuEybNg1TpkzB+PHjceTIEYkfnxBCpMHw4cNRvXp1zJkzh3UUQuQOFfsyQCgUQkdHB1ZWVqyjyK2cnBycOHECvXr1gpGREaZNm4Zq1arh2LFjSEhIwNKlS9GoUSPWMaVOtWrVUL16dZrKTxQaz/OlsnaFQCDAkiVL0Lt3b/Tv3x8RERESPwchhLCmpqaG+fPn4/jx47h06RLrOITIFSr2ZUBBv74iTxcvLffu3cOMGTNgYmKCzp0748mTJ1i0aBESExNx5MgRdOnSBaqqqqxjSjVJL1BGiKzhOA4PHjzAq1evJH5sJSUlbN++Hba2tujcuTMePHgg8XMQQghrrq6uaNSoETw8PGhhUkIkiIp9KZednY3w8HCawi9BX758QXx8PFq0aIGGDRti69at6Nu3L27evInbt29jypQpqFy5MuuYMoPneURHRyM1NZV1FEKYKO1tKNXV1XHkyBGYmJjAyckJiYmJpXIeQghhRUlJCf7+/hCJRDhz5gzrOITIDSr2pVxUVBQ+f/5Mi/P9ppycHISEhKBv3744evQonjx5AgMDAxw+fBiJiYlYsWIFtUmUEMdxEIvF1LdPFJaRkRFq165dqu0senp6CAkJgVgshrOzM96/f19q5yKEEBZcXFzQsmVLuLu7Iy8vj3UcQuQCFftSTiQSoVy5crC2tmYdRSY9fPgQs2fPhpmZGTp27Ih79+6hUaNGsLe3x/Hjx9G9e3eoqamxjinTzM3NYWZmRn37RKHxPF/qrwFjY2OEhIQgLi4O3bt3x5cvX0r1fIQQUpYEAgEWLFiAmzdv4uDBg6zjECIXqNiXckKhEK1ataJ+/WJIS0vD+vXrYWdnh/r162PDhg3o3r07oqKicOfOHdSvX58KfAkrrQXKCJEVHMfh/v37SElJKdXzNGjQ4P/Yu/OwqMq/DeD3DLsCsqmAiCiuuStuIJxjZQKC+64ppplLpqXlkvtKmraqlRq4L7lvYGaCgpL7UuYuoYAoAiIIIsy8f/DKL3IDBJ5hzv25Lq7f68yZ59z2hnF7nu85eTexCggI4NUvItIrnp6e8PHxwZQpU/DkyRPRcYjKPJZ9HfbkyRNERkZyXr8AcnJy8Ouvv6Jfv35wcHDAyJEjYWNjg82bNyM+Ph7ff/89mjdvDpVKJTqqXpIkCWfPnkVycrLoKERClPTc/r95enpi/fr12LRpEz799NMSPx8RUWmaO3curl69iuDgYNFRiMo8ln0ddvr0aaSlpXFe/yWuXr2Kzz//HC4uLujQoQPOnDmDmTNn4tatW9i7dy969uwJExMT0TH1nizLnNsnRXNycoKrq2up7XDp1q0bvv32WyxevBiLFy8ulXMSEZWGpk2bok+fPpg5cyYyMjJExyEq01j2dVh4eDjKly+P5s2bi46iU1JTU7FixQq0bdsWtWvXxpIlS+Dn54eoqChcvHgRn332GRwdHUXHVBQXFxdUrVqVW/lJ0Upjbv/fPvzwQ0ycOBHjxo3Dxo0bS+28REQlbdasWbhz5w6WLl0qOgpRmcayr8PCwsLg4eHB57wD0Gg0OHjwIN59913Y29tj2LBhMDc3x4YNGxAfH49ly5ahVatW3KYviEqlKvWiQ6RrZFnGn3/+icTExFI757x58zBw4EAMGjQIhw4dKrXzEhGVpFq1amHIkCGYN28enz5C9BpY9nVUdnY2jhw5ovh5/evXr2PatGmoXr063n77bRw/fhxTp05FTEwMQkND0adPH5iZmYmOScgtOmfPnkVKSoroKERClObc/lMqlQorVqyALMvo0qULzp8/X2rnJiIqSdOmTcOjR4+waNEi0VGIyiyWfR115swZpKWlKbLsp6WlISgoCJIkoWbNmvj666/RoUMHREZG4tKlS5g0aRKcnJxEx6T/kCQJGo0GERERoqMQCVG1alXUqFGj1He4GBkZYcuWLahZsyZ8fHwQExNTqucnIioJVapUwejRo7F48eISf9IJkb5i2ddRYWFhKFeuHNzc3ERHKRUajQZhYWEICAiAvb09hgwZAmNjY6xduxZ37tzBTz/9BHd3d27T12E1atSAk5MT5/ZJ0SRJEvI9YGFhgb1798LExATe3t5ISkoq9QxERMVtwoQJMDAwwNy5c0VHISqTWPZ1VHh4uCLm9aOjozFz5kzUrFkT7dq1Q0REBCZOnIjo6GgcOHAA/fv3R7ly5UTHpAJQqVSQJIlz+6Rosizj/PnzuH//fqmf297eHvv378e9e/fQqVMn3sWaiMo8W1tbfPbZZ/jhhx/wzz//iI5DVOaw7OugnJwcHDlyRG8fuZeeno7Vq1fjzTffRPXq1fHll1+iXbt2OHz4MK5evYopU6bA2dlZdEwqAlmWcfr0ad5MhxTr6Z/boh5DWatWLezZswdnzpxB//79kZOTIyQHEVFxGTNmDKysrDBjxgzRUYjKHJZ9HXT27Fmkpqbq1bz+02ewDxkyBPb29hg0aBAAYNWqVbhz5w5WrlwJT09PbtMv457O7UdGRoqOQiREtWrV4OLiInSHS6tWrbB582bs2rULH330EbRarbAsRESvy9zcHFOmTMHq1atx8eJF0XGIyhSWfR0UFhYGMzMztGjRQnSU1xYTE4M5c+agVq1a8PLywu+//47x48fjxo0b+P333zFw4ECUL19edEwqJjVr1oSjoyO38pOiybIs/N4VHTt2xA8//IClS5ciMDBQaBYiotc1bNgwODs7Y8qUKaKjEJUphqID0LPCw8Ph7u4OY2Nj0VGK5NGjR9i+fTuCg4Nx8OBBmJmZoWfPnlixYgW8vLygVvPvmPTV07l90UWHSCRJkrBq1SokJyfD2tpaWI6hQ4ciNjYWkydPhqOjY96OKiKissbExAQzZ87EoEGDcPz4cbRs2VJ0JKIyga1Lx+Tk5ODw4cNlbgu/VqvF0aNHMWzYMDg4OGDAgAHIysrCypUrcefOHQQHB0OWZRZ9BZBlGadOncLDhw9FRyESQpblvNEl0aZNm4b3338fQ4YMQWhoqOg4RERF1r9/f9SvXx+TJk0SHYWozGDz0jHnzp3DgwcPyszN+WJjYzF//nzUrVsXHh4e2L9/P8aMGYNr164hPDwcgwcPhoWFheiYVIpkWUZOTg7n9kmxXFxc4OzsrBPjLCqVCkuXLoWvry969OiBkydPio5ERFQkTx/B9/vvv+O3334THYeoTGDZ1zHh4eEwNTXV6e1JmZmZ2LhxI7y9veHs7IzZs2ejZcuW+O2333Dz5k3MmjULrq6uomOSILVq1YK9vb1OFB0iUWRZ1pnvAUNDQ2zcuBENGjRAx44dcf36ddGRiIiKpFOnTmjdujUmTZrEm48SFQDLvo4JCwtDmzZtYGJiIjpKPlqtFn/88QdGjBgBBwcH9O3bF2lpafjxxx9x584drFmzBm+99Ra36RNUKpVO3KCMSCRJknD27FmkpKSIjgIAKFeuHPbs2QMrKyt4e3vj7t27oiMRERWaSqXCvHnzcPLkSWzbtk10HCKdx2amQzQaDY4cOaJT8/rx8fFYsGAB6tevj9atW2PPnj0YOXIkLl++jIiICAwdOhSWlpaiY5KOkSQJJ06cQFpamugoRELo0tz+U3Z2dggNDcXDhw/h5+eH9PR00ZGIiAqtXbt2eOeddzBlyhRkZ2eLjkOk01j2dcj58+eRnJwsfF7/8ePH+OWXX9CxY0c4OTlh+vTpaNKkCfbv34/o6GjMnTsXtWvXFpqRdBvn9knpqlevDicnJ53b4VK9enWEhITg77//Rq9evfiDMhGVSfPmzcOlS5ewevVq0VGIdBrLvg4JDw+HiYkJWrVqVern1mq1OHnyJD788EM4ODigV69eSEpKwtKlSxEfH4/169fjnXfegYGBQalno7KnTp06qFy5ss4VHaLS8nScRVfm9v+tadOm2LZtG3799Vd88MEHnHslojKnefPm6NGjB2bMmIHMzEzRcYh0Fsu+DgkLC0Pr1q1hampaaudMSEjAokWL0KhRI7Ro0QLbtm3DsGHDcPHiRRw7dgwffPABrKysSi0P6QeVSgVJknSy6BCVFlmWcebMGTx48EB0lGe0b98eQUFB+PnnnzFjxgzRcYiICm3OnDmIi4vDDz/8IDoKkc5i2dcRGo0Ghw8fLpV5/aysLGzbtg2dOnVClSpVMHnyZLzxxhvYt28fYmJiEBgYiHr16pV4DtJvsizjxIkTnAsmxZIkCRqNBhEREaKjPNeAAQPwxRdfYNasWfjxxx9FxyEiKpQ6deogICAAc+fOxcOHD0XHIdJJLPsi5WiAxEdA3ENcizqPB8kpJVr2z549izFjxsDR0RHdu3fHnTt38O233yI+Ph6bNm2Cj48PDA0NS+z8pCySJCE7OxtHjx4VHYVICFdXV1SpUkWnd7h8+umnGD16NEaOHIldu3aJjkNEVCjTp0/Hw4cPsXjxYtFRiHQSm11pS88Com4Dp+KB26lAtgYAUBtA5vAdUP9hAOTcAFo7AeWNX/t09+7dw7p16xAcHIxz586hcuXKGDx4MAYNGoQGDRq89vpEL1KvXj1UrFgR4eHhaN++veg4RKXu6TiLLt+7QqVS4auvvkJ8fDz69OmDgwcPok2bNqJjEREVSNWqVTFq1CgsWrQII0eORMWKFUVHItIpvLJfWnI0wL6rwMTfgG1/A9EpeUX/KUOoof4nNff9ib/lHp+jef56L/HkyRPs3LkTXbt2haOjIz777DPUrFkTu3fvxu3bt7Fw4UIWfSpxnNsnyh1nOXXqFFJTU0VHeSEDAwOsWbMGbm5u8PPzw+XLl0VHIiIqsEmTJgEA5s+fLzgJke5h2S8NSRnA/AhgzxUgRwu86sbHWuQet+dK7ueSMgp0mgsXLuCTTz5BlSpV0KVLF8TExGDx4sWIj4/Hli1b4Ofnx236VKpkWcbx48fx6NEj0VGIhHg6t6/rj6E0NTXFzp074eDggA4dOiA+Pl50JCKiArGzs8P48eOxdOlS3Lp1S3QcIp2it2U/ODgYKpUK0dHRAICAgAC4uLiUfpCkDGBhJHAnDQAg75wIeefEgn/+Tlru519Q+O/fv4/vvvsOzZs3R6NGjbB27VoMGDAA586dw6lTpzB69GjY2trm+8yKFSugUqlgbm7+3DWfPHmCxYsXo2HDhjAzM4OVlRXc3d05e02FJkkSnjx5gmPHjomOQiRErVq14ODgUCZ2uFhbWyMkJATZ2dnw9fXV6d0IRET/9vHHH8PS0hIzZ84UHYVIp+ht2f+vqVOnYvv27aV70hwNsPQE8DAL0ORezl/qORJLPUcWfA2NNvfzS0/kbenPzs7Gnj170KNHDzg4OOCTTz6Bs7MzduzYgdjYWCxevBiNGjV67nKxsbEYP348HB0dnx85Jwddu3bFrFmz0LdvX4SEhGDdunXw9vbmXdWp0N544w3Y2dmViaJDVBJUKhVkWdbpuf1/q1q1KkJDQ3Hz5k1069YNWVlZoiMREb2ShYUFJk+ejKCgIFy6dEl0HCKdoZg93a6urqV/0v3Xgbj8jwJ5w8a58OtotEDcQ9xdcwwL/9qBNWvWICEhAY0aNcKCBQvQr18/VKpUqUBLDR8+HF5eXrCxscGWLVueef+7775DSEgIIiMj0bp167zXO3bsWPjcpHhqtRpeXl5lpugQlQRJkrB582Y8fPgQFhYWouO8UoMGDbBz50688847eO+997B69Wqo1Yq5NkBEZdTw4cPx1VdfYerUqfjll19ExyHSCYr5r/fztvGnpKRgyJAhsLGxgbm5OTp27IgbN25ApVJhxowZhVo/KysLc+bMQd26dWFiYoKKdhUxeNxI3Mt4kO+4/27jj05NgGqZHxae2YovzmyBy9r3YPZTN8g7J+JKSiye5GRjYlQwHFcNRK1h72DZd0vg7++P06dP49y5cxg7dmyBi/7atWsRHh6OpUuXvvCYb775Bl5eXvmKPtHrkGUZf/zxBzIyCnbvCSJ9I8sycnJyytQolCRJWLt2LdavX4+JEwsxekZEJIipqSlmzJiBLVu24OTJk6LjEOkExZT9/9JoNPD398f69esxYcIEbN++Ha1atYK3t3eR1urcuTMCAwPRr18/7N27F4EB43Dg1hnIOychI/vxK9dY8tdeRMZfxBLPEVghj8al5Nvw3zcLQ8K+wb2MB/i53Rh80SYAKrUaCQkJaNq0aaEy3r17F2PHjkVgYCCcnJyee8ytW7cQHR2Nhg0bYvLkyahcuTIMDQ1Rv359rFq1qlDnI3pKlmVkZWUhKipKdBQiIWrXro3KlSuXuXGWnj174uuvv8bChQvxzTffiI5DRPRK7777LurWrYvJkyeLjkKkExSzjf+/QkNDERERgWXLlmH48OEAgPbt28PY2DjvER4FtXnzZoSGhmLr1q3o1q1b7ounzdDY2xQttn6M4EsHMaKB70vXsDIujx0+U6BW5f79S2JmKsZGLkddayfs9Jmad9xlTSK+3r0ZqampsLS0LHDGkSNHok6dOhgxYsQLj4mNjQUArFq1Ck5OTvj+++9RoUIFLF++HAEBAcjKysL7779f4HMSAUD9+vVhY2ODsLAwtGvXTnQcolL3dG6/rJV9APjoo49w+/ZtfPzxx3BwcECvXr1ERyIieiFDQ0PMnTsX3bt3x6FDh/hzBymeYq/sP50h/u8PLn379i30Wnv27IGVlRX8/f2RnZ2N7MdZyI5JRhO7GrAvZ42wuAuvXMPX2S2v6ANAPeuqAICO1VrkO66eUWUAQExMTIHzbd26Fbt378by5cuhUqleeJxGk3sDwMzMTOzbtw89e/bEO++8g82bN6NZs2aYNWtWgc9J9JRarYYkSZzbJ0WTJAknT55EWlqa6CiF9nTX2rvvvsvvYyLSeV27dkWLFi0wadIkaLWvet41kX5TbNm/f/8+DA0NYWNjk+/1ypUrF3qthIQEpKSkwNjYGEZGRjAyNYHREn8Y/dgZdx4lIzHzwSvXsDHNf9MmY3Xupgsbk/yPxzOGAYDcQl4QaWlpGDVqFEaPHg1HR0ekpKQgJSUl7w7LKSkpeXfZf/qIvrp166JatWp5a6hUKnTo0AG3b9/G3bt3C3Reon+TJAlRUVEF/veWSN/Isozs7OwyNbf/lFqtxs8//wwvLy907twZf/75p+hIREQvpFKpMG/ePPzxxx/YuXOn6DhEQil2G7+trS2ys7ORlJSUr/DfuXOn0GvZ2dnB1tYWoaGhuS/cSwdWnsl738LI7LXzFlViYiISEhKwaNEiLFq06Jn3ra2t0blzZ+zYsQOurq4oV67cc9d5+jejvCMzFYUsy3j8+DGioqIgy7LoOESlrm7duqhUqRLCw8PxzjvviI5TaMbGxti6dSskSYK3tzeOHTuGqlWrio5FRPRcb7/9Nt566y18/vnn8Pf3h4GBgehIREIotrlJkgQA2LRpU77XN27cWOi1/Pz8cP/+feTk5MDNzQ1uLVrArVKtvK861s+/IV5psLe3x6FDh5756tChA0xNTXHo0CHMmTMHQO6cU+fOnfH3338jOjo6bw2tVovQ0FC4urrCzs5O0O+EyrKGDRvC2tqaW4BJsVQqFSRJKpNz+09ZWlpi3759MDIygo+PD5KTk0VHIiJ6oXnz5uHixYtYt26d6ChEwij2yr63tzc8PDwwbtw4pKamonnz5jh27BhWr14NoHBXsPv06YN169bB19cXY8aMQcvmbjCKP4/bD+7hUNx5dHZpha413IsnuMGLZ+6fx9TU9LlXUoODg2FgYPDMe7Nnz0ZISAi8vb0xY8YMWFpaYsWKFTh37hw2b978GsFJydRqNby8vBAWFobp06eLjkMkhCzLGDt2LNLT01G+fHnRcYrEwcEBoaGhcHd3R5cuXbB//36YmpqKjkVE9IyWLVuia9eumDZtGnr37g0TExPRkYhKnWKv7KvVauzevRt9+vRBYGAgOnfujCNHjmDt2rUAACsrqwKvZWBggF27dmHy5MnYtm0buvboji77ZiPwzC8wNTBCQ1uXfMerULjCno91yY4EuLq64siRI6hZsyaGDRuG7t27Iz4+Hrt27UKPHj1K9Nyk32RZ5tw+KZokSXjy5AmOHTsmOsprqVOnDvbs2YPjx4/j3XffRU5OjuhIRETPNWfOHNy6dQs//fST6ChEQqi0vE1lPuvXr0f//v0RGRkJd/fXuBp/8Aaw7W/gP/90m/7yEVwt7bGlQxGe/6kC0K0e8FaNouci9OvXDwkJCTh48KDoKIpy5swZNGvWDOHh4fDy8hIdh6jUabVaVKpUCR988EHe+FRZtmvXLnTt2hWjRo3CN99889KnvRARiTJ48GDs3bsXN27cgLm5+as/QKRHFHtlHwA2bNiAL7/8Evv378eBAwcwe/ZsDB8+HF5eXq9X9AGgtROg/t8PPldSYrHy719x4X402lSuW7Q11SqgDW+IRGVTo0aNYGVlxbl9Uqync/v68j3QqVMnLF26FN999x0WLlwoOg4R0XPNmDEDDx48wNdffy06ClGpU3TZt7CwwMaNG9G7d2/4+vpi+fLlCAgIwO7du/OOyc7OfunX02fTP6O8MeBTK++X80//gglRwRhY502MbNCxaIF9agHljPJ+qdFoXpmPSFcYGBjA09OzTN+gjOh1ybKMP/74A48ePRIdpVh88MEHmDp1KiZMmIA1a9aIjkNE9Ixq1aphxIgRWLhwIe7fvy86DlGpUnTZ9/Pzw8mTJ5GSkoInT54gJiYG3377LSwtLQEA0dHRMDIyeunXrFmzXnyCDq6AowWgViHozbFIHLweP7cbCzPDQt4gRK3KXaeDa76XZ82a9cp8/76rPpFosizj6NGjePz4segoREI8nduPiooSHaXYzJw5E++99x7ee+89HDhwQHQcIqJnTJ48GTk5OQgMDBQdhahUKfZu/AXh6OiIEydOvPKYFzJQAyNbAAsjgYdZgKYIt0dQqwBLk9x1DPL/3cywYcPg5+dX9HxEpUySJGRmZuLEiRNo27at6DhEpa5+/fqwtbVFWFgY3nzzTdFxioVKpcIPP/yAO3fuoFu3bggPD0ezZs1ExyIiylOpUiV88sknWLhwIcaOHYsqVaqIjkRUKniDvtKQlAEsPQHEPSz8Zx0tcou+TcnehV9JeIM+cXJycmBjY4NPP/0UU6ZMER2HSIju3bsjMTFRb2b3n0pPT0e7du0QExODY8eOoXr16qIjERHlefDgAVxdXdG9e3f8+OOPouMQlQpFb+MvNTZmwKS2gF9twECFVz55T4Xc4/xq536ORZ/0xNO5fX0rOUSFIUkSoqKikJGRITpKsSpfvjz27t0LCwsLdOjQAYmJiaIjERHlqVChAiZNmoSVK1fiypUrouMQlQqW/dJioAZ8awGBb+c+Ps/FCjD8zz9+Q3Xu693qAV+0zz3egP8vIv0iyzIiIyORlZUlOgqRELIsIysrC3/88YfoKMWuYsWKCA0NxYMHD+Dn56c3NyIkIv0wcuRI2NvbY9q0aaKjEJUKzuyXtvLGwFs1cr802twt/lk5gLFB7hV8NZ9TTPpNlmVkZGTg5MmTr/+IS6IyqEGDBrCxsUFYWBhkWRYdp9i5urpi7969kGUZffr0wbZt22BoyB83iEg8MzMzzJgxA++//z4mTJiApk2bio5EVKJ42VgktQqwK5c7l29XjkWfFKFJkyawsLDgI/hIsdRqNby8vPT6e8DNzQ1btmxBSEgIRo4cCd4eiIh0RUBAAGrXro3JkyeLjkJU4lj2iahUGRoacm6fFO/p3H5mZqboKCXG29sbK1aswPLlyzF79mzRcYiIAOT+HDJ79myEhobi8OHDouMQlSiWfSIqdZIkISIiAk+ePBEdhUgIWZbx+PFjvZzb/7dBgwZh3rx5mD59OlasWCE6DhERAKBHjx5o1qwZJk2axJ1HpNdY9omo1MmyjEePHuHkyZOioxAJ0bBhQ1hZWSlih8vEiRMxcuRIDB8+HHv27BEdh4gIarUa8+bNw9GjR/nnEuk1ln0iKnXNmjWDubm5IooO0fMYGBjo/dz+UyqVCt9++y06deqEXr166f1uBiIqG9555x1IkoTPP/8cGo1GdByiEsGyT0SlztDQEG3btlVE0SF6EVmWcezYMTx+/Fh0lBJnYGCAdevWoVmzZvDz8+MzrolIOJVKhfnz5+PChQvYsGGD6DhEJYJln4iEkGUZkZGRnNsnxZIkCZmZmTh+/LjoKKXCzMwMu3btQsWKFeHt7Y07d+6IjkRECtemTRt06tQJU6dORVZWlug4RMWOZZ+IhJAkCWlpaTh9+rToKERCNG7cGBUqVFDUDhcbGxuEhobi8ePH6NixIx4+fCg6EhEp3Ny5cxEdHc2biJJeYtknIiGaN2+O8uXLc26fFMvAwECRj6F0dnZGSEgIrl27hh49evBqGhEJ1aBBAwwYMACzZ89Genq66DhExYpln4iEMDIygoeHh6KuahL9lyzLOHr0qOIKb6NGjbBjxw4cOnQIQ4cO5aOviEiomTNn4v79+/j2229FRyEqViz7RCSMLMs4cuQIsrOzRUchEkKSJGRkZODEiROio5S6du3aYfXq1VizZg0mT54sOg4RKVj16tUxbNgwLFiwAMnJyaLjEBUbln0iEubp3P6ZM2dERyESokmTJrC0tFTsDpc+ffpg8eLFCAwMxPfffy86DhEp2JQpU5CVlYUFCxaIjkJUbFj2iUgYNzc3lCtXTrFFh8jQ0FCRc/v/9vHHH+OTTz7BRx99hK1bt4qOQ0QKZW9vj7Fjx+Kbb75BfHy86DhExYJln4iEMTY2hru7u6KLDpEkSYp/DOXChQvRu3dv9O/fH0eOHBEdh4gU6tNPP4WpqSlmz54tOgpRsWDZJyKhns7t5+TkiI5CJIQsy3j06BFOnjwpOoowarUawcHBcHd3R6dOnXDx4kXRkYhIgaysrDBx4kQsX74c169fFx2H6LWx7BORULIsIzU1FWfPnhUdhUiIpk2bwsLCQvHjLCYmJti+fTucnZ3h7e2N27dvi45ERAr04YcfomLFipg2bZroKESvjWWfiIRq0aIFzMzMFF90SLkMDQ3Rtm1bfg8AqFChAkJCQqBSqeDj44OUlBTRkYhIYcqVK4fp06djw4YNOHfunOg4RK+FZZ+IhOLcPhHn9v/N0dERoaGhiI2NRdeuXfH48WPRkYhIYd577z24urri888/Fx2F6LWw7BORcJIk4fDhw5zbJ8WSZRnp6ek4deqU6Cg6oV69eti9ezeioqIwcOBAaDQa0ZGISEGMjIwwa9Ys7N27F5GRkaLjEBUZyz4RCSfLMh48eMDtcqRYzZo1Q/ny5bnD5V88PDywfv16bNmyBePGjYNWqxUdiYgUpHfv3mjcuDEmTpzIP3+ozGLZJyLhWrZsCVNTUxYdUiwjIyPO7T9H165d8f333+Prr7/G4sWLRcchIgVRq9WYN28eIiIiEBISIjoOUZGw7BORcCYmJmjTpg2LDimaLMuIiIhAdna26Cg6ZcSIEZg8eTLGjx+P9evXi45DRAri4+ODtm3bYvLkyRwnojKJZZ+IdIIsyzhy5Aj/Y0qKJUkS0tLScPr0adFRdM6cOXMwaNAgBAQE4ODBg6LjEJFCqFQqzJ8/H+fOncPmzZtFxyEqNJZ9ItIJkiQhOTkZ58+fFx2FSAg3NzeUK1eOO1yeQ6VSYfny5XjrrbfQtWtXnD17VnQkIlKItm3bomPHjpgyZQqfmEJlDss+EemEVq1awcTEhHP7pFhGRkbw8PDg98ALGBkZ4ZdffkHt2rXh4+OD6Oho0ZGISCHmzp2L69ev4+effxYdhahQWPaJSCeYmpqidevWvKpJivZ0nIVz+89nbm6OvXv3onz58vD29sb9+/dFRyIiBWjcuDH69euHWbNm4dGjR6LjEBUYyz4R6QxZlnH48GHO7ZNiSZKEhw8fcpv6S1SuXBmhoaFISkqCv78/MjIyREciIgWYNWsW7t69i++//150FKICY9knIp0hSRKSkpLw559/io5CJESLFi1gZmbGHS6vULNmTezZswfnzp1D3759uROCiEqcq6srhg4disDAQKSkpIiOQ1QgLPtEpDNat24NY2NjFh1SLGNjY87tF1DLli3xyy+/YM+ePfjwww+h1WpFRyIiPTd16lRkZmbiyy+/FB2FqEBY9olIZ5iZmaFVq1YsOqRokiTh8OHDyMnJER1F5/n6+mL58uX48ccfMW/ePNFxiEjPOTo64qOPPsJXX32FO3fuiI5D9Eos+0SkU2RZRnh4OOf2SbFkWUZqairOnTsnOkqZMHjwYMyePRtTpkxBUFCQ6DhEpOcmTJgAIyMjzJ07V3QUoldi2ScinSLLMu7fv4+LFy+KjkIkRIsWLWBqaspxlkL4/PPP8cEHH+D9999HSEiI6DhEpMesra0xYcIE/Pjjj7h586boOEQvxbJPRDqldevWMDIyYtEhxTIxMYG7uzu/BwpBpVLh+++/R8eOHdGjRw+cOHFCdCQi0mMfffQRbGxsMH36dNFRiF6KZZ+IdEq5cuU4t0+KJ0kSjhw5wrn9QjA0NMSGDRvQuHFjdOzYEdeuXRMdiYj0VPny5TF16lSsXbuWTxAincayT0Q6R5IkhIWF8e7apFiyLCMlJQXnz58XHaVMKVeuHHbv3g0bGxt4e3vj7t27oiMRkZ56//334eLigilTpoiOQvRCLPtEpHNkWUZiYiLn9kmxWrZsCRMTE+5wKQJbW1uEhoYiPT0dHTt2RFpamuhIRKSHjI2NMWvWLOzcuRPHjh0THYfouVj2iUjntGnTBoaGhiw6pFimpqZo06YN5/aLyMXFBSEhIbh8+TJ69uyJJ0+eiI5ERHqob9++aNCgASZNmsTdiKSTWPaJSOeUL18eLVu2ZNEhRZNlGYcPH+ZjKIuoSZMm2L59Ow4ePIhhw4bxB3EiKnYGBgaYN28ewsPD8euvv4qOQ/QMln0i0kmyLCM8PJw/oJNiSZKE5ORkXLhwQXSUMuutt95CcHAwgoODMXXqVNFxiEgP+fn5oU2bNpg8eTL/cpZ0Dss+EekkSZJw9+5dXLp0SXQUIiFat24NExMT7nB5Tf369cPChQsxd+5cLFu2THQcItIzKpUK8+fPx+nTp7F161bRcYjyYdknIp3k7u7OuX1SNFNTUz6GspiMGzcOY8aMwYcffogdO3aIjkNEekaSJHh7e2PKlCnIzs4WHYcoD8s+Eekkc3NzuLm58aomKdrTcRZuDX09KpUKixcvRo8ePdC3b19ERkaKjkREembevHm4cuUKgoODRUchysOyT0Q6S5ZlhIWFcW6fFEuSJCQlJeGvv/4SHaXMU6vVWLVqFVq1agV/f3/8/fffoiMRkR5p2rQpevXqhZkzZyIjI0N0HCIALPtEpMMkSUJCQgKuXLkiOgqREK1bt4axsTF3uBQTU1NT7NixA1WqVIG3tzfi4uJERyIiPTJ79mzEx8dj6dKloqMQAWDZJyId5uHhAQMDAxYdUqxy5cpxbr+YWVlZISQkBBqNBj4+Pnjw4IHoSESkJ2rXro333nsP8+fPR2pqqug4RCz7RKS7LCws0Lx5cxYdUjRJkvgYymLm5OSE0NBQxMTEoFu3bnj8+LHoSESkJ6ZNm4a0tDQsWrRIdBQiln0i0m2c2yelk2UZiYmJuHjxougoeqV+/frYtWsXIiMjMXjwYN4EkYiKhZOTE0aPHo1Fixbh7t27ouOQwrHsE5FOk2UZ8fHxuHbtmugoREK0adMGRkZGHGcpAZ6enli3bh02btyIzz77THQcItITEydOhIGBAebNmyc6Cikcyz4R6TQPDw+o1WoWHVKscuXKoWXLlvweKCHdu3fHt99+i0WLFuGrr74SHYeI9ICtrS0+/fRTLFu2DP/884/oOKRgLPtEpNMsLS05t0+Kx7n9kvXhhx9iwoQJ+OSTT7Bp0ybRcYhID4wdOxZWVlaYMWOG6CikYCz7RKTzJEni3D4pmizLuHfvHp8NX4Lmz5+Pd999FwMHDsShQ4dExyGiMs7c3Byff/45Vq9ezXuukDAs+0Sk82RZRmxsLK5fvy46CpEQ7u7uMDQ05A6XEqRSqbBixQrIsowuXbrg/PnzoiMRURn3wQcfoGrVqpg6daroKKRQLPtEpPPatm0LtVrNokOKVb58ebRo0YJz+yXM2NgYW7ZsgaurK3x8fBATEyM6EhGVYSYmJpg5cya2bduG48ePi45DCsSyT0Q6r0KFCmjatCmLDimaLMuc2y8FFhYW2LdvH0xMTODt7Y2kpCTRkYioDBswYADeeOMNTJ48WXQUUiCWfSIqE1h0SOkkSUJCQgIuX74sOores7e3R2hoKO7evYtOnTohIyNDdCQiKqMMDAwwd+5cHDx4EL/99pvoOKQwLPtEVCZIkoRbt27h5s2boqMQCeHh4QEDAwPucCkltWvXxt69e3H69Gn0798fOTk5oiMRURnVuXNntGrVCpMnT+ZFCypVLPtEVCZ4enpCpVJxbp8Uy9zcHG5ubvweKEWtWrXC5s2bsXPnTnz00Uf8IZ2IikSlUmHevHk4ceIEtm/fLjoOKQjLPhGVCVZWVmjSpAmvapKiybLMx1CWMj8/P/zwww9YunQpvvjiC9FxiKiMevPNN9G+fXtMmTIF2dnZouOQQrDsE1GZ8bToECmVJEm4c+cOrl69KjqKorz//vuYPn06Jk2ahNWrV4uOQ0Rl1Lx58/D3339jzZo1oqOQQrDsE1GZIUkSYmJiEB0dLToKkRCc2xdn+vTpGDp0KIYMGYL9+/eLjkNEZZCbmxu6d++OGTNmIDMzU3QcUgCWfSIqM57O7bPokFJZWlqiefPmnNsXQKVSYdmyZfD29kb37t1x6tQp0ZGIqAyaM2cObt++jR9++EF0FFIAln0iKjNsbGzQuHFjFh1SNEmSOLcviKGhITZu3IgGDRrA19cXN27cEB2JiMqYunXrIiAgAHPnzsXDhw9FxyE9x7JPRGXK06JDpFSyLCMuLg7Xr18XHUWRypcvj927d6NChQro0KED7t27JzoSEZUx06dPR2pqKr766ivRUUjPsewTUZkiyzKio6Pxzz//iI5CJETbtm2hVqv5l14CVaxYEaGhoXj48CH8/PyQnp4uOhIRlSHOzs4YNWoUvvzySyQmJoqOQ3qMZZ+IyhRPT08A4FZ+UixLS0s0a9aMZV+wGjVqYN++fbh48SJ69+7NR2kRUaFMmjQJWq0W8+fPFx2F9BjLPhGVKba2tmjUqBHLPimaJEkIDw/n3L5gzZo1w9atW7F//34MHz6c//8gogKrWLEixo0bhyVLluDWrVui45CeYtknojKHc/ukdLIs4/bt27xBnA5455138PPPP2PlypWYMWOG6DhEVIZ88sknsLCwwMyZM0VHIT3Fsk9EZY4sy7hx4wb/JpwUq23btlCpVNzhoiPeffddBAYGYtasWfjpp59ExyGiMsLS0hKTJ09GUFAQLl++LDoO6SGWfSIqc7y8vABwbp+Uy8rKCk2bNuUOFx3y2Wef4cMPP8SIESOwa9cu0XGIqIwYMWIEqlSpgqlTp+Z/I0cDJD4C4h7m/m+ORkxAKtMMRQcgIiosOzs7NGjQAGFhYRgwYIDoOERCyLKMLVu2QKvVQqVSiY6jeCqVCl9//TXi4+PRp08fHDx4EG3atBEdi4h0nKmpKWbMmIEhQ4bg7NETaJJhC5yKB26nAtn/KviGasDJEmjuALR2AsobiwtNZQav7BNRmSTLMq/sk6JJkoSYmBhER0eLjkL/z8DAAGvXroWbmxv8/f25LZeICmRg/wH41ns06q+JB7b9DUSn5C/6QO6vo1Ny35/4G7DvKq/20yux7BNRmSRJEq5du4bY2FjRUYiE8PT0hEql4lZ+HWNqaoqdO3eicuXK8Pb2Rnx8vOhIRKTLkjJguDAKH1bvACOVAfCqh3poAeRogT1XgPkRQFJGaaSkMopln4jKJM7tk9JZW1ujcePG/B7QQdbW1ggNDcWTJ0/g6+uL1NRU0ZGISBclZQALI4E7aSjSMNadtNzPs/DTC7DsE1GZVKlSJbzxxhu8qkmKJssyvwd0VNWqVRESEoKbN2+ie/fuyMrKEh2JiP5fcHAwVCpV3hhUQEAAXFxcSjdEjgZYegJ4mAVoci/nyzsnQt45seBraLS5n196oshb+sPCwqBSqZ77FRUV9cLPabVaeHl5QaVS4cMPPyzSuanksewTUZnFokNKJ0kS/vnnH87t66iGDRtix44dOHz4MN577z1oNJyvJdJFU6dOxfbt20v3pPuv595pX/O/fftLPUdiqefIwq2j0eaus//6a8WZN28ejh07lu+rQYMGLzx+yZIluHbt2mudk0oe78ZPRGWWJElYunQp4uLi4OjoKDoOUal7elUlPDy89K9KUYHIsow1a9agT58+qFKlCr744gvRkYjoP1xdXUv3hOlZQMjVZ15+w8a56GuGXAWkakW+S3+tWrXQunXrAh0bHR2NSZMmYfXq1ejWrVuRzkelg1f2iajMkiQJAOf2SblsbGzQqFEjfg/ouF69euGrr77CggUL8O2334qOQ0T/8bxt/CkpKRgyZAhsbGxgbm6Ojh074saNG1CpVJgxY0ah1s/KysKcOXNQt25dmJiYoGIVBwz+7Svcy3iQ77j/buOPTk2AapkfFp7Zii/ObIHL2vdg9lM3yDsn4kpKLJ7kZGNiVDAcVw1EhZ96omsHP9y9e7eo/xgKbNiwYWjfvj26du1a4uei18OyT0RlVuXKlVGvXj0WHVI0SZI4zlIGjBkzBuPHj8fYsWPxyy+/iI5DRC+h0Wjg7++P9evXY8KECdi+fTtatWoFb2/vIq3VuXNnBAYGol+/fti7dy8C3x6GA7fOQN45CRnZj1+5xpK/9iIy/iKWeI7ACnk0LiXfhv++WRgS9g3uZTzAz+3GYEHrwfjtRASGDh1alN8yRo0aBUNDQ1haWqJDhw6IiIh47nErVqzA8ePH8f333xfpPFS6uI2fiMo0SZJw6NAh0TGIhJFlGd9++y1iYmLg7PwaW0CpxH3xxReIi4vDgAEDUKlSpbzdSUSkW0JDQxEREYFly5Zh+PDhAID27dvD2NgYkyZNKtRamzdvRmhoKLZu3Zq75T1HA+x6gsbeldFi68cIvnQQIxr4vnQNK+Py2OEzBWpV7nXaxMxUjI1cjrrWTtjpMzXvuEupsfh69w6kpqbC0tKyQPkqVKiAMWPGQJZl2Nra4tq1a1i4cCFkWcbevXvRoUOHvGNjY2Mxfvx4LFiwgOOTZQSv7BNRmSbLMi5fvow7d+6IjkIkhKenJwCOs5QFarUaQUFB8PT0ROfOnfHnn3+KjkREz/H0z9NevXrle71v376FXmvPnj2wsrKCv78/srOzkX0vDdlZT9DErgbsy1kjLO7CK9fwdXbLK/oAUM+6KgCgY7UW+Y6rV8EJABATE1PgfE2bNsXXX3+NLl26wNPTE4MHD8bRo0fh4OCAzz77LN+xw4cPR+PGjfH+++8XeH0Si2WfiMo0zu2T0tnZ2aFhw4bcyl9GGBsbY9u2bXBxcYG3tzdu3bolOhIR/cf9+/dhaGgIGxubfK9Xrly50GslJCQgJSUFxsbGMDIygpFDBRj92BlGP3bGnUfJSMx88Mo1bEwt8v3aWJ27OdvGxPy5r2dmZhY6579ZWVnBz88P58+fR0ZGBgBgy5YtCA0NxYIFC/DgwQOkpKQgJSUFQO49CVJSUvDkyZPXOi8VP27jJ6Iyzd7eHnXq1EF4eDh69+4tOg6REJIkISQkRHQMKiBLS0uEhISgTZs28PHxwZEjR2BtbS06FhH9P1tbW2RnZyMpKSlf4S/KLkI7OzvY2toiNDQ094WUTOCHk3nvWxiZvXbekqDV5j4SUKVSAQD+/PNPZGdnP/eO/cuXL8fy5cuxfft2dOnSpTRj0ivwyj4RlXm8QRkpnSzLuH79Om7fvi06ChWQg4MDQkNDER8fjy5durz2lTgiKj5Pdw1u2rQp3+sbN24s9Fp+fn64f/8+cnJy4ObmBrd27nBzrAO3SrXgVqkW6lg7FUtmAICBqliWSU5Oxp49e9CkSROYmpoCyH1iwaFDh575AoAuXbrg0KFDaNu2bbGcn4oPr+wTUZknyzJ++uknJCQkFGmLHVFZ5+XlBSB3nKV///6C01BB1a1bF7t378Zbb72Fd999Fxs3boSBgYHoWESK5+3tDQ8PD4wbNw6pqalo3rw5jh07htWrVwPIvf9GQfXp0wfr1q2Dr68vxowZg5YtW8Io8wpuX/sHh+LOo7NLK3St4V48wa0Lv0ugX79+cHZ2hpubG+zs7HD16lUsWrQICQkJCA4OzjvOxcXlmccTPlWlShXIsly0zFSieGWfiMq8p38Df/jwYcFJiMSoWLEi6tevzx0uZZC7uzs2btyIbdu24eOPP87bOktE4qjVauzevRt9+vRBYGAgOnfujCNHjmDt2rUAcmfaC8rAwAC7du3C5MmTsW3bNnTt2hVd1n6OwDO/wNTACA1tXfIdr0IRr86rALhUKPTHGjVqhP3792Po0KF4++238fnnn+ONN97A0aNH8fbbbxctC+kMlZb/VSGF6devHxISEnDw4EHRUagY1a5dG+3bt8eSJUtERyES4sMPP8Svv/6KK1euiI5CRfDjjz9i+PDhWLBgAT799FPRcYjoOdavX4/+/fsjMjIS7u6vcTU+PQuY+BuQk7+GNf3lI7ha2mNLh8mFX9NABXzRHihnVPRcpHe4jZ+I9IIsy7wjPymaJElYsmQJYmNjUaVKFdFxqJA++OAD3L59G5999hkcHBwwYMAA0ZGIFG3Dhg2IjY1Fw4YNoVarERUVhYULF8LLy+v1ij4AlDcGfGoBe3L/cvZKSiyOxP+FC/ejMaCWXLQ1fWqx6NMzuI2fiPSCJEn466+/cO/ePdFRiITgYyjLvlmzZmHw4MEYPHgwDhw4IDoOkaJZWFhg48aN6N27N3x9fbF8+XIEBARg9+7decdkZ2e/9Euj0bz4BB1cAUcLQK3C/NO/YEJUMAbWeRMjG3QsXFC1KnedDq75XtZoNK/MR/qPZZ+I9ALn9knpKlWqhHr16rHsl2EqlQo//vgj2rdvj27duuHMmTOiIxEplp+fH06ePJn3/PiYmBh8++23sLS0BABER0fDyMjopV+zZs168QkM1MDIFoCFMYLe/hiJg9fj53ZjYWZoUvCQahVgaZK7jkH+Wjdr1qxX5ouOji7CPxkqSzizT4rDmX39VbNmTfj4+OC7774THYVIiJEjR+LgwYO4fPmy6Cj0GtLT09GuXTvcunULR48eRfXq1UVHIqL/yMrKwvnz5196jKOjIxwdHV++UFIGsPQEEPew8CEcLXKLvs2zd+GPi4tDXFzcSz/eqFEjGBsbF/68VGaw7JPisOzrr6FDh+KPP/7AhQsXREchEmLTpk3o06cP4uLi4ODgIDoOvYa7d+/Cw8MDarUakZGRsLOzEx2JiEpKjgbYfx0IuQpotMDL2pkKuVf0fWrlbt034EZtejH+20FEekOSJPz5559ITEwUHYVICM7t649KlSohNDQUycnJ8Pf3x6NHj0RHIqKSYqAGfGsBgW8D3eoBLlaA4X9qmqE69/Vu9XLvuu9bi0WfXol34ycivfHvuf1u3boJTkNU+uzt7VG3bl2Eh4ejT58+ouPQa3J1dcW+ffsgyzL69OmDbdu2wdCQP7oR6a3yxsBbNXK/NNrcLf5ZOYCxQe5WfbVKdEIqY/jXQUSkN5ydnVGjRg1e1SRFkyQJYWFhomNQMXFzc8OWLVuwb98+jBw5Epy+JFIItQqwK5c7l29XjkWfioRln4j0CosOKZ0sy7h06RISEhJER6Fi4u3tjRUrVmD58uWYPXu26DhERFRGsOwTkV6RZRkXLlxAUlKS6ChEQnBuXz8FBARg7ty5mD59OlauXCk6DhERlQEs+0SkVyRJglarxeHDh0VHIRLCwcEBtWvX5g4XPTRp0iSMGDECH3zwAfbu3Ss6DhER6TiWfSLSK9WqVYOLiwuvapKiSZLE7wE9pFKp8N1338Hf3x89e/bEH3/8IToSERHpMJZ9ItI7nNsnpZNlGRcvXsTdu3dFR6FiZmBggPXr16Np06bw8/PDlStXREciIiIdxbJPRHpHlmWcO3cOycnJoqMQCfHvx1CS/jEzM8Pu3bthZ2cHb29v3oyRiIiei2WfiPTO07n9I0eOiI5CJESVKlVQs2ZN7nDRYzY2NggNDUVmZiZ8fX3x8OFD0ZGIiEjHsOwTkd5xcXGBs7Mziw4pmizLnNvXc9WqVUNISAiuXbuGnj174smTJ6IjERGRDmHZJyK9o1KpWHRI8SRJwp9//ol79+6JjkIlqHHjxti+fTt+//13DB06FFqtVnQkIiLSESz7RKSXJEnCmTNnkJKSIjoKkRCc21eON998E6tXr8bq1avx+eefi45DREQ6gmWfiPSSLMvQarWIiIgQHYVIiKpVq6JGjRrc4aIQffr0waJFizB//nwsWbJEdBwiItIBLPtEpJeqV68OJycnzu2TosmyzO8BBfnkk0/w8ccfY/To0di2bZvoOEREJBjLPhHppadz+yw6pGSSJOHChQu4f/++6ChUSr788kv06tUL/fr1484mIiKFY9knIr31dG7/wYMHoqMQCcG5feVRq9VYtWoV3N3d4e/vj4sXL4qOREREgrDsE5HekmUZGo2GV7dIsapVq4bq1atzbl9hTExMsH37dlStWhXe3t6IjY0VHYmIiARg2SciveXq6ooqVaqw6JCiSZLEcRYFqlChAkJCQgAAPj4+fDIJEZECsewTkd5SqVQsOqR4sizj/PnzSEpKEh2FSlmVKlUQGhqK27dvo2vXrnj8+LHoSEREVIpY9olIr8myjNOnTyM1NVV0FCIhJEmCVqvFkSNHREchAd544w3s2rULx44dw8CBA6HRaERHIiKiUsKyT0R6TZIk5OTkIDIyUnQUIiFcXFxQrVo17nBRsLZt22L9+vX45ZdfMH78eNFxiIiolLDsE5Feq1WrFhwcHDi3T4omSRK/BxSuW7du+O677/DVV19h0aJFouMQEVEpMBQdgIioJHFunyh3nGXNmjVITk6GtbW16DgkyKhRoxAbG4vx48fD0dERffv2FR2JiIhKEK/sE5Hek2UZJ0+exMOHD0VHIRLi6dw+H0NJc+fOxcCBAzFo0CD8/vvvouMQEVEJYtknIr33dG7/6NGjoqMQCVG9enVUrVqVO1wIKpUKK1aswJtvvokuXbrg3LlzoiMREVEJYdknIr1Xp04dVK5cmUWHFEulUkGWZc7tEwDAyMgIW7ZsQe3ateHj44N//vlHdCQiIioBLPtEpPdYdIhyd7icOXMGKSkpoqOQDjA3N8fevXthZmYGb29v3L9/X3QkIiIqZiz7RKQIkiThxIkTSE9PFx2FSAhZlqHRaDi3T3kqV66M0NBQJCYmolOnTsjIyBAdiYiIihHLPhEpgizLyM7O5tw+KVaNGjVQpUoV7nChfGrVqoW9e/fi7Nmz6NevH3JyckRHIiKiYsKyT0SKULduXVSqVIlz+6RYT8dZ+D1A/9WyZUts3rwZu3fvxujRo6HVakVHIiKiYsCyT0SKoFKpIEkSiw4pmiRJOH36NFJTU0VHIR3TsWNH/Pjjj1i2bBnmzZsnOg4RERUDln0iUgzO7ZPScW6fXmbIkCGYOXMmpkyZguDgYNFxiIjoNbHsE5FiyLKMJ0+e4NixY6KjEAlRs2ZNODo6cm6fXmjq1KkYNmwYhg4dipCQENFxiIjoNbDsE5FivPHGG7Czs2PRIcXiOAu9ikqlwpIlS9CxY0f06NEDJ06cEB2JiIiKiGWfiBSDRYcod4fLqVOn8PDhQ9FRSEcZGhpiw4YNaNSoETp27Ihr166JjkREREXAsk9EiiLLMo4fP45Hjx6JjkIkhCRJyMnJQWRkpOgopMPKlSuH3bt3w9raGt7e3rh7967oSEREVEgs+0SkKJIkISsrC1FRUaKjEAlRu3Zt2Nvbc4cLvZKdnR3279+P9PR0dOzYEWlpaaIjERFRIbDsE5Gi1K9fH7a2tpzbJ8V6Os7C7wEqCBcXF+zbtw+XL19Gr1698OTJE9GRiIiogFj2iUhR1Go1vLy8eFWTFE2WZZw4cYJXaqlAmjZtim3btuHAgQP44IMPoNVqRUciIqICYNknIsWRZRlRUVHIyMgQHYVIiKdz+0ePHhUdhcqIt99+G8HBwQgKCsK0adNExyEiogJg2ScixXk6t//HH3+IjkIkRN26dVGpUiXucKFC6d+/PxYsWIA5c+bghx9+EB2HiIhegWWfiBSnYcOGsLa2ZtEhxVKpVJBlmXP7VGjjx4/HRx99hFGjRmHHjh2i4xAR0Uuw7BOR4qjVat6gjBRPkiQcP34c6enpoqNQGaJSqfDVV1+he/fu6Nu3L0dBiIh0GMs+ESmSJEk4duwYMjMzRUchEkKWZWRnZ7OsUaGp1WqsXr0aLVu2hL+/Py5duiQ6EhERPQfLPhEpkizLePz4MY4fPy46CpEQ9erVQ8WKFbnDhYrE1NQUO3bsgIODAzp06IC4uDjRkYiI6D9Y9olIkRo2bAgrKyvO7ZNiqVQqSJLE7wEqMmtra4SGhkKj0cDX1xcPHjwQHYmIiP6FZZ+IFMnAwABeXl4sOqRoT+f2Hz16JDoKlVFOTk4ICQnBP//8g27duiErK0t0JCIi+n8s+0SkWE/n9h8/fiw6CpEQsizjyZMnOHbsmOgoVIY1aNAAO3fuREREBAICAqDRaERHIiIisOwTkYLJsozMzEzO7ZNivfHGG7Czs+PcPr02Ly8vrFu3Dhs3bsSECRNExyEiIrDsE5GCNW7cGBUqVGDRIcVSq9UcZ6Fi06NHD3zzzTf48ssv8fXXX4uOQ0SkeCz7RKRYBgYG8PT0ZNEhRZNlGX/88QcyMjJERyE9MHr0aHz22Wf4+OOPsWnTJtFxiIgUjWWfiBRNlmUcPXqUN5UixZIkCVlZWYiKihIdhfTE/PnzMWDAAAwcOJB/mUpEJBDLPinCn3/+iTfffBOenp44cOAATp06BU9PT0iShKNHj4qORwJJkoSMjAycOHFCdBQiIRo0aAAbGxuWMio2arUaK1euhCRJ6NKlCy5cuCA6EhGRIhmKDkBUGtLT03Ho0KF8r0VERAAAEhMTRUQiHdGkSRNYWloiPDwcHh4eouMQlbqnc/u8dwUVJ2NjY2zduhWSJMHb2xvHjh2Ds7Oz6FhERIrCK/ukCK1atUK7du1gYGCQ95parcYbb7wBPz8/gclINENDQ7Rt25ZXNUnRZFlGVFQUMjMzRUchPWJhYYF9+/bB2NgYPj4+SEpKEh2JiEhRWPZJMWbNmoWcnJy8X2s0GsyePRtqNb8NlE6WZURGRuLJkyeioxAJIUkSHj9+jD/++EN0FNIz9vb2CA0NRUJCAjp37sy/UCIiKkVsOaQYbdu2Rbt27aBSqQDkPl+6S5cuYkORTpAkCY8ePcLJkydFRyESolGjRrC2tuYOFyoRderUwZ49e3Dq1Cn0798/31+8ExFRyWHZJ0WZNWsWtFotAPCqPuVp1qwZzM3NWXRIsTi3TyWtdevW2LRpE3bs2IExY8bk/beYiIhKDpsOKUrbtm1RtWpVVKhQgVf1KY+hoSE8PT1ZdEjRJEnCsWPHuM2aSoy/vz+WLVuGJUuW4IsvvhAdh4hI77Hsk7LkaPBn+AlcjzgHdVImkKMRnYh0hCRJiIiI4Nw+KZYsy8jMzMTx48dFRyE9NmzYMEybNg2TJk3C6tWrRcchItJrfPQe6b/0LCDqNnAqHridCsvsfxV8QzXgZAk0dwBaOwHljcXlJKFkWcbEiRNx+vRptGrVSnQcolLXqFEjVKhQAeHh4fDy8hIdh/TYjBkzEBsbiyFDhqBy5cro0KGD6EhERHpJpeXQFOmrHA2w/zoQchXQaIGX/ZuuAqBWAT61gA6ugAE3vSjNkydPYG1tjalTp2LChAmi4xAJ0alTJ6Snp+PgwYOio5Cey87ORpcuXRAWFobw8HA0b95cdCQiIr3DRkP6KSkDmB8B7LkC5Lyi6AO57+doc4+fH5H7eVIUIyMjtG3bljfpI0V7Orf/+PFj0VFIzxkaGmLTpk2oX78+fH19cePGDdGRiIj0Dss+6Z+kDGBhJHAnrWifv5OW+3kWfsV5OrefnZ0tOgqRELIsIyMjAydOnBAdhRSgfPny2LNnDypUqABvb2/cu3dPdCQiIr3Csk/FJjg4GCqVCtHR0QCAgIAAuLi4lG6IHA2w9ATwMCt36z4AeedEyDsnFnwNjTb380tPFNsN/FasWAGVSgVzc/Nn3tNqtVi+fDmaN28OS0tL2NraQpIk7N27t1jOTQUnyzLS0tJw+vRp0VGIhGjSpAksLS35ZAoqNRUrVkRoaCgePHgAPz8/pKeni45ERKQ3WPapxEydOhXbt28v3ZPuvw7EPcwr+gCw1HMklnqOLNw6Gm3uOvuvv3ak2NhYjB8/Ho6Ojs99f/r06Rg2bBhatmyJrVu3Ijg4GCYmJvDz88O2bdte+/xUcG5ubihXrhyLDimWgYEBPD09Oc5CpapGjRrYt28fLl68iN69e3N3FRFRMWHZpxLj6uqKpk2blt4J07Nyb8b3H2/YOOMNG+eirRlyNXfd1zB8+HB4eXmhffv2z33/559/Rtu2bbFs2TK0b98e/v7+2LVrFypUqIBVq1a91rmpcIyMjODh4cGiQ4omyzKOHj2KrKzX+7OPqDCaN2+OrVu3Yv/+/RgxYgR4/2giotfHsk8l5nnb+FNSUjBkyBDY2NjA3NwcHTt2xI0bN6BSqTBjxoxCrZ+VlYU5c+agbt26MDExQcUqDhj821e4l/Eg33H/3cYfnZoA1TI/LDyzFV+c2QKXte/B7KdukHdOxJWUWDzJycbEqGA4rhqICj/1RNcOfrh7926R/hmsXbsW4eHhWLp06QuPMTIyQoUKFfK9ZmpqmvdFpUuWZc7tk6JJkoRHjx7h5MmToqOQwrzzzjtYuXIlVqxYgZkzZ4qOQ0RU5rHsU6nRaDTw9/fH+vXrMWHCBGzfvh2tWrWCt7d3kdbq3LkzAgMD0a9fP+zduxeBbw/DgVtnIO+chIzsV99JeslfexEZfxFLPEdghTwal5Jvw3/fLAwJ+wb3Mh7g53ZjsKD1YPx2IgJDhw4tdMa7d+9i7NixCAwMhJOT0wuPGzNmDEJDQ7Fy5UokJycjPj4en3zyCR48eICPPvqo0Oel1yNJElJTU3H27FnRUYiEaNq0KSwsLLjDhYQYOHAg5s+fj5kzZ2L58uWi4xARlWmGogOQcoSGhiIiIgLLli3D8OHDAQDt27eHsbExJk2aVKi1Nm/ejNDQUGzduhXdunXLvZHerido7F0ZLbZ+jOBLBzGige9L17AyLo8dPlOgVuX+nVdiZirGRi5HXWsn7PSZmnfcpdRYfL17B1JTU2FpaVngjCNHjkSdOnUwYsSIlx43duxYmJmZYdSoUXl/qWBjY4Pdu3fDw8OjwOej4tGiRQuYmZkhPDwcbm5uouMQlTpDQ0O0bdsW4eHhmDx5sug4pEATJkzA7du3MXz4cNjb28Pf3190JCKiMolX9qnUPL3pWa9evfK93rdv30KvtWfPHlhZWcHf3x/Z2dnIvpeG7KwnaGJXA/blrBEWd+GVa/g6u+UVfQCoZ10VANCxWot8x9WrkHtVPiYmpsD5tm7dit27d2P58uVQqVQvPTYoKAhjxozBhx9+iN9++w379u3DO++8g86dO2P//v0FPicVD2NjY7i7u/OqJimaLMuIjIzEkydPREchBVKpVPjmm2/QpUsX9O7dG1FRUaIjERGVSbyyT6Xm/v37MDQ0hI2NTb7XK1euXOi1EhISkJKSAmNj4+e+n5j54Lmv/5uNqUW+Xxurc78dbEzMn/t6ZmZmgbKlpaVh1KhRGD16NBwdHZGSkgIAeTe7SklJgZGREcqXL4/k5OS8K/pffvll3ho+Pj6QZRnDhw/HzZs3C3ReKj6yLGPhwoXIycmBgYGB6DhEpU6SJKSnp+PUqVNo3bq16DikQAYGBli7di3eeecd+Pn5ITIyEnXq1BEdi4ioTOGVfSo1tra2yM7ORlJSUr7X79y5U+i17OzsYGtrixMnTuR+HTiCE92/yvsq9KP2ilFiYiISEhKwaNEiWFtb531t2LAB6enpsLa2Rv/+/QEAly9fRkZGBlq0aPHMOm5uboiOjkZaWlpp/xYUT5ZlpKam4ty5c6KjEAnRrFkzmJubc4cLCWVmZoadO3eiUqVK8Pb2LtLPC0RESsayT6VGkiQAwKZNm/K9vnHjxkKv5efnh/v37yMnJwdubm5wa+cON8c6cKtUC26VaqGO9YtviFdoBi/fhv9f9vb2OHTo0DNfHTp0gKmpKQ4dOoQ5c+YAABwdHQHgmS2KWq0WUVFRsLa2Rvny5Yvn90EF1qJFC5iamrLokGIZGRnlze0TiWRjY4PQ0FBkZWXB19cXqampoiMREZUZ3MZPpcbb2xseHh4YN24cUlNT0bx5cxw7dgyrV68GAKjVBf+7pz59+mDdunXw9fXFmDFj0LJlSxhlXsHta//gUNx5dHZpha413IsnuLVZoQ43NTWFLMvPvB4cHAwDA4N87zk7O6Nbt2746aefYGJiAl9fXzx+/BirVq1CZGQkZs+e/cqZfyp+JiYmcHd3R3h4OD755BPRcYiEkCQJc+fOxZMnT2BkZCQ6DimYs7MzQkND0bZtW3Tv3h179+594RgfERH9D6/sU6lRq9XYvXs3+vTpg8DAQHTu3BlHjhzB2rVrAQBWVlYFXsvAwAC7du3C5MmTsW3bNnTt2hVd1n6OwDO/wNTACA1tXfIdr0IRC7MKgEuFon22gNatW4cvvvgChw4dQo8ePRAQEIDY2FisXbsWn3/+eYmem15MkiQcPnwYOTk5oqMQCSHLMtLS0nD69GnRUYjQsGFD7NixA4cPH8aQIUOg0WhERyIi0nkqrVarFR2ClG39+vXo378/IiMj4e7+Glfj07OAib8BOfn/lW76y0dwtbTHlg5FeISUgQr4oj1Qjle1lObw4cOQJAlnzpxBkyZNRMchKnVPnjyBtbU1pk2bhs8++0x0HCIAuaOAffr0wYQJExAYGCg6DhGRTuM2fipVGzZsQGxsLBo2bAi1Wo2oqCgsXLgQXl5er1f0AaC8MeBTC9hzBQBwJSUWR+L/woX70RhQSy7amj61WPQVqmXLljAxMUFYWBjLPimSkZERPDw8EBYWxrJPOqN3796Ij4/Hxx9/jCpVqmD06NGiIxER6SyWfSpVFhYW2LhxI+bMmYP09HQ4ODggICAg74Z1AJCdnf3SNdRq9Yvn+zu4AqfjgTtpmH/6F+z+5zgG1nkTIxt0LFxQtQqwN89d7180Gs0rtw4aGvLbSh+YmpqiTZs2CA8Px9ixY0XHIRJCkiQEBgYiOzubf7aRzhg7dixu376NMWPGwMHBAT169BAdiYhIJ3EbP+mU6OhoVK9e/aXHTJ8+HTNmzHjxAUkZwMJI4GEWoCnCv95qFWBpAox3B2zy35xvxowZmDlz5ks/fvPmTbi4uBT+vKRzZsyYgW+//RaJiYmFuoEkkb44evQoPDw8cPz48ec+IpRIFI1GgwEDBmDbtm349ddf4eXlJToSEZHOYdknnZKVlYXz58+/9BhHR8e8R9a9UFIGsPQEEPew8CEcLYCRLZ4p+gAQFxeHuLi4l368UaNGvEuwnggLC0O7du1w9uxZNG7cWHQcolKXlZUFa2trzJw5E+PHjxcdhyifx48fw9fXF6dOnUJERAQaNGggOhIRkU5h2Sf9laMB9l8HQq7mXuF/2b/pKuRe0feplbt134BXcQnIzMyElZUVFixYgI8++kh0HCIh2rdvDxMTE+zZs0d0FKJnpKamwsvLC/fv38exY8fg5OQkOhIRkc5g2Sf9l54FRN0GTsUDt1OB7H/N3BuqASdLoLkD0KYqb8ZHz5AkCba2tti2bZvoKERCzJ07FwsWLEBSUhIMDAxExyF6RlxcHNzd3WFhYYEjR44U6lG+RET6jGWflEWjzd3in5UDGBvkbtVXq0SnIh02ffp0LFmyBHfv3uXcPilSREQEPD09cfLkSTRv3lx0HKLnunTpEjw8PNCwYUOEhobC1NRUdCQiIuH4kyspi1oF2JXLncu3K8eiT68kSRLu37+Pv/76S3QUIiFatGgBMzMzhIWFiY5C9EJ169bFrl278Mcff2DgwIGvfHIOEZESsOwTEb1E69atYWxsjPDwcNFRiIQwMTHJewwlkS7z8PDAhg0bsHXrVnz88cfg5lUiUjqWfSKilyhXrhxatmzJq5qkaLIs4/Dhw8jJyREdheilunTpgiVLluDbb7/Fl19+KToOEZFQLPtERK8gyzLCw8N5lYgUS5IkPHjw4JWPRiXSBcOHD8fnn3+Ozz77DOvWrRMdh4hIGJZ9IqJXkGUZiYmJuHjxougoREK0bNkSpqam3OFCZcbs2bMREBCAwYMH47fffhMdh4hICJZ9IqJXaNOmDYyMjFh0SLFMTU05t09likqlwk8//YS3334bXbt2xZkzZ0RHIiIqdSz7RESv8HRun0WHlEySJBw+fJh3Oacyw8jICJs3b0bdunXh6+uLmzdvio5ERFSqWPaJiApAkiTO7ZOiybKM5ORkzu1TmWJubo69e/eifPny8Pb2RmJiouhIRESlhmWfiKgAZFnG3bt3cenSJdFRiIRo1aoVTExMuMOFypxKlSohNDQUycnJ8Pf3x6NHj0RHIiIqFSz7REQF4O7uDkNDQ87tk2KZmpqidevW/B6gMqlmzZrYu3cvzp8/j759+yI7O1t0JCKiEseyT0RUAOXLl0eLFi14VZMUjXP7VJa1aNECW7Zswd69ezFq1CiOZRGR3mPZJyIqIEmSEBYWxh8QSbFkWUZSUhL+/PNP0VGIisTHxwcrVqzATz/9hDlz5oiOQ0RUolj2iYgKSJZlJCQk4PLly6KjEAnRunVrGBsbc4cLlWkBAQGYM2cOpk2bhp9//ll0HCKiEsOyT0RUQB4eHjAwMGDRIcUyMzNDq1atOLdPZd7kyZMxfPhwDBs2DHv37hUdh4ioRLDsExEVkLm5Odzc3Fh0SNFkWebcPpV5KpUK33//Pfz8/NCrVy8cP35cdCQiomLHsk9EVAiyLCM8PJxz+6RYkiQhMTERFy9eFB2F6LUYGBhgw4YNaNKkCTp27IirV6+KjkREVKxY9omICkGSJMTHx/OHQlKsNm3awMjIiDtcSC+YmZlh165dsLOzg7e3NxISEkRHIiIqNiz7RESFwLl9Urpy5cqhZcuW/B4gvWFra4vQ0FBkZGSgY8eOSEtLEx2JiKhYsOwTERWCpaUlmjVrxquapGgcZyF9U61aNezbtw9XrlxBjx498OTJE9GRiIheG8s+EVEhybKMsLAwFh1SLEmScO/ePfz999+ioxAVmyZNmmD79u34/fffMXToUP4ZT0RlHss+EVEhybKMuLg4XL9+XXQUIiHc3d1haGjIHS6kd9566y2sWrUKq1evxpQpU0THISJ6LSz7RESF1LZtW6jVahYdUqzy5ctzbp/0Vt++ffHll19i3rx5WLp0qeg4RERFxrJPRFRIT+f2WXRIySRJ4jgL6a1PPvkEY8eOxYcffojt27eLjkNEVCQs+0RERcCiQ0onyzLu3r2LS5cuiY5CVOxUKhUWLVqEnj17om/fvoiIiBAdiYio0Fj2iYiKQJZl3L59Gzdv3hQdhUgId3d3PoaS9Jparcbq1avRpk0bdOrUCRcvXhQdiYioUFj2iYiKoG3btlCpVJzbJ8UyNzdHixYt+D1Aes3ExATbt2+Hk5MTvL29ERsbKzoSEVGBsewTERWBlZUVmjZtyquapGiSJCE8PJzjLKTXrKysEBISAgDw9fXFgwcPBCciIioYln0ioiLi3D4pnSzLuHPnDq5cuSI6ClGJqlKlCkJCQhATE4OuXbvi8ePHoiMREb0Syz4RURHJsoyYmBhER0eLjkIkhIeHB+f2STHq16+PXbt24ejRoxg0aBA0Go3oSEREL8WyT0RURJ6enlCpVCw6pFgWFhZo3rw55/ZJMTw9PbF+/Xps3rwZn376qeg4REQvxbJPRFRE1tbWaNy4MYsOKZosy5zbJ0Xp1q0bvv32WyxevBiLFy8WHYeI6IVY9omIXsPTokOkVJIkIS4uDteuXRMdhajUfPjhh5g4cSLGjRuHjRs3io5DRPRcLPtERK9BkiRER0fjn3/+ER2FSIi2bdtCrVZzhwspzrx58zBw4EAMHDgQv//+u+g4RETPYNknInoNXl5enNsnRbO0tESzZs34PUCKo1KpsGLFCrRr1w5du3bFuXPnREciIsqHZZ+I6DXY2NigYcOGvKpJiibLMh9DSYpkZGSELVu2oGbNmvDx8eEuLyLSKSz7RESv6WnRIVIqWZYRGxuLGzduiI5CVOosLCywd+9emJqawtvbG0lJSaIjEREBYNknInptsizj5s2biImJER2FSAjO7ZPS2dvbY//+/UhMTIS/vz8yMjJERyIiYtknInpdnp6eAMCZZVKsChUqoGnTpvweIEWrVasW9uzZg7Nnz6Jfv37IyckBAPz999+IjIwUnI6IlIhln4joNdnZ2aFhw4YsOqRokiRxbp8Ur1WrVti8eTN2796N0aNHY//+/WjevDn8/Pyg0WhExyMihWHZJyIqBk+LDpFSybKMW7du4ebNm6KjEAnVsWNH/PDDD1i2bBl8fHyQmZmJlJQUnDlzRnQ0IlIYln0iomIgyzKuX7+O27dvi45CJISnpycfQ0kEQKvVIjExMe//1mq1UKvVOHDggOBkRKQ0LPtERMXAy8sLAOf2SbmsrKzQpEkT7nAhxVu8eDEmTZqU7zWtVouQkBBBiYhIqVj2iYiKQcWKFVG/fn2WfVI0SZL4PUCKV7t2bTg5OQEADAwMAOSW/cjISDx69Oj5H8rRAImPgLiHuf+bw/l+Inp9Ki3vpENEVCxGjRqFAwcO4MqVK6KjEAmxc+dOdOnSBTdv3oSLi4voOETCaDQa/Pbbb/jhhx+wa9euvDvzr1q1CgMHDsw9KD0LiLoNnIoHbqcC2f8q+IZqwMkSaO4AtHYCyhsL+F0QUVnHK/tERMVElmVcvXoVcXFxoqMQCcG5faJcarUa77zzDrZt24bbt29jypQpMDc3R3Jycu5V+31XgYm/Adv+BqJT8hd9IPfX0Sm570/8Lfd4Xu0nokLilX0iomJy9+5dVK5cGevXr0ffvn1FxyESokmTJmjatCmCgoJERyHSPUkZwNITudv1C8vRAhjZArAxK/5cRKSXeGWfiKiYVKpUCfXq1eMNykjRZFnmlX3SKcHBwVCpVIiOjgYABAQEiBkzScoAFkYCd9IAAPLOiZB3Tiz45++k5X4+KaPIEcLCwqBSqZ77FRUV9czxp0+fxttvvw1zc3NYWVmhW7duuHHjRpHPT0Sli2WfiKgYseiQ0kmShJs3b+Kff/4RHYXouaZOnYrt27eX7klzNLlX9B9mAZrcTbVLPUdiqefIgq+h0eZ+fumJ197SP2/ePBw7dizfV4MGDfIdc+nSJciyjKysLGzevBk///wzrly5Ak9PT9y7d++1zk9EpcNQdAAiIn0iSRKWLVuG+Ph4ODg4iI5DVOr+/RjKvBuREekQV1fX0j/p/uvPbN1/w8a58OtotLnr7L8O+NYqcpxatWqhdevWLz1m2rRpMDExwZ49e2BpaQkAaN68OWrVqoUvv/wSX3zxRZHPT0Slg1f2iYiKkSRJAIDDhw8LTkIkhq2tLRo2bMgdLqSznreNPyUlBUOGDIGNjQ3Mzc3RsWNH3LhxAyqVCjNmzCjU+llZWZgzZw7q1q0LExMTVLSriMHjRuJexoN8x/13G390agJUy/yw8MxWfHFmC1zWvgezn7pB3jkRV1Ji8SQnGxOjguG4aiAqdG2Crv6dcffu3aL+Y3ip7Oxs7NmzB927d88r+gBQrVo1tGvXrvR3RhBRkbDsExEVI3t7e9SpU4dz+6Rosizze4DKDI1GA39/f6xfvx4TJkzA9u3b0apVK3h7exdprc6dOyMwMBD9+vXD3r17ERgwDgdunYG8cxIysh+/co0lf+1FZPxFLPEcgRXyaFxKvg3/fbMwJOwb3Mt4gJ/bjcGCNoPx28GDGDp0aFF+yxg1ahQMDQ1haWmJDh06ICIiIt/7169fR0ZGBho1avTMZxs1aoRr164hMzOzSOcmotLDbfxERMWMRYeUTpZlfPfdd7h16xaqVq0qOg7RS4WGhiIiIgLLli3D8OHDAQDt27eHsbExJk2aVKi1Nm/ejNDQUGzduhXdunXLffG0GRp7m6LF1o8RfOkgRjTwfekaVsblscNnCtSq3GtyiZmpGBu5HHWtnbDTZ2recZdy7uHr3ZuRmpqa7+r7y1SoUAFjxoyBLMuwtbXFtWvXsHDhQsiyjL1796JDhw4AgPv37wMAbGxsnlnDxsYGWq0WycnJHFcj0nG8sk9EVMxkWcalS5eQkJAgOgqREP+e2yfSdU//Pe3Vq1e+14vyCNU9e/bAysoK/v7+yM7ORvbjLGTHJKOJXQ3Yl7NGWNyFV67h6+yWV/QBoJ517l+YdazWIt9x9YwqAwBiYmIKnK9p06b4+uuv0aVLF3h6emLw4ME4evQoHBwc8Nlnnz1zvEqleuFaL3uPiHQDyz4RUTF7OrfPokNKZWdnhwYNGvB7gMqE+/fvw9DQ8Jmr2JUrVy70WgkJCUhJSYGxsTGMjIxgZGoCoyX+MPqxM+48SkZi5oNXrmFjapHv18bq3I24Nibm+V+HAQC89nZ6Kysr+Pn54fz588jIyH2sn62tLYD/XeH/t6SkJKhUKlhZWb3WeYmo5HEbPxFRMXNwcEDt2rURHh7+zJUiIqWQJAn79+8XHYPolWxtbZGdnY2kpKR8hf/OnTuFXsvOzg62trYIDQ3NfeFeOrDyTN77FkZmr523JGi1uY8DfHq13tXVFWZmZrhw4dmdCBcuXEDNmjVhampaqhmJqPB4ZZ+IqARIksS5fVI0WZZx7do1xMbGio5C9FJPd2Nt2rQp3+sbN24s9Fp+fn64f/8+cnJy4ObmBrcWLeBWqVbeVx1rp2LJXJySk5OxZ88eNGnSJK/AGxoawt/fH9u2bcPDh/97ZGBMTAwOHTr0v/sREJFO45V9IqISIMsyli9fjrt376JSpUqi4xCVun/P7ffr109wGqIX8/b2hoeHB8aNG4fU1FQ0b94cx44dw+rVqwEAavXLr409ePAA4eHhqFSpEjw8PODt7Q1fX1+MGTMGLZu7wSj+PG4/uIdDcefR2aUVutZwL57gBoWfme/Xrx+cnZ3h5uYGOzs7XL16FYsWLUJCQgKCg4PzHTtz5ky0aNECfn5+mDhxIjIzMzFt2jTY2dlh3LhxxfN7IKISxbJPRFQCnl4pOnz4MHr06CE4DVHpq1SpEt544w2EhYWx7JNOU6vV2L17N8aNG4fAwEBkZWXBw8MDa9euRevWrV85m75p0yZ88MEH+V4zMzPD7NmzkZOTg/JGpnAqZwvJsQEa2rrkO06F17jJnXXhRwIaNWqETZs24YcffkBaWhpsbGzQtm1brFmzBi1a5L8BYN26dREWFoYJEyagR48eMDQ0xJtvvokvv/wSFStWLHpuIio1Ku3TIR0iIipWtWrVgre3N7777jvRUYiEGDlyJA4ePIjLly+LjkJUaOvXr0f//v0RGRkJd/cXX43/559/4OLi8tz3bG1tcXfDH1DvuAT85yfupr98BFdLe2zpMLnw4VQAutUD3qpR+M8SkWLwyj4RUQnh3D4pnSzLWLZsGeLj4/k8btJpGzZsQGxsLBo2bAi1Wo2oqCgsXLgQXl5eLy36AJCWlgYnJyfcvn077zW1Wg1nZ2ccP34c6nIVgF2XgZzctn8lJRZH4v/ChfvRGFBLLlpgtQpoU7VonyUixeAN+oiISogsy/jzzz+RmJgoOgqREHwMJZUVFhYW2LhxI3r37g1fX18sX74cAQEB2L17d94x2dnZeV/37t3Dd999hxYtWqBBgwZITk7OO87AwACVK1dGeHh47nb38saAT6289+ef/gUTooIxsM6bGNmgY9EC+9QCyhnl/VKj0eTL97wvIlIebuMnIioht27dgrOzM7Zu3co7F5Ni1atXD5Ik4YcffhAdhajIoqOjUb169ZceY2hoiOzsbFhZWSEqKgp16tT535s5GmB+BHAnDdC8xo/eahVgbw5MagsY/O+a3YwZMzBz5syXfvTmzZsvHDcgIv3EbfxERCWkatWqqFGjBsLCwlj2SbFkWeY4C5Vply5dwsqVK2FnZ4fExETUqFED/v7+8Pb2hp2dXd5xX3/9NXbs2IHffvstf9EHcov5yBbAwkjgYVbRCr9aBVia5K5jkH9z7rBhw+Dn5/fSjzs6Ohb+nERUpvHKPhFRCRoyZAhOnjyJc+fOiY5CJMTGjRvRt29fxMfHw97eXnQcogJJSUnBpk2bEBwcjKioKFhbW6Nfv34ICAhA8+bNoVI9exf9x48f48GDBy9/3GpSBrD0BBD38MXHvIijRW7Rtyn8XfiJSJk4s09EVIIkScL58+dx//590VGIhODcPpUVOTk5+PXXX9GvXz84ODhg5MiRsLGxwebNmxEfH4/vv/8ebm5uzy36AGBiYvLyog/kFvVJbQG/2oCBCq988p4Kucf51c79HIs+ERUCr+wTEZWgp49k2r59O7p06SI6DpEQderUwVtvvYWlS5eKjkL0jKtXryI4OBirV6/G7du3UbduXQwePBgDBgwo2a3v6VlA1G3gVDxwOxXI1vzvPUM14GQJNHfIvev+v27GR0RUUJzZJyIqQdWqVYOLiwvCwsJY9kmxOLdPuiY1NRWbN29GcHAwIiMjUaFCBfTt2xcBAQFo2bLlC6/eF6vyxsBbNXK/NNrcLf5ZOYCxQe4VfHUpZCAivcayT0RUwlh0SOlkWcZPP/2Eu3fvvnqbM1EJ0Wg0OHToEIKDg7F161ZkZmbinXfewYYNG9C5c2eYmQncIq9WAXblxJ2fiPQSZ/aJiEqYLMs4f/48kpKSREchEoJz+yTS9evXMW3aNFSvXh1vv/02jh8/jqlTpyImJgahoaHo06eP2KJPRFRCWPaJiEqYJEnQarU4cuSI6ChEQjg6OqJWrVos+1Rq0tLSEBQUBEmSULNmTXz99dfo0KEDIiMjcenSJUyaNAlOTk6iYxIRlSiWfSKiEubi4oJq1aqx6JCiSZLEcRYqURqNBmFhYQgICIC9vT2GDBkCY2NjrF27Fnfu3MFPP/0Ed3f30pnHJyLSAZzZJyIqBSw6pHSyLGPFihW4d+8eKlasKDoO6ZHo6GisWrUKq1atws2bN+Hq6oqJEydi4MCBcHZ2Fh2PiEgYXtknIioFsizj7NmzSElJER2FSIinc/uHDx8WnIT0QXp6OlavXo0333wT1atXx5dffol27drh8OHDuHr1KqZMmcKiT0SKx7JPRFQKOLdPSufk5ARXV1fucKEi02q1iIiIwJAhQ2Bvb49BgwYBAFatWoU7d+5g5cqV8PT05DZ9IqL/x238RESloHr16qhatSrCw8Ph7+8vOg6REJIk8d4VVGgxMTFYs2YNgoODce3aNbi4uGD8+PEYOHAgqlevLjoeEZHOYtknIioFKpWKc/ukeLIs4+eff0ZiYiLs7OxExyEd9ujRI+zYsQNBQUE4ePAgzMzM0LNnTyxfvhxeXl5Qq7k5lYjoVfgnJRFRKZFlGWfOnMGDBw9ERyES4uncPsdZ6Hm0Wi2OHTuGYcOGwcHBAf3790dWVhZWrlyJO3fuIDg4GLIss+gTERUQ/7QkIiolsixDo9EgIiJCdBQiIZydnVG9enXucKF8YmNjERgYiHr16sHd3R379+/HmDFjcO3aNYSHh2Pw4MGwsLAQHZOIqMzhNn4iolJSo0YNVKlSBWFhYejYsaPoOERCyLLMuX1CZmYmdu7ciaCgIBw4cAAmJibo3r07lixZgnbt2vHqPRFRMeCfpEREpUSlUrHokOJJkoTz588jKSlJdBQqZVqtFsePH8eIESPg4OCAPn36IC0tDT/++CPu3LmDNWvW4K233mLRJyIqJvzTlIioFEmShFOnTiE1NVV0FCIhnj6G8vDhw6KjUCmJj4/HwoUL0aBBA7Rq1Qp79uzByJEjcfnyZURERGDo0KGwtLQUHZOISO+w7BMRlaKnc/uRkZGioxAJ4eLigmrVqnGHi557/PgxtmzZgo4dO8LJyQnTpk1D48aNsX//fkRHR2Pu3LmoXbu26JhERHqNZZ+IqBTVrFkTDg4OvEEZKZosy/we0ENarRanTp3Chx9+CAcHB/Ts2RNJSUlYunQp4uPjsX79erzzzjswMDAQHZWISBF4gz4iolL0dG6fRYeUTJZlrF69GsnJybC2thYdh15TQkIC1q1bh6CgIPz5559wcHDAsGHDEBAQgLp164qOR0SkWLyyT0RUymRZxqlTp/Dw4UPRUYiEeDq3f+TIEdFRqIiysrKwfft2dOrUCVWqVMGkSZPwxhtvICQkBDExMQgMDGTRJyISjGWfiKiUSZKEnJwczu2TYrm4uMDZ2Zlz+2XQ2bNnMXbsWFSpUgXdunXDnTt38N133yE+Ph6bNm2Ct7c3DA25cZSISBfwT2MiolJWu3Zt2NvbIzw8HN7e3qLjEJU6lUoFSZI4zlJG3Lt3D+vXr0dQUBDOnTuHypUrIyAgAAEBAahfv77oeERE9AIs+0REpYxFhyh3nGXt2rVISUmBlZWV6Dj0H0+ePEFISAiCgoKwZ88eqFQqdOrUCXPnzkWHDh149Z6IqAzgNn4iIgFkWcbJkyeR9uAhkPgIiPv//83RiI5GVCqezu1HRESIjkL/cuHCBYwbNw5OTk7o3LkzYmJi8NVXXyE+Pj7vUXos+kREZYNKq9VqRYcgIlKU9Czc230WN36JQAvHOlDn/Os9QzXgZAk0dwBaOwHljYXFJCpJWq0Wzs7O6N27N7788kvRcRTt/v372LBhA4KCgnD69GlUrFgRAwYMQEBAABo1aiQ6HhERFRHLPhFRacnRAPuvAyFXAY0WWi2getGxKgBqFeBTC+jgChhwIxbpnwEDBuDy5cs4ceKE6CiKk52djf379yMoKAi7du2CVquFn58fBg8eDB8fHxgZGYmOSEREr4lln4ioNCRlAEtP5G7XLyxHC2BkC8DGrPhzEQm0YsUKfPDBB0hKSkKFChVEx1GEixcvIjg4GGvWrMGdO3fQqFEjDB48GP3790fFihVFxyMiomLEsk9EVNKSMoCFkcDDLEBThD9y1SrAwhj41IOFn/TKtWvXUKtWLezduxe+vr6i4+it5ORkbNy4EUFBQThx4gRsbW3Rv39/DB48GE2aNBEdj4iISgj3hRKR3goODoZKpUJ0dDQAICAgAC4uLqUbIkeTe0X/X0Vf3jkR8s6JBV9Do839/NITxXYDvxUrVkClUsHc3PyZ91Qq1Qu/6tatWyznJwIAV1dXODo68skUJSAnJwehoaHo3bs3HBwcMHr0aNjb22Pr1q2Ii4vDN998w6JPRKTneDtVIlKMqVOnYsyYMaV70v3Xn9m6v9RzZOHX0Whz19l/HfCt9VqRYmNjMX78eDg6OuLBgwfPvH/s2LFnXvvjjz8wduxYdO3a9bXOTfRvKpUKsiwjPDxcdBS9cenSJaxatQqrV69GXFwc6tevj7lz56J///6wt7cXHY+IiEoRyz4RKYarq2vpnjA9K/dmfP/xho1z0dcMuQpI1V7rLv3Dhw+Hl5cXbGxssGXLlmfeb9269TOv/fjjj1CpVBgyZEiRz0v0PJIkYdOmTUhNTYWlpaXoOGXSgwcPsGnTJgQFBSEqKgrW1tbo168fAgIC0Lx5c6hUL7wVKBER6TFu4ycixXjeNv6UlBQMGTIENjY2MDc3R8eOHXHjxg2oVCrMmDGjUOtnZWVhzpw5qFu3LkxMTFCxigMG//YV7mXkv3r+32380akJUC3zw8IzW/HFmS1wWfsezH7qBnnnRFxJicWTnGxMjAqG46qBqPBTT3Tt4Ie7d+8W6Z/B2rVrER4ejqVLlxb4Mw8fPsQvv/wCSZJQs2bNIp2X6EVkWUZOTg4iIyNFRylTcnJycODAAfTr1w/29vYYMWIEbGxssHnzZsTHx+P777+Hm5sbiz4RkYLxyj4RKZZGo4G/vz9OnjyJGTNmoFmzZjh27Bi8vb2LtFbnzp1x5MgRfPbZZ3B3d8c/PxzE9NDlkBOu4GSPr2BmaPLSNZb8tReNbFywxHMEUh6nYdzRlfDfNwutKteGkdoQP7cbg38e3sX4qJ8xdOhQ7Nq1q1AZ7969i7FjxyIwMBBOTk4F/tzGjRuRnp6OoUOHFup8RAVRq1Yt2NvbIzw8HD4+PqLj6LyrV69i1apVWLVqFW7fvo26deti5syZGDBgABwdHUXHIyIiHcKyT0SKFRoaioiICCxbtgzDhw8HALRv3x7GxsaYNGlSodbavHkzQkNDsXXrVnTr1i33Rnq7nqCxd2W02Poxgi8dxIgGL7/buJVxeezwmQK1KnfTVWJmKsZGLkddayfs9Jmad9yl1Fh8vXtHobc9jxw5EnXq1MGIESMK9XtbuXIlrKys0L1790J9jqggns7t8yZ9L5aamopffvkFQUFBiIyMRIUKFdC3b18EBASgZcuWvHpPRETPxW38RKRYT28K1qtXr3yv9+3bt9Br7dmzB1ZWVvD390d2djay76UhO+sJmtjVgH05a4TFXXjlGr7ObnlFHwDqWVcFAHSs1iLfcfUq5F6Vj4mJKXC+rVu3Yvfu3Vi+fHmhisFff/2FP/74A/3794epqWmBP0dUGLIs4+TJk0hLSxMdRWdoNBr8/vvvePfdd2Fvb4/3338f5ubm2LBhA+Lj47Fs2TK0atWKRZ+IiF6IV/aJSLHu378PQ0ND2NjY5Hu9cuXKhV4rISEBKSkpMDZ+/o3zEjOfvev9f9mYWuT7tbE6949oGxPz576emZlZoGxpaWkYNWoURo8eDUdHR6SkpADIvccAkHvfAiMjI5QvX/6Zz65cuRIAuIWfSpQkSXlz+x06dBAdR6gbN27kbdP/559/ULt2bUydOhXvvvtuocZviIiIWPaJSLFsbW2RnZ2NpKSkfIX/zp07hV7Lzs4Otra2CA0NzX0hJRP44WTe+xZGZq+dt6gSExORkJCARYsWYdGiRc+8b21tjc6dO2PHjh35Xs/KysKaNWvQvHlzPo+bSlSdOnVQuXJlhIeHK7Lsp6WlYcuWLQgKCsLhw4dhYWGBPn36ICAgAG3atOHVeyIiKhKWfSJSLEmSsGDBAmzatCnfHPvGjRsLvZafnx82btyInJwctGrV6v9n9h8C2ZrijJzLoHA/+Nvb2+PQoUPPvB4YGIjw8HCEhITAzs7umfd37dqFxMREzJo1q8hRiQpCpVJBkiRFze1rNBocOXIEQUFB2LJlCx49eoS33noLa9euRdeuXVGuXDnREYmIqIxj2ScixfL29oaHhwfGjRuH1NRUNG/eHMeOHcPq1asBAGp1wW9r0qdPH6xbtw6+vr4YM2YMWrZsCaPMK7h97R8cijuPzi6t0LWGe/EEty7cLgFTU1PIsvzM68HBwTAwMHjue0DuFn4zMzP069evCCGJCkeWZXz00UdIT09/7kiJvoiOjsbq1asRHByMmzdvwtXVFRMnTsTAgQPh7OwsOh4REekRln0iUiy1Wo3du3dj3LhxCAwMRFZWFjw8PLB27Vq0bt0aVlZWBV7LwMAAu3btwjfffIM1a9Zg/vz5MFQZwMnEGpJjAzS0dcl3vApF3JarAuBSoWifLYRbt27h119/xYABA1ChQsmfj0iSJGRnZ+Po0aNo37696DjFKj09Hdu2bUNQUBAOHToEc3Nz9OrVC6tWrULbtm25TZ+IiEqESqvVakWHICLSJevXr0f//v0RGRkJd/fXuBqfngVM/A3Iyf/HbNNfPoKrpT22dJhc+DUNVMAX7YFyRkXPRaSDtFotKleujPfffx9z584VHee1abVaREZGIigoCJs3b0ZaWhratWuHgIAAdO/eXa93LxARkW7glX0iUrQNGzYgNjYWDRs2hFqtRlRUFBYuXAgvL6/XK/oAUN4Y8KkF7LkCALiSEosj8X/hwv1oDKglF21Nn1os+qSXns7tP30kZlkVExODNWvWIDg4GNeuXYOLiwvGjx+PgQMHonr16qLjERGRgrDsE5GiWVhYYOPGjZgzZw7S09Ph4OCAgIAAzJkzJ++Y7Ozsl66hVqtfPN/fwRU4HQ/cScP8079g9z/HMbDOmxjZoGPhgqpVgL157nr/otFooNG8/CaAhob8o57KBlmW8fHHH+PRo0dl6gZ1jx49wo4dOxAUFISDBw/CzMwMPXv2xPLly+Hl5VWo+38QEREVF27jJyJ6iejo6FdejZs+fTpmzJjx4gOSMoCFkcDDLEBThD9y1SrA0gQY7w7Y5L8534wZMzBz5syXfvzmzZtwcXEp/HmJStlff/2FBg0a4LfffsNbb70lOs5LabVaREVFISgoCJs2bUJqaiq8vLwQEBCAHj16wMLCQnREIiJSOJZ9IqKXyMrKwvnz5196jKOjIxwdHV++UFIGsPQEEPew8CEcLYCRLZ4p+gAQFxeHuLi4l368UaNGMDY2Lvx5iUqZVqtFpUqVMHz4cMyePVt0nOeKjY3N26Z/+fJlODs7Y9CgQRg0aBBcXV1fvQAREVEpYdknIiotORpg/3Ug5GruFf6X/emrQu4VfZ9auVv3DbgNmJShR48euHv3Lg4fPiw6Sp7MzEzs3LkTQUFBOHDgAExMTNC9e3cEBASgXbt23KZPREQ6iWWfiKi0pWcBUbeBU/HA7VQg+18z94ZqwMkSaO4AtKnKm/GR4nz33XcYP348kpOThc7ta7VanDhxAkFBQdi4cSNSUlLg7u6OwYMHo2fPnnwkJRER6TyWfSIikTTa3C3+WTmAsUHuVn01n7lNynXhwgU0atQIvx/4De2atPnf94a1aanscImPj8fatWsRHByMixcvokqVKnnb9GvXrl3i5yciIiouLPtERESkG9KzoDl6C2dX7kNj2+ow0P7rL77+veultVPuoy2LyePHj7F7924EBQUhNDQURkZG6NatGwICAvDWW2/BwMCg2M5FRERUWlj2iYiISKz/3M9Cq829bcVzFdP9LLRaLU6fPo2goCCsX78eycnJaNWqFQYPHozevXvDysqqiL8ZIiIi3cCyT0REROKU0JMqXiQhIQHr1q1DUFAQ/vzzTzg4OGDgwIEYNGgQ6tWrV/gMREREOopln4iIiMRIygAWRgIPs3LvX1FYahVgYQx86vHSwp+VlYW9e/ciKCgI+/btg4GBAbp06YKAgAC0b98ehoaGr/GbICIi0k18VgwREZHCBAcHQ6VSITo6GgAQEBAAFxeX0g2Ro8m9ov+voi/vnAh558SCr6HR5n5+6Ync9f7j7NmzGDt2LKpUqYJu3bohPj4e3377LeLj47Fp0yb4+Pg8U/RXrFgBlUoFc3Pz/HFzcrB48WJ4e3vDyckJ5cqVQ7169TBx4kSkpKQU+rdPRERU0nhln4iISGGCg4MxePBg3Lx5Ey4uLrh+/TpSU1PRtGnT0gux7yqw50q+ly4mxQAA3rBxLvx6frUB31q4d+8e1q9fj6CgIJw7dw6VK1fGu+++i0GDBqFBgwYvXSI2Nhb169dH+fLl8eDBA6SlpeW9l5aWBkdHR/Tt2xft27eHnZ0dTp8+jTlz5sDBwQEnT56EmVnBxwmIiIhKGvetERERKZyrq2vpnjA9K/dmfP9RpJL//zT7rmDQiqnYuHsrVCoVOnXqhDlz5qBDhw4wMjIq0BrDhw+Hl5cXbGxssGXLlnzvmZmZ4ebNm7C1tc17TZZlODs7o2fPnti6dSsGDBhQ5PxERETFjdv4iYiIFO552/hTUlIwZMgQ2NjYwNzcHB07dsSNGzegUqkwY8aMQq2flZWFOXPmoG7dujAxMUHFKg4Y/NtXuJfxIN9x/93GH52aANUyPyw8sxVfnNkCl7XvweynbpB3TsSVlFg8ycnGxKhgOK4aCOvlvXD26HHMnDkTcXFx2LJlC/z8/Apc9NeuXYvw8HAsXbr0ue8bGBjkK/pPtWzZEgBw69atgv7jICIiKhW8sk9ERET5aDQa+Pv74+TJk5gxYwaaNWuGY8eOwdvbu0hrde7cGUeOHMFnn30Gd3d3/PPDQUwPXQ454QpO9vgKZoYmL11jyV970cjGBUs8RyDlcRrGHV0J/32z0KpybRipDfFzuzGIfngXn0b9jKioKEyePLlQGe/evYuxY8ciMDAQTk5Ohfrs77//DgCoX79+oT5HRERU0lj2iYiIKJ/Q0FBERERg2bJlGD58OACgffv2MDY2xqRJkwq11ubNmxEaGoqtW7eiW7duuTfS2/UEjb0ro8XWjxF86SBGNPB96RpWxuWxw2cK1KrcDYmJmakYG7kcda2dsNNnat5xl1Nj8fXuHUhNTYWlpWWBM44cORJ16tTBiBEjCvV7i42NxcSJE+Hm5gY/P79CfZaIiKikcRs/ERER5RMeHg4A6NWrV77X+/btW+i19uzZAysrK/j7+yM7OxvZ99KQnfUETexqwL6cNcLiLrxyDV9nt7yiDwD1rKsCADpWa5HvuHoVcq/Kx8TEFDjf1q1bsXv3bixfvhwqlarAn0tKSoKvry+0Wi02bdoEtZo/UhERkW7hlX0iIiLK5/79+zA0NISNjU2+1ytXrlzotRISEpCSkgJjY+Pnvp+Y+eC5r/+bjalFvl8bq3N/fLExMX/u65mZmQXKlpaWhlGjRmH06NFwdHTMe4ReVlYWgNz7FhgZGaF8+fL5PpecnIz27dsjNjYWv//+O2rUqFGg8xEREZUmln0iIiLKx9bWFtnZ2UhKSspX+O/cuVPotezs7GBra4vQ0NDcF1IygR9O5r1vYSTucXWJiYlISEjAokWLsGjRomfet7a2RufOnbFjx46815KTk/H222/j5s2bOHjwIBo1alSKiYmIiAqOZZ+IiIjykSQJCxYswKZNm/LNsW/cuLHQa/n5+WHjxo3IyclBq1at/n9m/yGQrSnOyLkMCr4NHwDs7e1x6NChZ14PDAxEeHg4QkJCYGdnl/f606J/48YNHDhwAE2bNn3tyERERCWFZZ+IiIjy8fb2hoeHB8aNG4fU1FQ0b94cx44dw+rVqwGgUPPpffr0wbp16+Dr64sxY8agZcuWMMq8gtvX/sGhuPPo7NIKXWu4F09w68LtEjA1NYUsy8+8HhwcDAMDg3zvZWRkoEOHDjhz5gy+/vprZGdnIyoqKu/9ihUrwtXVtajJiYiIih3LPhEREeWjVquxe/dujBs3DoGBgcjKyoKHhwfWrl2L1q1bw8rKqsBrGRgYYNeuXfjmm2+wZs0azJ8/H4YqAziZWENybICGti75jlehcFfn//VBwKVC0T5bAAkJCThx4gQAYMyYMc+8P2jQIAQHB5fY+YmIiApLpdVqtaJDEBERke5bv349+vfvj8jISLi7v8bV+PQsYOJvQE7+H0Ga/vIRXC3tsaXD5MKvaaACvmgPlDMqei4iIiI9wiv7RERE9IwNGzYgNjYWDRs2hFqtRlRUFBYuXAgvL6/XK/oAUN4Y8KkF7LkCALiSEosj8X/hwv1oDKglF21Nn1os+kRERP/Csk9ERETPsLCwwMaNGzFnzhykp6fDwcEBAQEBmDNnTt4x2dnZL11DrVa/eL6/gytwOh64k4b5p3/B7n+OY2CdNzGyQcfCBVWrAHvz3PX+RaPRQKN5+U0ADQ35YxAREekvbuMnIiKiQouOjkb16tVfesz06dMxY8aMFx+QlAEsjAQeZgGaIvw4olYBlibAeHfAJv/N+WbMmIGZM2e+9OM3b96Ei4tL4c9LRERUBrDsExERUaFlZWXh/PnzLz3G0dERjo6OL18oKQNYegKIe1j4EI4WwMgWzxR9AIiLi0NcXNxLP96oUSMYGxsX/rxERERlAMs+ERERiZWjAfZfB0Ku5l7hf9lPJirkXtH3qZW7dd+g4I8BJCIiUhKWfSIiItIN6VlA1G3gVDxwOxXI/tfMvaEacLIEmjsAbaryZnxERESvwLJPREREukejzd3in5UDGBvkbtVXq0SnIiIiKjNY9omIiIiIiIj0DAfdiIiIiIiIiPQMyz4RERERERGRnmHZJyIiIiIiItIzLPtEREREREREeoZln4iIiIiIiEjPsOwTERERERER6RmWfSIiIiIiIiI9w7JPREREREREpGdY9omIiIiIiIj0DMs+ERERERERkZ5h2SciIiIiIiLSMyz7RERERERERHqGZZ+IiIiIiIhIz7DsExEREREREekZln0iIiIiIiIiPcOyT0RERERERKRnWPaJiIiIiIiI9AzLPhEREREREZGeYdknIiIiIiIi0jMs+0RERERERER6hmWfiIiIiIiISM+w7BMRERERERHpGZZ9IiIiIiIiIj3Dsk9ERERERESkZ1j2iYiIiIiIiPQMyz4RERERERGRnmHZJyIiIiIiItIzLPtEREREREREeoZln4iIiIiIiEjPsOwTERERERER6RmWfSIiIiIiIiI9w7JPREREREREpGdY9omIiIiIiIj0DMs+ERERERERkZ5h2SciIiIiIiLSMyz7RERERERERHqGZZ+IiIiIiIhIz7DsExEREREREekZln0iIiIiIiIiPcOyT0RERERERKRnWPaJiIiIiIiI9AzLPhEREREREZGeYdknIiIiIiIi0jMs+0RERERERER6hmWfiIiIiIiISM+w7BMRERERERHpGZZ9IiIiIiIiIj3Dsk9ERERERESkZ1j2iYiIiIiIiPQMyz4RERERERGRnmHZJyIiIiIiItIzLPtEREREREREeoZln4iIiIiIiEjPsOwTERERERER6RmWfSIiIiIiIiI9w7JPREREREREpGdY9omIiIiIiIj0DMs+ERERERERkZ5h2SciIiIiIiLSMyz7RERERERERHqGZZ+IiIiIiIhIz7DsExEREREREemZ/2u/DmQAAAAABvlb3+Mri2QfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZmQfAAAAZgIh0VO0/y/zZgAAAABJRU5ErkJggg==",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAARECAYAAAAqQwEUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1zVZf/H8dcBxIkhmAou3DY09wB3qThwpeYWR+7UtHIrjpxpqaWZA9yj3AMsBzjA0jRzVK5AQdziQJFxzu8PfnFHLvYBfD8fDx53fM/1va7P4S7lfa7xNZhMJhMiIiIiIiIikmlYmLsAEREREREREUlZCvsiIiIiIiIimYzCvoiIiIiIiEgmo7AvIiIiIiIiksko7IuIiIiIiIhkMgr7IiIiIiIiIpmMwr6IiIiIiIhIJqOwLyIiIiIiIpLJKOyLiIiIiIiIZDIK+yIiIiIiIiKZjMK+iIiIiIiISCajsC8iIiIiIiKSySjsi4iIiIiIiGQyCvsiIiIiIiIimYzCvoiIiIiIiEgmo7AvIiIiIiIiksko7IuIiIiIiIhkMgr7IiIiIiIiIpmMwr6IiIiIiIhIJqOwLyIiIiIiIpLJKOyLiIiIiIiIZDIK+yIiIiIiIiKZjMK+iIiIiIiISCajsC8iIiIiIiKSySjsi4iIiIiIiGQyCvsiIiIiIiIimYzCvoiISCIEBgZiMBgwGAysW7fuqdc9PDwwGAzcunUrxcb8p8+MatOmTXTs2JGSJUuSPXt2nJyc6Ny5M+fPn39m+/DwcMaPH0/p0qXJmjUr9vb21K9f/7ntRURE5GlW5i5AREQkoxozZgzvv/8+WbJkMXcp6dqMGTMoUKAAY8aMoXjx4ly5coWpU6dSqVIljhw5wltvvRXX9uHDh9SvX5+rV68ycuRIypcvz7179/D39+fRo0dmfBciIiIZi8K+iIhIEjRp0gRvb2++/fZbPvroI3OXk65t376dfPnyxbvWoEEDnJyc+PLLL1myZEnc9bFjx/LHH3/w+++/U7x48bjrLVq0SLN6RUREMgMt4xcREUmCBg0a0LhxYyZPnsyDBw9e2n7Pnj28++675M6dmxw5cuDi4sLevXufardz504qVKhA1qxZKVasGF988cUz+wsLC6NXr17Y2dmRK1cumjVrxqVLlzAYDHh4eMRre/78eTp16kS+fPnImjUrb7zxBt988028NkajkSlTplCmTBmyZ8+Ora0t5cuXZ+7cuQn/oTzHf4M+gKOjI4UKFeLKlStx1x49esSSJUto165dvKAvIiIiiaewLyIikkQzZszg1q1bzJo164XtVq1aRaNGjcidOzfLly9nw4YN2NnZ0bhx43iBf+/evbRs2RIbGxvWrVvHrFmz2LBhA56envH6MxqNuLm5sWbNGkaMGMHmzZupXr06rq6uT4199uxZqlatyunTp5k9ezY7duygWbNmDB48mIkTJ8a1mzlzJh4eHnTs2JGdO3eyfv16evXqRVhYWFwbk8lEdHR0gr5e5tKlSwQFBcVbwv/rr78SHh5OqVKl6N+/P3ny5MHa2poqVaqwc+fOl/YpIiIi/2ISERGRBPv7779NgGnWrFkmk8lk6ty5sylnzpym0NBQk8lkMk2YMMEEmG7evGkymUym8PBwk52dncnNzS1ePzExMaZ33nnHVK1atbhr1atXNzk6OpoeP34cd+3+/fsmOzs707//yt65c6cJMC1cuDBen9OmTTMBpgkTJsRda9y4salQoUKme/fuxWs7aNAgU7Zs2Ux37twxmUwmU/PmzU0VKlR44Xvfv3+/CUjQ199///3cfqKiokz16tUz5c6d23T58uW462vXrjUBpty5c5tcXFxM27ZtM+3YscNUv359k8FgMPn4+LywPhEREfkfzeyLiIgkw5QpU4iKioo3S/5v/v7+3Llzh+7du8eb+TYajbi6unL06FHCw8MJDw/n6NGjtGnThmzZssXdb2Njg5ubW7w+/fz8AGjfvn286x07doz3fUREBHv37qV169bkyJEj3vhNmzYlIiKCI0eOAFCtWjVOnjzJgAED2L17N/fv33/qvVSuXJmjR48m6MvR0fGZPw+TyUSvXr04ePAgK1asoHDhwnGvGY1GAKytrfH29sbNzY1mzZqxY8cOHBwcmDx58jP7FBERkafpgD4REZFkcHJyYsCAAXz99dcMGzbsqdevX78OQNu2bZ/bx507dzAYDBiNRgoUKPDU6/+9dvv2baysrLCzs4t3PX/+/E+1i46OZv78+cyfP/+ZY//ziMBRo0aRM2dOVq1axbfffoulpSV16tRhxowZVKlSBYBcuXJRoUKF576Pf7OyevpXDJPJRO/evVm1ahXLly+nZcuW8V63t7cHwNnZGRsbm7jrOXLkoG7dumzZsiVBY4uIiIjCvoiISLKNHTuWZcuWMXr06Hh70AHy5s0LwPz586lRo8Yz78+fPz9RUVEYDAauXbv21Ov/vWZvb090dDR37tyJF/j/2y5PnjxYWlrStWtXBg4c+MyxixUrBsSG82HDhjFs2DDCwsLYs2cPo0ePpnHjxly5coUcOXLg5+dH/fr1X/LTiPX333/j5OQU9/0/Qd/T05OlS5fSpUuXp+4pX778c/szmUxYWGhBooiISEIp7IuIiCSTvb09I0aMYMyYMYSHh8d7zcXFBVtbW86ePcugQYOe24e1tTXVqlVj06ZNzJo1K24p/4MHD9i+fXu8tnXr1mXmzJmsX7+e/v37x11ft25dvHY5cuSgfv36nDhxgvLly2NtbZ2g92Nra0vbtm0JCQlh6NChBAYG8uabb8Yt40+Ify/jN5lMfPjhh3h6erJo0SJ69OjxzHscHByoWbMmhw8f5v79++TOnRuIPaXfz8/vuR+WiIiIyNMU9kVERFLA0KFD+eabb/D29o53PVeuXMyfP5/u3btz584d2rZtS758+bh58yYnT57k5s2bLFy4EIDJkyfj6upKw4YNGT58ODExMcyYMYOcOXNy586duD5dXV1xcXFh+PDh3L9/n8qVKxMQEMCKFSsA4s2Az507l1q1alG7dm369++Pk5MTDx484MKFC2zfvp19+/YB4Obmxttvv02VKlV4/fXXCQoK4quvvqJo0aKUKlUKiD0/4J8l/YkxePBgli5dSs+ePSlXrlzcOQEAWbNmpWLFinHff/HFF9SvX5/GjRszYsQIDAYDs2fP5tatW9qzLyIikggK+yIiIikgR44ceHh40KdPn6de69KlC0WKFGHmzJn07duXBw8ekC9fPipUqIC7u3tcu4YNG7JlyxbGjh3LBx98QIECBRgwYACPHz+OdwCghYUF27dvZ/jw4UyfPp3IyEhcXFxYtWoVNWrUwNbWNq7tm2++yfHjx5k8eTJjx47lxo0b2NraUqpUKZo2bRrXrn79+mzcuJElS5Zw//59ChQoQMOGDRk3bhxZsmRJ1s/mn5UJy5YtY9myZfFeK1q0KIGBgXHfOzs7s3fvXsaOHUvnzp0BqFGjBr6+vtSsWTNZdYiIiLxKDCaTyWTuIkRERCT51qxZQ+fOnTl8+DDOzs7mLkdERETMSGFfREQkA1q7di0hISGUK1cOCwsLjhw5wqxZs6hYsWLco/lERETk1aVl/CIiIhmQjY0N69atY8qUKYSHh+Pg4IC7uztTpkwxd2kiIiKSDmhmX0RERERERCST0QNrRURERERERDIZhX0RERERERGRTEZhX0RE5DkCAwMxGAwYDAbWrVv31OseHh4YDAZu3boVd83d3R0nJ6d47ZycnOI9Yi+9MhgMeHh4pMlYhw4donfv3lSuXJmsWbNiMBjiPYLvH+Hh4XTo0IEyZcpgY2NDzpw5eeutt+LOKhAREZFn0wF9IiIiCTBmzBjef//9JD1zfvPmzeTOnTsVqsq49u7dy549e6hYsSK5c+fG19f3me2ioqIwmUwMGzaMYsWKYWFhwYEDB5g0aRK+vr7s2bMnbQsXERHJIBT2RUREXqJJkyZ4e3vz7bff8tFHHyX6/ooVK6ZCVRnbuHHjmDBhAgBffPHFc8O+ra0t69evj3ftvffe48mTJ8ycOZNLly5RvHjx1C5XREQkw9EyfhERkZdo0KABjRs3ZvLkyTx48CDR9z9rGf+ZM2do1KgROXLk4PXXX2fgwIHs3LkTg8EQL/j+9NNPtGzZkkKFCpEtWzZKlixJ3759420dgP9tKThz5gwdO3bktddeI3/+/PTs2ZN79+7Fa3v//n0+/PBD7O3tyZUrF66urpw7d+6pum/evEmfPn0oXLgwWbNm5fXXX8fFxSVFZtMtLJL3K8jrr78OgJWV5i1ERESeRX9DioiIJMCMGTOoWLEis2bNYtKkScnqKzQ0lLp165IzZ04WLlxIvnz5WLt2LYMGDXqq7cWLF6lZsya9e/fmtddeIzAwkDlz5lCrVi1OnTr11LaC999/nw8++IBevXpx6tQpRo0aBcCyZcsAMJlMtGrVCn9/f8aPH0/VqlU5fPgwTZo0eWrsrl27cvz4cT7//HNKly5NWFgYx48f5/bt23FtjEYjRqPxpe/ZYDBgaWmZqJ/Tv5lMJmJiYnj06BH+/v7Mnj2bjh07UqRIkST3KSIikpkp7IuIiCTAO++8Q6dOnZgzZw4DBgygQIECSe7ryy+/5M6dOxw4cIA333wTiN0q4Orq+tQhdf369Yv7Z5PJhLOzM/Xq1aNo0aJ4e3vTokWLeO179erFp59+CsQud79w4QLLli1j6dKlGAwGdu/ezf79+5k7dy6DBw8GoGHDhlhbWzNmzJh4fR0+fJjevXvz4Ycfxl1r2bJlvDaTJk1i4sSJL33PRYsWfeYBfAm1fv16OnbsGPd9jx49+O6775Lcn4iISGansC8iIpJAU6ZM4fvvv2fixIksXLgwyf34+fnx9ttvxwX9f3Ts2JHdu3fHu3bjxg3Gjx/Pzp07uXr1arxZ9D/++OOpsP/f78uXL09ERAQ3btwgf/787N+/H4DOnTvHa9epU6enwn61atXw8vLC3t6e9957j8qVKz+1kqBPnz40b978pe85a9asL23zIo0bN+bo0aM8ePCAgIAAZsyYwe3bt9m8eXOytwSIiIhkRgr7IiIiCeTk5MSAAQP4+uuvGTZsWJL7uX37NsWKFXvqev78+eN9bzQaadSoEVevXmXcuHGUK1eOnDlzYjQaqVGjBo8fP36qD3t7+3jf/xOy/2l7+/ZtrKysnmr3rJUK69evZ8qUKSxZsoRx48aRK1cuWrduzcyZM+PaFyhQgHz58r30PRsMhpe2eZE8efJQpUoVAOrXr0+JEiXo0KEDW7dupXXr1snqW0REJDPSR+EiIiKJMHbsWHLkyMHo0aOT3Ie9vT3Xr19/6vq1a9fifX/69GlOnjzJrFmz+Oijj6hXrx5Vq1Z9Kqgnduzo6Oh4++6fNTZA3rx5+eqrrwgMDCQoKIhp06axadOmeIcNTpo0iSxZsrz0q0SJEkmu+VmqVasG8MyDBUVEREQz+yIiIolib2/PiBEjGDNmDOHh4Unqo27dunzxxRecPXs23lL+devWxWv3z2z4f5fAL1q0KEnjQuys+MyZM1m9enXcnn2ANWvWvPC+IkWKMGjQIPbu3cvhw4fjrqfVMv7/+mc7QsmSJVO0XxERkcxCYV9ERCSRhg4dyjfffIO3t3eS71+2bBlNmjRh0qRJ5M+fnzVr1vDnn38C/3ssXdmyZSlRogQjR47EZDJhZ2fH9u3b+emnn5Jce6NGjahTpw6fffYZ4eHhVKlShcOHD7Ny5cp47e7du0f9+vXp1KkTZcuWxcbGhqNHj+Lj40ObNm3i2jk6OuLo6JjoOm7evImfnx8Ap06dAsDb25vXX3+d119/nbp16wKxH2wcPHiQRo0aUbhwYcLDwzl48CDz58/H2dn5qQMDRUREJJbCvoiISCLlyJEDDw8P+vTpk6T7HR0d8fPzY+jQofTr148cOXLQunVrJk2aRPfu3bG1tQUgS5YsbN++nSFDhtC3b1+srKx477332LNnT5IfOWdhYcG2bdsYNmwYM2fOJDIyEhcXF3bt2kXZsmXj2mXLlo3q1auzcuVKAgMDiYqKokiRIowYMYLPPvssSWP/25kzZ2jXrl28awMGDABiVz74+voCUK5cOXbs2MGoUaO4desWVlZWlCpVitGjRzNs2DCsrPSrjIiIyLMYTCaTydxFiIiISOyS+LVr13L79m2sra3NXY6IiIhkYPo4XERExAwmTZqEo6MjxYsX5+HDh+zYsYMlS5YwduxYBX0RERFJNoV9ERERM8iSJQuzZs0iODiY6OhoSpUqxZw5cxgyZIi5SxMREZFMQMv4RURERERERDIZC3MXICIiIiIiIiIpS2FfRETkBQIDAzEYDHFfWbJkwd7enqpVq/Lxxx9z5swZc5eYbixZsoRWrVrh5ORE9uzZKVmyJP379yc0NDTBfRw/fpz33nuPXLlyYWtrS5s2bbh06dIz286fP5+yZcuSNWtWihUrxsSJE4mKikqptyMiIpKhKeyLiIgkwEcffURAQAB+fn6sXLmSVq1asW3bNt555x1mzZpl7vLShQkTJpArVy6mTp2Kj48Pn332GTt27KBy5cpcv379pff/+eef1KtXj8jISDZs2MCyZcs4d+4ctWvX5ubNm/Hafv755wwZMoQ2bdqwe/duBgwYwNSpUxk4cGBqvT0REZEMRXv2RUREXiAwMJBixYoxa9YsPvnkk3ivPX78mDZt2uDj48OuXbto0qRJmtb26NEjcuTIkaZjvsiNGzfIly9fvGvHjh2jatWqTJ48mbFjx77w/vbt27N//34uXrxI7ty5AQgKCqJUqVJ8/PHHzJgxA4Dbt29TqFAhunXrxqJFi+Lunzp1KmPHjuX06dO8+eabKfzuREREMhbN7IuIiCRR9uzZWbp0adzJ+v927do1+vbtS6FChbC2to5bZh4dHR2vXXBwMG3btsXGxgZbW1s6d+7M0aNHMRgMeHl5xbVzd3cnV65cnDp1ikaNGmFjY8O7774LQGRkJFOmTIlb0v7666/To0ePp2bDAdavX0/NmjXJmTMnuXLlonHjxpw4cSJFfh7/DfoAlStXxtLSkitXrrzw3ujoaHbs2MH7778fF/QBihYtSv369dm8eXPcNR8fHyIiIujRo0e8Pnr06IHJZGLLli3JeyMiIiKZgB69JyIikgyOjo5UrlwZf39/oqOjsbKy4tq1a1SrVg0LCwvGjx9PiRIlCAgIYMqUKQQGBuLp6QlAeHg49evX586dO8yYMYOSJUvi4+PDBx988MyxIiMjadGiBX379mXkyJFER0djNBpp2bIlBw8e5LPPPsPZ2ZmgoCAmTJhAvXr1OHbsGNmzZwf+N/Pdo0cPxo4dS2RkJLNmzaJ27dr88ssvcbPhJpOJmJiYBL1/K6sX/yrh5+dHTEwMb7311gvbXbx4kcePH1O+fPmnXitfvjw//fQTERERZMuWjdOnTwNQrly5eO0cHBzImzdv3OsiIiKvMoV9ERGRZCpatChHjhzhzp075MuXDw8PD+7evcuZM2coUqQIAO+++y7Zs2fnk08+4dNPP+XNN99k+fLlXLhwAW9vb1xdXQFo1KgRjx49irc8/R9RUVGMHz8+3oz2unXr8PHxYePGjbRp0ybu+jvvvEPVqlXx8vKif//+XLlyhQkTJjBo0CDmzZsX165hw4aUKlWKiRMnsn79egCWL1/+1Kz587xoN+CDBw8YMGAAhQsXpmfPni/s5/bt2wDY2dk99ZqdnR0mk4m7d+/i4ODA7du3yZo1Kzlz5nxm23/6EhEReZUp7IuIiCTTfwPvjh07qF+/Po6OjvGW7Tdp0oRPPvkEPz8/3nzzTfz8/LCxsYkL+v/o2LHjM8M+wPvvv//UWLa2tri5ucUbq0KFChQoUABfX1/69+/P7t27iY6Oplu3bvHaZcuWjbp167J///64a25ubhw9ejTxP4h/iYiIoE2bNgQFBbFv3z5y5cqVoPsMBkOCXktoOxERkVeVwr6IiEgyBQUFkTVr1rhZ6evXr7N9+3ayZMnyzPa3bt0CYmez8+fP/9Trz7oGkCNHjnj72f8ZKywsDGtr6xeO9c9p+FWrVn1mOwuL/x3jY2dnx2uvvfbMdgnx5MkTWrduzaFDh9ixYwfVq1d/6T329vYAz5yVv3PnDgaDAVtb27i2ERERzzyg8M6dO1SuXDnJtYuIiGQWCvsiIiLJEBISwq+//krdunXj9q/nzZuX8uXL8/nnnz/zHkdHRyA2tP7yyy9PvX7t2rVn3vesGeu8efNib2+Pj4/PM++xsbGJawfwww8/ULRo0Re+p+Qs43/y5AmtWrVi//79bN26Ne4QwZcpUaIE2bNn59SpU0+9durUKUqWLEm2bNmA/+3VP3XqVLwPEq5du8atW7d4++23EzSmiIhIZqawLyIikkSPHz+md+/eREdH89lnn8Vdb968Obt27aJEiRLkyZPnuffXrVuXDRs24O3tHe+xfevWrUtwDc2bN2fdunXExMS8cAa9cePGWFlZcfHixae2AvxXUpfx/zOjv2/fPjZt2kTjxo0TfK+VlRVubm5s2rSJmTNnxn1IcfnyZfbv38/HH38c19bV1ZVs2bLh5eUV7z17eXlhMBho1apVomsXERHJbBT2RUREEuDy5cscOXIEo9HIvXv3OHHiBMuWLSMoKIjZs2fTqFGjuLaTJk3ip59+wtnZmcGDB1OmTBkiIiIIDAxk165dfPvttxQqVIju3bvz5Zdf0qVLF6ZMmULJkiXx9vZm9+7dQPyl9c/ToUMHVq9eTdOmTRkyZAjVqlUjS5YsBAcHs3//flq2bEnr1q1xcnJi0qRJjBkzhkuXLuHq6kqePHm4fv06v/zyCzlz5mTixIlA7IqDf5bVJ0bbtm3x9vZmzJgx2Nvbc+TIkbjXcufOHXfaP0DJkiUBuHDhQty1iRMnUrVqVZo3b87IkSOJiIhg/Pjx5M2bl+HDh8e1s7OzY+zYsYwbNw47OzsaNWrE0aNH8fDwoHfv3vHGEREReVUZTC86RldEROQVFxgYSLFixeK+t7S0JHfu3BQvXpzatWvz4YcfPjNc3rp1i8mTJ7N9+3aCg4OxsbGhWLFiuLq6MmrUqLiT5K9cucLQoUP58ccfMRgMNGrUiF69etG0aVO2bt1KixYtAHB3d+eHH37g4cOHT40VHR3N3LlzWblyJX/99RdWVlYUKlSIunXr8sknn8QFa4CtW7cyd+5cfv31V548eUKBAgWoWrUq/fr1S/CS++d50cF4devWxdfXN+57JycnIPbn+2+//vorI0aMICAgACsrKxo0aMAXX3xBiRIlnupz3rx5fPPNNwQGBlKgQAF69OjBmDFjnntWgoiIyKtEYV9ERCSdmTp1KmPHjuXy5csUKlTI3OWIiIhIBqRl/CIiImb09ddfA1C2bFmioqLYt28f8+bNo0uXLgr6IiIikmQK+yIiImaUI0cOvvzySwIDA3ny5AlFihRhxIgRjB071tyliYiISAamZfwiIiIiIiIimczLj/kVERERERERkQxFYV9EREREREQkk1HYFxEREREREclkFPZFREREREREMhmFfREREREREZFMRmFfREREREREJJNR2BcRERERERHJZBT2RURERERERDIZhX0RERERERGRTEZhX0RERERERCSTUdgXERERERERyWQU9kVEREREREQyGYV9ERERERERkUxGYV9EREREREQkk1HYFxEREREREclkFPZFREREREREMhmFfREREREREZFMRmFfREREREREJJNR2BcRERERERHJZBT2RURERERERDIZhX0RERERERGRTEZhX0RERERERCSTUdgXERERERERyWQU9kVEREREREQyGYV9ERERERERkUxGYV9EREREREQkk1HYFxEREREREclkFPZFREREREREMhmFfREREREREZFMRmFfREREREREJJNR2BcRERERERHJZBT2RURERERERDIZhX0RERERERGRTEZhX0RERERERCSTUdgXERERERERyWQU9kVEREREREQyGYV9ERERERERkUxGYV9EREREREQkk1HYFxEREREREclkFPZFREREREREMhmFfREREREREZFMRmFfREREREREJJNR2BcRERERERHJZBT2RURERERERDIZhX0RERERERGRTEZhX0RERERERCSTUdgXERERERERyWQU9kVEREREREQyGYV9ERERERERkUxGYV9EREREREQkk1HYFxEREREREclkFPZFREREREREMhmFfREREREREZFMRmFfREREREREJJNR2BcRERERERHJZBT2RURERERERDIZhX0RERERERGRTEZhX0RERERERCSTUdgXERERERERyWQU9kVEREREREQyGYV9ERERERERkUxGYV9EREREREQkk1HYFxEREREREclkFPZFREREREREMhmFfREREREREZFMRmFfREREREREJJNR2BcRERERERHJZBT2RURERERERDIZhX0RERERERGRTEZhX0RERERERCSTUdgXERERERERyWQU9kVEREREREQyGYV9ERERERERkUxGYV9EREREREQkk1HYFxEREREREclkFPZFREREREREMhmFfREREREREZFMRmFfREREREREJJNR2BcRERERERHJZKzMXYCIiIjIU2KMcDcCImPA2hLyZANLzVGIiIgklMK+iIiIpA/hkXAkGH4NheD7EG3832tWFlAoN1R2gBqFIKe1+eoUERHJAAwmk8lk7iJERETkFRZjhN0Xwfs8GE3wot9MDICFAZqUgsYlNNsvIiLyHAr7IiIiYj53HsOCo3D1QeLvdbSBAVXBLnvK1yUiIpLB6eNwERGRV4yXlxcGg4HAwEAA3N3dcXJySvtC7jyGWYfh2kMA6m0dSb2tIxN+/7WHsfffeZxiJS1ZsgSDwUCuXLme+XpUVBRz5syhXLlyZM+eHVtbW5ydnfH390+xGkRERFKC9uyLiIi84saNG8eQIUPSdtAYY+yM/oPI2KX7wILaAxLXh9EUe/+CozCqVrKX9IeEhPDJJ5/g6OjIvXv3ni45JobWrVtz6NAhPvvsM5ydnQkPD+fXX38lPDw8WWOLiIikNIV9ERGRV1yJEiXSftDdF59auv+mXZHE92M0xfaz+yI0LZWskvr160edOnWws7Pjhx9+eOr1+fPn4+3tzeHDh6lRo0bc9WbNmiVrXBERkdSgZfwiIiKvuGct4w8LC6NXr17Y2dmRK1cumjVrxqVLlzAYDHh4eCSq/8jISKZMmULZsmXJmjUrr+d9nR7DB3DzcfzZ8/8u4w+8fx3DwubMOrGRGSd+wGlVT7J/14Z6W0dyLiyEqJhoRh7xwnF5N15rXYHWbi25ceNGkn4Gq1atws/PjwULFjy3zdy5c6lTp068oC8iIpJeKeyLiIhIPEajETc3N9asWcOIESPYvHkz1atXx9XVNUl9tWzZkunTp9OpUyd27tzJdPfh/HTlBPW2juJx9JOX9vHNmZ0cDj3LN7X7s6TeR/x5Nxi3XZPo5TuXm4/vsaz+EGbW7MGevXvp3bt3omu8ceMGQ4cOZfr06RQqVOiZba5cuUJgYCDlypVj9OjR5M+fHysrK9566y2WL1+e6DFFRERSm5bxi4iISDw+Pj4cOnSIhQsX0q9fPwAaNmyItbU1o0aNSlRfGzZswMfHh40bN9KmTZvYi8ez845rNqpu/BivP/fS/+2mL+zD1jonW5qMxcIQO0dxK+I+Qw8vpmyeQmxtMi6u3Z8xN/lq+wbu379P7ty5E1zjgAEDKFOmDP37939um5CQEACWL19OoUKF+Prrr3nttddYvHgx7u7uREZG8uGHHyZ4TBERkdSmmX0RERGJx8/PD4D27dvHu96xY8dE97Vjxw5sbW1xc3MjOjqa6CeRRF++S4W8xSmQIw++V0+9tI+mRarEBX2AN/IUBqBZ0arx2r2RJT8Aly9fTnB9GzduZPv27SxevBiDwfDcdkajEYCIiAh27dpFu3btaNSoERs2bKBSpUpMmjQpwWOKiIikBc3si4iISDy3b9/GysoKOzu7eNfz58+f6L6uX79OWFgY1tbWz3z9VsTTp97/l102m3jfW1vE/vpilzX+4/GssQRiA3lCPHz4kIEDB/LRRx/h6OhIWFgYEHvGAMSeW5AlSxZy5syJvb09AGXLlqVo0aJxfRgMBho3bsy0adO4ceMG+fLlS9DYIiIiqU1hX0REROKxt7cnOjqaO3fuxAv8165dS1JfefLkYfr06YSGhhIRfIf37xaLe90mS/YUqTkpbt26xfXr15k9ezazZ89+6vU8efLQsmVLtmzZQokSJciRI8cz+zGZYh8daGGhBZMiIpJ+KOyLiIhIPHXr1mXmzJmsX78+3j72devWPdX20aNHBAUFERQUxOXLl+P++Z+v4OBgTCYTffv2BaBy0TeY1nRWmr2XFylQoAD79+9/6vr06dPx8/PD29ubvHnzAmBlZUXLli354YcfCAwMjHt6gclkwsfHhxIlSsS1FRERSQ8U9kVERCQeV1dXXFxcGD58ONeuXaNAgQIcOHCAPXv2ALGH7u3YsYOgoCBu3boVd5+FhQUFCxakaNGiFC1alDp16lC4cGGWLVvGuXPnGDRoELVqOrN3yUmC791k/9XfaelUndbFnVOmcMun99ybTCbu3YvdKmBraxvvtWzZslGvXr2n7vHy8sLS0vKp1yZPnoy3tzeurq54eHiQO3dulixZwsmTJ9mwYUPKvAcREZEUorAvIiLyioqJiSE4OJgbN24QHh7OtGnT4mbkb926RVRUVLyD5/7Zd280GqlYsSKtWrWKC/ZFixbF0dGRLFmyPDVO7969mTt3LitXrmT27NlYGQ0UymFPXce3KWfvFK+tgecfkvcyETli7x0xYgSRkZFcuXKF69evExERQe7cuQkLC3vhIXwvU6JECQ4ePMjIkSPp06cPUVFRVKhQgW3bttG8efMk9ysiIpIaDKZ/NpqJiIhIphIREcHly5efubz+nyX20dHRce3z5MlD0aJFKVKkSLwQ/8/XTz/9RJcuXTh8+DDOzsmYjd97CTb9Af/5DaTi94MpkbsAPzQenfg+DbAz6980//Kjp18yGKhdu3bcUwZEREReBZrZFxERyaDCwsJeuF/++vXrcW0NBgMODg5xwb1GjRpPhXobm/+der927VpCQkKwsbEhLCwMHx8fZs2aRZ06dZIX9AFqFIItf0JMbNo/FxbCwdAznLodSJdS9ZLWp4WBppP70Cf8FN999128l0wmE40bN05ezSIiIhmMZvZFRETSIaPRyPXr1+OF9/8G+vv378e1t7a2pnDhws+ckS9SpAiFCxd+7uPvnmXHjh14eHhw4cIFwsPDcXBwoFWrVkyZMoXcuXMDxFsV8CwWFhbPP6F+13nYcQ6AHvu+YnvQL7RwqsY3tfuT3SprguuM07w0NC2F0WikR48erFix4qkmlSpVonv37nTo0AE7OzusrDTnISIimZfCvoiIiBlERkYSHBz81Gz8P4H+8uXLcc97B7CxsXlmkP/nK3/+/Gn66LfAwECKFSv2wjYTJkzAw8Pj2S/GGGHaIbj2EIzJ+FXEwgAFcsGoWmAZ+/6jo6N58803OX/+/AtvXbZsGV27dlXoFxGRTElhX0REJBU8ePDguXvlg4KCCA0N5d9/BefPn/+F++X/e5K8uUVGRvL777+/sI2joyOOjo7Pb3DnMcw6DA8ikxb4LQyQOyt84gx22eO9dOnSJdq0acPJkyf57rvvqFixIgC3b99m9+7dbNu2jYsXL+Lg4EDXrl1xd3fnjTfeSHwNIiIi6ZTCvoiISCKZTCZu3rz5wv3yd+/ejWtvZWVFoUKFnlpa/88/Fy5cmOzZs79gxEzszmNYcBSuPkj8vY42MKDqU0H/Hw8ePMDPz49mzZo9dQq/yWTixIkTeHp6smbNGu7cuUO1atXo0aMHH3zwAXny5EnKuxEREUk3FPZFRET+Izo6mpCQkOful798+TKPHz+Oa58jR47n7pX/55F0lpaWZnxH6VyMEXZfBO/zsTP8L/rNxEDsjH6TUtC4RNzS/eR48uQJO3bswNPTEx8fH6ysrGjdujXu7u689957+v9OREQyJIV9ERF55Tx69OiZs/H/XAsJCSEmJiaufd68eZ+7vL5o0aLY2dkl6/nt8v/CI+FIMPwaCsH3Idr4v9esLKBQbqjsADULQ44sqVJCaGgoq1evxtPTk7Nnz1KwYEG6detG9+7dKVOmTKqMKSIikhoU9kVEzCnGCHcjIDIGrC0hT7YUmal8lZlMJu7cufPC/fK3bt2Ka29hYUHBggWfu1++SJEi5MyZ04zv6BVlNMUu8f/nvw277LEz+mnEZDJx7NgxPD09Wbt2LWFhYdSsWZMePXrQvn17XnvttTSrRUREJCkU9kVE0lpCZy9rFIKcCX9U2qsiJiaG0NDQ54b5y5cv8/Dhw7j22bJlixfi/xvoCxYsSJYsqTNLLJlDREQE27Ztw9PTkx9//JGsWbPSpk0b3N3dadCgQZo+BUFERCShFPZFRNKKmfclZxRPnjyJ9/i5/4b54OBgoqKi4trb2to+d6980aJFyZcvn5bYS4oJCQlh1apVeHp68tdff1G4cGG6d+9O9+7dKVmypLnLExERiaOwLyKSFlLxxPGM5t69e889+C4oKIhr167Fa+/g4PDCw+9y585tpncirzKTycTPP/+Mp6cn69at4/79+9SqVYsePXrQrl07bGxszF2iiIi84hT2RSTT8vLyokePHvz99984OTnh7u6Or68vgYGBaVvIf54lXm/rSAB8W05P2P0WBrCxhk9dkhz4f/vtN8aMGcOpU6e4efMm2bNnp0yZMgwcOJAuXbrEa3vo0CG8vLw4ceIEp0+fJjIyMu5n+DJGo5EbN2489+C7oKAg7t27F9c+S5YsFC5c+LkH3xUqVIisWbMm6T2LpJXHjx+zZcsWPD092bNnD9mzZ6dt27a4u7tTt25dLfMXERGzsDJ3ASIiaWXcuHEMGTIkbQeNMcbO6P9/0AdYUHtA4vowmmLvX3AURtVK0pL+sLAwChcuTMeOHSlYsCDh4eGsXr2arl27EhgYyNixY+Pa7t27lz179lCxYkVy586Nr69v3GtRUVEEBwc/d6/85cuXefLkSVx7GxubuFl4FxcXOnXqFC/MFyhQQEFIMrzs2bPTsWNHOnbsyJUrV1i5ciWenp6sWLECJyenuGX+xYoVM3epIiLyCtHMvohkWv+d2TeLXedhx7mU6695aWha6qnLf//9NyNHjqRLly64ubkluLsaNWpw9epVLl++DMDDhw8JDAzkypUrBAUFsWHDBvbv30+lSpW4fv06V69e5d9/beTLl++5B98VLVoUW1tb7ZeXV5LJZMLf3x9PT082bNjAgwcPqFevHu7u7rRt21ZPeBARkVSnmX0ReWU8axl/WFgYw4cPZ/PmzURGRlK3bl3mz59PiRIlmDBhAh4eHgnuPzIykpkzZ7Jq1Sr+/vtvctvkpvnrFZhZowevZ//fY7r+u4w/8P51iq3uxcwaPTBiYuGZXVx/FEb1/KX5ru5HFLPJz7ijq1jx1z7Cl0bQoNF7LFq6mHz58mE0GlmwYAGffvopERER5MyZ87lh32QycevWrXjL6q9fv87t27epVKkSQUFB3LlzJ669paVl3L7jokWL0rRp06dOtc+ePXOcIyCS0gwGAy4uLri4uDB37lw2b96Mp6cn7u7uDBo0iHbt2uHu7k7t2rX1gZiIiKQKhX0ReWUZjUbc3Nw4duwYHh4eVKpUiYCAAFxdXZPUV8uWLTl48CCfffYZzs7OBPkcY8K3X1Dv+jmOtf2S7FYv3nv+zZmdlLdz4pva/Ql78pDh/ktx2zWJ6vlLk8XCimX1hxD08Aaf7PWid+/ezJkzB3d3dw4fPhzXxx9//MHBgwefefDd5cuXefToUVzbLFmyEBUVxZtvvknVqlVp27ZtvBl6R0dHvvrqKz799FPmzJljvtURIhlczpw56dKlC126dCEoKIgVK1bg5eWFp6cnxYsXx93dnW7dulG0aFFzlyoiIpmIwr6IvLJ8fHw4dOgQCxcupF+/fgA0bNgQa2trRo0alai+NmzYgI+PDxs3bqRNmzaxF49n5x3XbFTd+DFef+6l/9tNX9iHrXVOtjQZi4Uhdg/7rYj7DD28mLJ5CrG1ybi4dn/G3OSr7RvYuXMn/92JdeTIEerUqQOAnZ1d3Cx848aNKVq0KD4+Pvz4449A7MzjggUL6N+/f6Leq4gkXdGiRRk3bhxjxozh0KFDeHp6MmPGDCZMmECDBg1wd3enTZs25MiRw9yliohIBqdTkUTkleXn5wdA+/bt413v2LFjovvasWMHtra2uLm5ER0dTfSTSKIv36VC3uIUyJEH36unXtpH0yJV4oI+wBt5CgPQrGjVeO3KZskPxK4m+G/Yt7S05NSpUzx48IDbt29z/PhxNm/ezFdffcXHH3/M4sWLOXr0KDt37qRnz54MGjSIL774ItHvV0SSx8LCgjp16uDp6cm1a9fw9PQkOjqarl27UqBAAT788EMOHz781H/jIiIiCaWZfRF5Zd2+fRsrKyvs7OziXc+fP3+i+7p+/TphYWFYW1s/8/VbEfeeef3f7LLFfy63tUXsH9F2WXPFu54VSwCmT5/O4cOH8fb2JiYmBoCYmBjs7e3JlSv+Pf8oUqQIRYoUAaBp09iVBqNGjaJ79+68/vrrL61RRFJerly54k7sv3TpUtwy/yVLllCqVCnc3d3p2rUrhQsXNnepIiKSgWhmX0ReWfb29kRHR8c7lA7g2rVrie4rb9682Nvbc/To0divXb4cff/LuK9EP24vAd599122bdvG9evXWbhwITVq1CBLliyJmgmsVq0a0dHRXLp0KcXrE5HEK168OB4eHly6dIl9+/ZRo0YNpkyZErcdZ+3atTx+/NjcZYqISAagsC8ir6y6desCsH79+njX161bl+i+mjdvzu3bt4mJiaFKlSpUqVqVKvlKxX2VyVMoRWp+Fjs7O/r27Yu/vz8RERE4Ojom+N79+/djYWFB8eLFU60+EUk8CwsL6tevz4oVK7h27RpLlizh0aNHdOrUCQcHB/r168eRI0e0zF9ERJ5Ly/hF5JXl6uqKi4sLw4cP5/79+1SuXJmAgABWrFgBxP6ynVAdOnRg9erVNG3alCFDhlCtchWyhP5O8L2b7L/6Oy2dqtO6uHPKFG75/Md0Pa/mPn36kDt3bqpVq0b+/Pm5desW33//PevXr+fTTz+Nt4T/5s2bcecZnDoVe9aAt7c3r7/+Oq+//nrchyQikjZy585Nz5496dmzJxcuXGD58uUsX76cRYsWUbZs2bhl/on5oE9ERDI/hX0ReWVZWFiwfft2hg8fzvTp04mMjMTFxYVVq1ZRo0YNbG1tE9yXpaUl27ZtY+7cuaxcuZJp06ZhZTRQKIc9dR3fppy9U7z2BpLxXO08iX+2fc2aNfH09GT58uWEhYWRK1cu3nnnHVauXEmXLl3itT1z5gzt2rWLd23AgNhtCHXr1sXX1zfJpYtI8pQsWZLJkyfj4eHB/v378fT0xMPDg9GjR9O4cWPc3d1p0aIF2bJlM3epIiJiZgaT1n+JiMSzZs0aOnfuzOHDh3F2TsZs/N5LsOkP+M+fshW/H0yJ3AX4ofHoxPdpANq8Ae9q2b2IxLp37x4bNmzA09OTgIAA8uTJQ8eOHXF3d6dKlSoYDMn4cFFERDIshX0ReaWtXbuWkJAQypUrh4WFBUeOHGHWrFlUrFgxbil7koVHwsg9EBP7x+y5sBAOhp6hr9/XzKjhzvAKbRLfp6UBZjSEHFmSV5uIZEp//fUXy5cvZ8WKFYSEhPDWW2/h7u5Oly5dKFCggLnLExGRNKSwLyKvtB07duDh4cGFCxcIDw/HwcGBVq1aMWXKFHLnzg1AdHT0C/swGAzcvn2bixcvcuHCBS5evMipU6c4ePAg67pNpsGj2MP5euz7iu1Bv9DCqRrf1O5PdqusiS+4eWloWiruW6PRiNFofOEtVlbasSXyqomJiWHPnj14enqyZcsWoqOjadKkCe7u7ri5uT33MaEiIpJ5KOyLiLxAYGAgxYoVe2GbQoUKERwcHPe9paVl3HPv58z6gqERVTFevY9lcvbpWxigQC4YVQss/3cIn4eHBxMnTnzhrX///TdOTk5JH1tEMrS7d++yfv16PD09+eWXX7C3t6dTp064u7tTsWJFLfMXEcmkFPZFRF4gMjKS33///YVt5s6dy6pVq+JdMxgMVKpUiaNHjzJv4gzaXnLEwcYOC1MSfqm2MEDurPCJM9jFP5zv6tWrXL169YW3ly9fXrN4IgLA2bNn45b5X7t2jfLly+Pu7k7nzp3Jly+fucsTEZEUpLAvIpJMDx8+pHjx4ty8eTPe9YCAAM6ePUuvXr2YO2E6g61qYgq5n/hZNEcbGFD1qaAvIpJU0dHR/Pjjj3h6erJt2zaMRiPNmjXD3d2dZs2akSWLzgUREcnoEv4QaRERecqDBw8YNmxYvKBvaWlJ27ZtuX37Nn369KFfv358NOEzDtcxMOHoamIMJkyA8UWftRqIPYyveenYpfsK+iKSgqysrGjatCnff/89V69e5auvviIkJITWrVtTsGBBPv74Y06ePGnuMkVEJBk0sy8ikkQHDx6ke/fu3Lhxg9mzZ3PhwgW++OILrKys2LBhA126dKFhw4Zs3LgRCwsLateuTXh4OL8eCODIVz9gefIm1RzLYIj+1x/DVhZQKDdUdoCahXXqvoikqVOnTrF8+XJWrlzJjRs3qFixIj169KBjx47kzZvX3OWJiEgiKOyLiCRSREQE48aNY/bs2bi4uODl5UWJEiWIiIigQYMGVK1alTVr1lC6dGn27NlD9uzZ2blzJ82bN2fXrl00adKEDh06EBQURMBhf7jzGCJjwNoydgbfQodliYh5RUVF4ePjg6enJ9u3b8dgMODm5kaPHj1wdXXVUz5ERDIAhX0RkUQ4fvw43bp14/z580yZMoVhw4ZhaWkZ9/q1a9dwcXHB2tqaQ4cOYW9vj9FopFKlSrz22mv4+voC4OjoiLu7O9OmTTPTOxERSZibN2+ydu1aPD09+e2338ifPz9dunShR48evPXWW+YuT0REnkN79kVEEiA6OprJkydTvXp1smTJwq+//sqnn34aL+g/fPiQ5s2b8/jxY3x8fLC3twdg/fr1nDx5kmnTpmEwGDh37hzXrl2jbt265no7IiIJ9vrrrzN48GBOnDjBiRMn6NChA8uXL+ftt9+matWqfPPNN9y5c8fcZYqIyH9oZl9E5CX+/PNPunXrxq+//sro0aMZN27cU4+yi4qKws3NDX9/fw4cOECFChXirr/xxhu88cYbbN++HYDvvvuOAQMGcPfuXWxsbNL67YiIJFtkZCS7du3C09OTnTt3YmlpScuWLXF3d6dRo0Za5i8ikg5oZl9E5DmMRiPz5s2jYsWK3Lt3D39/fyZPnvxU0DeZTHz44Yfs27ePzZs3xwV9gKVLl3Lp0iU+//zzuGu+vr5UrlxZQV9EMixra2tatWrF1q1bCQkJYfr06fz55580a9aMIkWKMGLECP744w9zlyki8krTzL6IyDMEBQXRo0cP9u/fz+DBg5k2bRo5cuR4ZtsxY8YwdepUVq9eTadOneKuP3r0iJIlS9KgQQNWrVoFxH4wULBgQbp27cqMGTPS5L2IiKQFk8nEiRMn8PT0ZM2aNdy5c4fq1avj7u5Ohw4dsLW1NXeJIiKvFM3si4j8i8lkwtPTk3LlynHhwgX27NnD3Llznxv0FyxYwNSpU5k1a1a8oA8wf/58bt68ycSJE+OuXbhwgdDQUOrVq5eab0NEJM0ZDAYqVarE/PnzuXr1Kj/88AN58+Zl0KBBFChQgI4dO7J7925iYmLMXaqIyCtBM/siIv/v+vXr9OnTh23bttG9e3fmzp3La6+99tz2mzdv5v3332fIkCHMmTMHg+F/j8y7e/cuxYsXp1OnTnzzzTdx1xcvXky/fv24e/cuuXPnTtX3IyKSHoSGhrJ69Wo8PT05e/YsBQsWpFu3bri7u1O6dGlzlycikmkp7IuIABs3bqRfv34YDAa+++47WrVq9cL2hw4d4r333qNly5asXbsWC4v4C6VGjx7NV199xcWLF3FwcIi73qVLF86dO8cvv/ySGm9DRCTdMplMHDt2DE9PT9auXUtYWBjOzs64u7vTvn37F364KiIiiadl/CLySgsLC6Nr1660bduW2rVrc/r06ZcG/bNnz9KiRQtq1qzJihUrngr6165dY+7cuQwZMiRe0DeZTPj6+uqReyLySjIYDFStWpUFCxYQGhrK+vXryZ07N/369cPBwYEuXbqwZ88ejEajuUsVEckUNLMvIq+sn376iZ49e3L//n3mz59P165d4y3Ff5aQkBBq1qyJra0tBw4ceOaBU4MGDWL16tVcunSJPHnyxF2/ePEiJUuWZMeOHTRr1iyl346ISIYUEhLCqlWr8PT05K+//qJw4cJ0796d7t27U7JkSXOXJyKSYWlmX0ReOeHh4QwcOJBGjRpRtmxZTp8+Tbdu3V4a9O/du0fTpk0B8Pb2fmbQv3TpEosWLWLEiBHxgj7EPnLPwsKCWrVqpdh7ERHJ6AoWLBj3qL6AgACaNGnCvHnzKFWqFHXq1GHZsmU8ePDA3GWKiGQ4mtkXkVdKQEAA3bp1IyQkhFmzZtG/f/+nluE/y5MnT2jSpAknTpzg0KFDvPXWW89s17VrV/bs2cPFixefOsG/a9eu/PHHHxw7dixF3ouISGb1+PFjtmzZgqenJ3v27CF79uy0bdsWd3d36tatm6A/t0VEXnX6k1JEXglPnjxh9OjR1KpVi7x58/Lbb78xcODABP3CaDQa6d69O/7+/mzbtu25Qf/UqVOsXr2a8ePHPxX0TSYTfn5+euSeiEgCZM+enY4dO/Ljjz8SFBTEmDFj8Pf3p0GDBpQoUQIPDw/+/vtvc5cpIpKuaWZfRDK933//PW5W3cPDg88++wwrK6sE3z98+HC+/PJLfvjhB9q0afPcdi1atODMmTP88ccfWFtbx3vt0qVLlChRgm3btuHm5pbk9yIi8qoymUz4+/vj6enJhg0bePDgAfXq1cPd3Z22bduSM2dOc5coIpKuaGZfRDKtmJgYpk+fTpUqVTAajfzyyy+MHj06UUF/zpw5zJkzh3nz5r0w6Pv7+7N9+3YmT578VNAH8PPzw2AwULt27SS9FxGRV53BYMDFxYUlS5YQGhrKypUrsbCwwN3dnQIFCtCzZ08OHDiA5rFERGJpZl9EMqXz58/TvXt3fv75Zz799FMmTpxI1qxZE9XHunXr6NixIyNHjmTatGnPbWcymahXrx5hYWGcOHHimVsDunfvzqlTpzh+/Hii34uIiDxfUFAQK1aswMvLi0uXLlG8eHHc3d3p1q0bRYsWNXd5IiJmo7AvIpmKyWRi4cKFfPrppzg4OLB8+XJcXFwS3c++fftwdXWlQ4cOLF++/IUn9fv4+NCkSRO2b99O8+bNn9nGycmJNm3aMGfOnETXIiIiL2c0Gjl06BCenp58//33PHr0iAYNGuDu7k6bNm2eOktFRCSzU9gXkUwjODiYXr168eOPP9K/f39mzpxJrly5Et3PyZMnqVOnDjVq1GDHjh1kyZLluW2NRiNVqlQhR44cHDx48JkfCgQGBlKsWDG2bNlCy5YtE12PiIgkzsOHD/nhhx/w8vLCz88PGxsbPvjgA9zd3XF2dn7po1ZFRDIDhX0RyfBMJhOrV69m0KBB5MyZk2XLltG4ceMk9RUUFETNmjVxcHDA19cXGxubF7bfsGEDH3zwAQcOHHjufvzly5fTo0cPbt26hZ2dXZLqEhGRpLl06RLLly9n+fLlBAUFUapUKdzd3enatSuFCxc2d3kiIqlGYV9EMrSbN2/Sv39/Nm7cSKdOnfj666/JkydPkvq6c+cOtWrVIiIiAn9/fwoUKPDC9lFRUbz11luULFmSXbt2Pbddjx49OHHiBL/99luS6hIRkeQzGo34+vri5eXFDz/8QEREBA0bNsTd3Z1WrVqRPXt2c5coIpKidBq/iGRY27Zt4+2338bX15cNGzawevXqJAf9x48f06JFC27evImPj89Lgz6Al5cX58+fZ+rUqS9s5+vrS7169ZJUl4iIpAwLCwsaNGjAihUruHbtGosXL+bRo0d06tQJBwcH+vXrx5EjR3Sav4hkGprZF5EM5/79+wwdOhRPT0+aN2/O4sWLExTOnycmJoa2bduye/du9u/fT/Xq1V96z+PHjylVqhS1a9dm7dq1z20XFBSEk5MTmzdvplWrVkmuUUREUsf58+fjlvkHBwdTtmzZuGX+jo6OaVNEjBHuRkBkDFhbQp5sYKk5ORFJHoV9EclQ9u/fT48ePbh9+zZz586lR48eyTpoyWQyMWjQIBYtWsSWLVuee5r+f33xxReMHDmSP/74g1KlSj233YoVK+jevTu3bt3C3t4+yXWKiEjqiomJYd++fXh5ebFp0yYiIyNp3Lgx7u7utGjRgmzZsqXsgOGRcCQYfg2F4PsQbfzfa1YWUCg3VHaAGoUgp3XKji0irwSFfRHJEB4/fsyoUaOYO3cudevWxcvLCycnp2T3O3XqVMaMGcPixYvp3bt3gu65d+8exYsXp127dnz77bcvbNurVy+OHTvGyZMnk12riIikjXv37rF+/Xq8vLwICAggT548dOzYEXd3d6pUqZK80/xjjLD7InifB6MJXvSbuAGwMECTUtC4hGb7RSRRFPZFJN07evQo3bp14++//2batGkMGTIEC4vk/8Lj5eVFjx498PDwYMKECQm+b/z48cyaNYsLFy5QsGDBF7YtUaIEzZo1Y968ecktV0REzOCvv/7Cy8uLFStWcPXqVd566y3c3d3p0qVL4reQ3XkMC47C1QeJL8TRBgZUBTsdJCgiCaOPB0Uk3YqKimL8+PHUrFmTnDlzcvz4cT7++OMUCfo+Pj707t2bDz/8kPHjxyf4vuvXrzNnzhw++uijlwb9K1eucOnSJR3OJyKSgZUpU4Zp06Zx+fJlvL29efvttxk7diyFChXCzc2NjRs3EhkZ+fKO7jyGWYfh2sOkFXLtYez9dx4n7X4ReeUo7ItIunTmzBlq1KjB1KlTGTduHAEBAbz55psp0vexY8do27YtTZs2ZcGCBYlajjl16lSsrKwYOXLkS9v6+fkBUKdOnSTXKiIiyefl5YXBYCAwMBAAd3f3RG8Fs7S0xNXVlXXr1hEaGsr8+fO5ceMGbdu2xdHRkcGDB3P8+HFMJhMGgwEPD4//3RxjjJ3RfxAZu3Q/KYym2PsXHI3tLwk2bdpEx44dKVmyJNmzZ8fJyYnOnTtz/vz5p9qOGTOGihUrYmdnR7Zs2ShevDh9+vQhKCgoafWLSJrTMn4RSVdiYmL46quvGDNmDMWLF2fFihVUqVIlxfq/ePEizs7OFCtWjH379pEjR44E3xsYGEiZMmUYP348Y8aMeWn73r178/PPP3Pq1KnklCwiIsn0z7atv//+GycnJy5evMj9+/epWLFisvs+e/YsXl5erFy5kmvXrlG+fHnq1atHjx49qFChQmyjXedhx7lkjxWneWlo+vzDYZ+nevXqFChQgFatWlG8eHGuXLnC1KlTuXLlCkeOHOGtt96Kaztw4ECKFi3KG2+8gY2NDWfPnmXKlCkYjUbOnDmjQ2dFMgCFfRFJNy5duoS7uzuHDh3i448/ZsqUKWTPnnJ7E2/cuIGLiwsGgwF/f3/y5s2bqPvd3d3x9vbm4sWL5MqV66XtS5UqhaurK/Pnz09qySIikgL+G/ZTQ3R0NLt378bLy4tt27ZhNBpp1qwZH3Z2p+kBawwxKfgrt6UBpr+X6FP6b9y4Qb58+eJdu3r1Kk5OTnTr1o0lS5a88H5vb2+aNm3K0qVL6dmzZ6LLFpG0pWX8ImJ2JpOJxYsXU758ea5cucL+/fuZPXt2igb98PBwmjdvzoMHD9i9e3eig/7Zs2dZuXIl48aNS1DQDwkJ4cKFC9StWzepJYuISCp51jL+sLAwevXqhZ2dHbly5aJZs2ZcunTp6SX5z2FlZUWzZs34/vvviYyMpGHDhgQHB7N3ynK8zvyIYWFz9gWf5EPfedgv60juJe3otnc24VERXHt0l/Y/Tsd26Qc4LO/KJ/5LiYqJjtf/k5goJh1byxtr+5FtYSvsHfJTv359/P39E/y+/xv0ARwdHSlUqBBXrlx56f2vv/563HsVkfRP/6WKiFmFhobSu3dvdu3aRe/evZkzZw42NjYpOkZUVBTt27fnjz/+wM/Pj2LFiiW6j7Fjx1KkSBH69OmToPbary8iknEYjUbc3Nw4duwYHh4eVKpUiYCAAFxdXZPcZ7Vq1fDw8CBi8l7W7t8BQG/febQp7sy6hp9x4tZFRv+8gmijkb/CgmlT3Jk+b7qyJ/g3Zpz4Acecdgx7pzUA0cYYmuyYwMFrZxhariUNCpYn+vVsHCl4n8uXL+Ps7JzkOi9dukRQUBCtWrV65uvR0dFERUXx559/MnToUEqXLk2bNm2SPJ6IpB2FfRExm/Xr1zNgwACyZMnC9u3bad68eYqPYTKZ6NevHz/++CO7du2iUqVKie7j559/ZvPmzSxfvhxr64QtmfT19eXNN9985iyKiIikLz4+Phw6dIiFCxfSr18/ABo2bIi1tTWjRo1KescxRrLdjOSfY2CbO1XjC+desf0XrkjA9T9Ze8GPOc69+fidVgC8V6gCu68cZ/U537iwv/a8H/uv/s7iuh/R+83GsZ1ZWeA22RUsEn7I7H9FR0fTq1cvcuXKxccff/zU69euXcPBwSHu++rVq7N///4ErXATEfPTMn4RSXN37tyhY8eOdOjQgQYNGnD69OlUCfoAEyZMYNmyZSxbtoyGDRsmqY/Ro0fz1ltv0blz5wTf4+fnp0fuiYhkEP+sxmrfvn286x07dkxex3cjIPp/J+c3L1o13stv2BYGoNkzrgc9vBn3vfflX8lmaU3PN/7191i0MVmP4TOZTPTq1YuDBw+yYsUKChcu/FSbvHnzcvToUQ4dOsTixYu5c+cO9evXJzQ0NMnjikjaUdgXkTT1zzOKfXx8WL16NRs2bEj0/vmEWrRoEZMnT2b69Ol07do1SX3s2bOHffv28fnnn2NpaZmge0JDQzl37pz264uIZBC3b9/GysoKOzu7eNfz58+fvI4jY+J9a5c1/jY1a0ur/7+e66nrEdGRcd/fjLiHY047LAz/+dX9P/0nlMlkonfv3qxatQovLy9atmz5zHZWVlZUqVIFFxcXevfuzb59+7h06RLTp09P0rgikrYU9kUkTTx8+JC+ffvStGlTypcvz+nTp+nUqVOinnGfGFu3bmXAgAF89NFHfPbZZ0nqw2QyMWrUKGrUqEGLFi0SfN8/M0QK+yIiGYO9vT3R0dHcuXMn3vVr164lr2PrhH1I/DKvZ3uNq+F3MJqM8V9IQv//BH1PT0+WLFlCly5dEnxvoUKFcHR05Ny5FHyMoIikGoV9EUl1Bw8epHz58qxatYpvv/0Wb29vChYsmGrjBQQE0KFDB9q0acOXX36Z5A8UNm3axLFjx5g2bVqi+vD19aVs2bLJnxESEZE08c+Hs+vXr493fd26dcnrOE82sEr+r9tNilQmIiYSrz/3/O+ilQXYJe6pNSaTiQ8//BBPT08WLVpEjx49EnX/hQsXCA4OpmTJkom6T0TMQwf0iUiqiYiIYNy4ccyePRtnZ2d++uknSpQokapj/vnnnzRv3pyqVauycuXKBC+9/6/o6GjGjBlDo0aNEr333tfXl/r16ydpXBERSXuurq64uLgwfPhw7t+/T+XKlQkICGDFihUAWFgkMbBbWkCh3HA6efV1LFUXzz/30O/AAv4KC6F+wfIY8+Xg54lHeOONN+jQoUOC+hk8eDBLly6lZ8+elCtXjiNHjsS9ljVrVipWrAjA77//zscff0zbtm0pXrw4FhYWnDp1ii+//BJ7e3s++eST5L0hEUkTCvsikiqOHz9Ot27dOH/+PNOnT2f48OFJDt4JFRoaiqurKw4ODmzdupVs2bIlua8VK1bw119/sXr16kTdd+3aNf766y8mTpyY5LFFRCRtWVhYsH37doYPH8706dOJjIzExcWFVatWUaNGDWxtbRPdZ9yKsMoOsDt59VlZWLKrmQfTjn/P2gt+fPX7Vmxy2fBOlYqJejzg9u3bAeIOrv23okWLEhgYCMSeVeDo6Mjs2bMJDQ0lOjqaQoUK0bx5c0aPHv3Mw/xEJP0xmEwmk7mLEJHMIzo6mmnTpjFp0iTeeustVq5cSbly5VJ93Pv371OnTh1u3bpFQEBAsn4RiYiIoHTp0tSoUYMNGzYk6t7169fToUMHQkNDKVCgQJJrEBER81uzZg2dO3fm8OHDCX6W/b1797C1tWX+/PkMGjQIwiNh5B6IScFfuS0NMKMh5MiScn2KSKajmX0RSTF//fUX3bp149ixY4waNYrx48cn+Ln0yREZGUmbNm0IDAzk0KFDyZ5xWLhwIVevXmXy5MmJvtfPz48yZcoo6IuIZDBr164lJCSEcuXKYWFhwZEjR5g1axZ16tRJcNA/cuRI3L7/mjVrxl7MaQ1NSsGOFDzUrkkpBX0ReSmFfRFJNqPRyNdff82IESMoXLgwhw8fpkaNGmk2ds+ePTl48CA//vgjb7/9drL6e/DgAVOnTsXd3Z0yZcok+n5fX1+dwi8ikgHZ2Niwbt06pkyZQnh4OA4ODri7uzNlypS4NtHR0S/so1OnTsTExDB79mwqV678vxcal4DjoXDtIRiTMcNvYYACuWL7+xej0YjRaHzOTbGsrPRrv8irRqfxi0iyBAUF8d577zFkyBA+/PBDfvvttzQL+gAjR45kzZo1rFy5MkVC9pw5c3jw4AETJkxI9L03btzgjz/+SPSBfiIiYn7Nmzfn2LFjhIWFERUVxeXLl5k3bx65c+cGIDAwkCxZsrzwq1u3bgQFBTFs2LD4nVtawICqYGMdG9iTINoYQ4S1KbYfy/i/wvfs2fOltYnIq0d79kUkSUwmE8uXL2fw4MG89tpreHl58e6776ZpDXPnzmXo0KF89dVXDBkyJNn93bx5k+LFi9OnTx9mz56d6Pu///572rdvT0hICI6OjsmuR0RE0o/IyEh+//33F7ZxdHR88Z//dx7DgqNw9UGixjYBgZG3aLp9Amt8Nsedmv+PwMBAbt269cI+qlSpkqgxRSTjU9gXkUS7fv06ffv2ZevWrXTr1o25c+cm6aTi5NiwYQMdOnTgk08+YebMmSnS57Bhw1iyZAmXLl0ib968ib5/4MCB/PTTT5w7l4L7MkVEJHOJMcLui+B9PnZJ/4t+EzcQuxKgSSkeuuSn/nvvEhwcjL+/P8WKFUurikUkg1LYF5FE2bhxI/369cNgMLBo0SJat26d5jX4+fnRqFEj2rVrx4oVK5L+/ON/uXz5MqVLl2b06NGMHz8+SX28/fbbODs789133yW7HhERyeTCI+FIMPwaCsH3Ifpfe+6tLKBQ7tjH9tUsHHcY340bN3B2dsbS0pLDhw8n6YNpEXl1KOyLSIKEhYXx0UcfsWrVKlq1asWiRYvIly9fmtdx6tQpateuTZUqVdi1a1eKnfbfq1cvtm/fzsWLF7GxsUn0/Tdv3iRfvnysWrWKzp07p0hNIiLyijCaYpf4R8aAtSXYZX/u3v6LFy9Ss2ZNSpQowd69e8mRI0caFysiGYUO6BORl/rpp58oV64c27ZtY/ny5WzatMksQf/KlSs0adKEYsWKsWnTphQL+n/++SdeXl6MGTMmSUEf4MCBAwA6iV9ERBLPwgB5c4CjTez/vuAQvxIlSrBr1y5OnTpFhw4dXvqEABF5dSnsi8hzhYeHM2jQIBo1akSZMmU4deoU3bp1w2BI2knCyXH37l1cXV2xsrJi165dcacjp4Rx48ZRqFAh+vXrl+Q+fH19KVGiBIUKFUqxukRERJ6lSpUqfP/99+zatYsBAwaghboi8ix64KaIPFNAQADdunUjJCSEefPmMXDgwBTZG58UERERtGzZkmvXruHv74+Dg0OK9X3s2DF++OEHli1bRtasWZPcj5+fnx65JyIiaaZJkyYsWbKEHj16ULhwYcaNG2fukkQkndHMvojE8+TJE0aPHk2tWrWwt7fnt99+46OPPjJb0I+JiaFLly4cPXqUHTt2UKZMmRTtf/To0bzxxht07do1yX3cunWLU6dOaQm/iIikKXd3d6ZMmcL48eNZunSpucsRkXRGM/siEuf333+na9eunD17lkmTJjFixAisrMz3x4TJZGLo0KFs3ryZzZs3U7NmzRTtf9++ffz0009s3LgxWe/z4MGDgPbri4hI2hs9ejTBwcH07duXAgUK0KxZM3OXJCLphGb2RYSYmBimT59OlSpVMBqN/PLLL4wZM8asQR9g5syZfP311yxYsIAWLVqkaN8mk4lRo0ZRtWrVZD8+0NfXl2LFilGkSJEUqk5ERCRhDAYDX3/9NW5ubrRv355ffvnF3CWJSDqhsC/yirtw4QJ16tRh9OjRfPzxxxw7doyKFSuauyxWrlzJyJEjGTduHH379k3x/rdu3covv/zCtGnTkn3goK+vr/bri4iI2VhaWrJmzRoqVKhAs2bNOH/+vLlLEpF0wGDS8Z0irySTycTChQv59NNPKVCgAMuXL6dWrVrmLguIfdRf06ZN6datG0uWLEnx0/9jYmIoX748Dg4O7NmzJ1l93blzh7x58+Ll5UW3bt1SqEIREZHEu337NrVq1eLJkycEBASQP39+c5ckImakmX2RV1BwcDCurq4MHDiQbt26cfLkyXQT9I8fP06bNm1o1KgR3377bao85m/VqlWcPXuWqVOnJruvAwcOYDKZtF9fRETMzt7eHh8fHyIiImjatCkPHjwwd0kiYkaa2Rd5hZhMJtasWcPAgQPJmTMnS5cuxdXV1dxlxfn777+pWbMmRYoUYf/+/eTMmTPFx3jy5AllypShcuXKbNy4Mdn9ffzxx2zZsoW///47BaoTERFJvpMnT1K7dm2cnZ3Zvn07WbJkMXdJImIGmtkXeUXcvHmTdu3a0aVLF5o1a8bp06fTVdC/desWjRs3xsbGhh07dqRK0Af47rvvuHLlClOmTEmR/nx9fTWrLyIi6co777zDli1b2LdvH71790ZzeyKvJoV9kVfAtm3bePvtt/H19WXDhg2sXr2aPHnymLusOI8ePaJ58+bcu3cPHx8f8uXLlyrjPHz4kMmTJ9OtWzfeeOONZPd39+5dTp48qcP5REQk3WnQoAHLly9nxYoVjBkzxtzliIgZmPe5WiKSqu7fv8/QoUPx9PSkefPmLF68mAIFCpi7rHiio6P54IMPOH36NL6+vpQoUSLVxvrqq6+4d+8eHh4eKdLfwYMHtV9fRETSrY4dO3L16lU++eQTChYsyMCBA81dkoikIYV9kUxq//799OjRg9u3b7NkyRJ69uyZKofdJYfJZGLAgAH4+Piwfft2qlSpkmpj3b59m1mzZtG/f3+KFi2aIn36+vpSpEgRnJycUqQ/ERGRlDZ8+HBCQkL46KOPcHBwoE2bNuYuSUTSiJbxi2Qyjx8/5uOPP6ZBgwY4OTnx+++/06tXr3QX9AEmTZrE4sWLWbJkSaqfHzB9+nRiYmIYPXp0ivXp5+dHvXr10uXPVkRE5B9ffPEF7dq1o1OnThw6dMjc5YhIGlHYF8lEjh49SqVKlVi4cCFz5sxh3759FCtWzNxlPdOSJUvw8PDg888/p3v37qk6VnBwMF9//TXDhw9PsfMAwsLCOHHihJbwi4hIumdhYcGKFSuoWbMmLVq04OzZs+YuSUTSgMK+SCYQFRXF+PHjqVmzJjlz5uT48eN8/PHHWFikz//Ed+zYQb9+/RgwYACjRo1K9fEmTZpEzpw5GT58eIr1eejQIUwmkw7nExGRDCFr1qxs3ryZQoUK4erqSkhIiLlLEpFUlj6TgIgk2JkzZ6hRowZTp05l3LhxBAQE8Oabb5q7rOf6+eefad++PS1atGDevHmpvgT+3LlzLFu2jFGjRpE7d+4U69fX15dChQql25UTIiIi/2Vra4u3tzcATZo04d69e2auSERSk8K+SAYVExPD7NmzqVy5Mo8fP+bIkSNMmDCBLFmymLu05zp37hzNmjWjUqVKrF69GktLy1Qfc/z48Tg4ODBgwIAU7Vf79UVEJCMqWLAgPj4+XLlyhVatWvHkyRNzlyQiqURhXyQD+vvvv6lfvz6ffvopAwYM4Ndff03Vk+xTwrVr13B1dSVfvnxs27aN7Nmzp/qYx48fZ/369UyYMCFFx7t37x7Hjx/Xfn0REcmQ3nzzTbZv305AQADdu3fHaDSauyQRSQUK+yIZiMlkYvHixZQvX54rV66wf/9+5syZkybBOTkePHhAs2bNePLkCT4+PtjZ2aXJuGPGjKF06dK4u7unaL+HDx/GaDRqv76IiGRYtWrVYs2aNWzYsIFPPvnE3OWISCqwMncBIpIwoaGh9O7dm127dtG7d2/mzJmDjY2Nuct6qcjISNq2bcuFCxc4ePAgRYoUSZNx/fz88PHxYcOGDVhZpewfdb6+vjg6OlKiRIkU7VdERCQttWnThvnz5zNo0CAKFSrEsGHDzF2SiKQghX2RDGDDhg3079+fLFmysH37dpo3b27ukhLEZDLRu3dv9u/fj4+PD+XLl0+zcUeNGkWlSpV4//33U7x/X19f7dcXEZFMYeDAgYSEhDB8+HAcHBzo2LGjuUsSkRSisC+Sjt25c4eBAweybt062rVrx4IFC8ibN6+5y0qw0aNHs3LlStauXUuDBg3SbNwdO3YQEBDA7t27U/zxg/fv3+f48eN8+OGHKdqviIiIuXz++eeEhITQvXt38ufPn6Z/Z4tI6jGYTCaTuYsQkad5e3vTq1cvHj9+zIIFC+jQoUOGmkn++uuv+eijj5g9e3aaLguMiYmhQoUK5M2bl3379qX4z8zb25umTZvy119/Ubp06RTtW0RExFyioqJwc3PD39+fgwcP8s4775i7JBFJJh3QJ5LOPHz4kL59+9K0aVPKly/P6dOn6dixY4YK+hs3bmTw4MEMGzYszff/rV27ltOnTzNt2rRU+Zn5+fnh4OBAqVKlUrxvERERc8mSJQvff/89pUuXpkmTJgQFBZm7JBFJJs3si6QjBw8epHv37ly/fp05c+bQp0+fDBXyIfY9NGzYkNatW7N69eoUX0b/IpGRkZQtW5by5cuzZcuWVBmjRo0aFCtWjLVr16ZK/yIiIuZ0/fp1atasSdasWTl8+HCaPUFHRFKeZvZF0oGIiAg+/fRT6tati6OjI7///jt9+/bNcEH/zJkztGjRAmdnZ7y8vNI06AMsWbKEwMBApkyZkir9P3z4kGPHjumReyIikmnlz5+f3bt3c+vWLdzc3Hj8+LG5SxKRJFLYFzGzEydOUKVKFebNm8f06dPx8/PLkI90Cw4OxtXVlSJFirB582ayZs2apuOHh4czadIkunTpwttvv50qYxw+fJiYmBjq1q2bKv2LiIikB6VKlWLHjh389ttvdOrUiZiYGHOXJCJJoLAvYibR0dFMnjyZatWqkSVLFo4dO8Znn32GpaWluUtLtLCwMJo0aYKFhQXe3t689tpraV7DvHnzuHPnDhMnTky1MXx9fcmfPz9lypRJtTFERETSg+rVq7Nhwwa2b9/ORx99hHb+imQ8CvsiZvDXX3/h4uKCh4cHI0aM4Oeff6ZcuXLmLitJnjx5QqtWrQgJCcHHxwdHR8c0r+Hu3bvMnDmTvn37UqxYsVQbx8/Pj3r16mW47RUiIiJJ0axZM7799lsWLlzItGnTzF2OiCSSlbkLEHmVGI1Gvv76a0aMGEGRIkXw9/enevXq5i4ryYxGI926dePnn39mz549vPHGG2apY8aMGURGRjJ27NhUGyM8PJyjR4/StWvXVBtDREQkvenduzdXr15lzJgxODo64u7ubu6SRCSBFPZF0sjly5dxd3dn//79fPTRR0yfPp0cOXKYu6wkM5lMDBs2jO+//56NGzfi4uJiljpCQ0OZN28ew4YNI3/+/Kk2jr+/P9HR0TqcT0REXjnjxo0jODiY3r17kz9/fpo0aWLukkQkAbSMXySVmUwmvLy8KFeuHBcuXGDPnj3MmzcvQwd9gDlz5jB37ly+/vprWrdubbY6Jk+eTLZs2fjkk09SdRxfX1/y5ctH2bJlU3UcERGR9MZgMLBgwQKaNm1Ku3btOHr0qLlLEpEEUNgXSUXXr1+nVatW9OjRg9atW3Pq1Cneffddc5eVbGvWrOGTTz5h9OjRDBgwwGx1XLx4kcWLFzNy5EhsbW1TdSw/Pz/q1q2r/foiIvJKsrKyYt26dZQrV45mzZpx8eJFc5ckIi9hMOloTZFUsWnTJvr27YvBYOC7776jVatW5i4pRezdu5cmTZrQqVMnPD09zRp+O3fujK+vL+fPn0/VlRKPHj3C1taWL7/8koEDB6baOCIiIundrVu3cHFxISYmBn9/f/Lly2fukkTkOTSzL5LCwsLC6NatG++//z61a9fm9OnTmSbo//bbb7Ru3ZoGDRqwePFiswb9kydPsnbtWsaPH5/qWyICAgKIiorSfn0REXnl5c2bFx8fH8LDw2nWrBkPHz40d0ki8hwK+yIp6KeffqJcuXJs3bqV5cuXs3HjxkzziXdgYCBNmjShdOnS/PDDD2TJksWs9YwZM4YSJUrQs2fPVB/L19eXvHnz8uabb6b6WCIiIuldsWLF2LVrF3/++Sft27cnKirK3CWJyDMo7IukgPDwcAYNGkSjRo0oU6YMp0+fplu3bplmf/ft27dxdXUlR44c7Ny5k1y5cpm1nsOHD7Nz504mT56cJh86+Pr6ar++iIjIv1SsWJFNmzbx008/0bdvX7QzWCT9UdgXSaaAgAAqVKjAsmXLmD9/Pj/++COFCxc2d1kp5vHjx7i5uXH79m18fHxS9fF2CWEymRg5ciQVKlSgffv2qT7eo0eP+OWXX7SEX0RE5D8aNmyIp6cnnp6eTJgwwdzliMh/WJm7AJGMKjIyEg8PD2bMmEHVqlXZuXMnpUuXNndZKSo6OpqOHTty8uRJ9u/fT6lSpcxdEt7e3hw6dIidO3diYZH6n1ceOXKEyMhI6tatm+pjiYiIZDRdunTh6tWrjBgxgoIFC9K3b19zlyQi/09hXyQJfv/9d7p168bZs2eZPHkyn332GVZWmes/J5PJxKBBg9ixYwfbtm2jWrVq5i4Jo9HI6NGjqV27Nk2aNEmTMf38/LC3t+ett95Kk/FEREQymk8//ZTg4GAGDBhAgQIFaNmypblLEhEU9uVVE2OEuxEQGQPWlpAnG1gmfHY4JiaGWbNmMX78eMqUKcMvv/xChQoVUq9eM/r8889ZtGgRS5cupWnTpuYuB4ANGzZw8uRJDh06lGb75319falTp06arCIQERHJiAwGA19++SWhoaF06NCBvXv34uzsbO6yRF55BpNO05DMLjwSjgTDr6EQfB+ijf97zcoCCuWGyg5QoxDktH5uNxcuXKB79+4EBATw2WefMXHiRLJmzZoGbyDteXp60rNnTyZNmsS4cePMXQ4AUVFRvPHGG5QtW5YdO3akyZgRERHY2toyc+ZMBg8enCZjioiIZFQRERE0btyY06dPc/jwYcqWLWvukkReaQr7knnFGGH3RfA+D0YTvOjfdANgYYAmpaBxiXiz/SaTiYULF/Lpp5/i4ODA8uXLcXFxSfXyzWXXrl20aNGC3r17s3DhwnRzAv2iRYvo378/v/32G+XLl0+TMX19falfvz6//fYb77zzTpqMKSIikpHdvXuX2rVr8/DhQ/z9/XF0dDR3SSKvLIV9yZzuPIYFR+Hqg8Tf62gDA6qCXXaCg4Pp1asXP/74I/3792fmzJlmf+xcajp69Cj16tXjvffeY+PGjenmHIJHjx5RsmRJ6tevz+rVq9NsXA8PD+bNm8etW7e0jF9ERCSBrly5Qs2aNcmbNy8HDhwgd+7c5i5J5JWksC+Zz53HMOswPIiMndFPLAsDJhtrtpS6Qc/hA8mRIwfLli2jcePGKV9rOnLhwgWcnZ0pWbIke/bsIUeOHOYuKc7MmTMZM2YMf/75JyVKlEizcevXr4+trS2bN29OszFFREQyg9OnT1OrVi2qVKnCrl27sLZ+/lZJEUkdmqqSFOPl5YXBYCAwMBAAd3d3nJyc0raIGGPsjP6/gn69rSOpt3VkwvswmjDdi6C4zx3cmjbj9OnTyQ76S5YswWAwPHNVgMFgeO5XWu11u3HjBq6urtjZ2bF9+/Z0FfTDwsKYPn06H374YZoG/YiICAICAvTIPRERkSR4++232bp1KwcPHqRHjx4YjcaX3yQiKSp9rNGVTGncuHEMGTIkbQfdffGppfsLag9IdDcWGCiftxgrmjeGPHmSVVJISAiffPIJjo6O3Lt376nXAwICnrr2888/M3ToUFq3bp2ssRPi4cOHNGvWjPDwcAICArC3t0/1MRNj1qxZREREpPlBgb/88gtPnjyhXr16aTquiIhIZlG3bl1WrVrFBx98gKOjI7NmzTJ3SSKvFIV9STVpOQsLxJ66733+qctv2hVJUncGiO2vbtEXntL/Mv369aNOnTrY2dnxww8/PPV6jRo1nrq2aNEiDAYDvXr1SvK4CREVFUW7du3466+/OHDgQNqvxHiJa9eu8dVXXzF48GAcHBzSdGxfX19sbW0pV65cmo4rIiKSmbRr147Q0FCGDBlCwYIFGTp0qLlLEnllaBm/pJpnLeMPCwujV69e2NnZkStXLpo1a8alS5cwGAx4eHgkqv/IyEimTJlC2bJlyZo1K68XdKDHni+5+Tj+7Pl/l/EH3r+OYWFzZp3YyIwTP+C0qifZv2tDva0jORcWQlRMNCOPeOG4vBuvfdeO1o2bc+PGjST9DFatWoWfnx8LFixI8D0PHjzg+++/p27dupQsWTJJ4yaEyWSiT58+7N27l02bNlGhQoVUGyupPv/8c6ytrRkxYkSaj+3n50edOnWwtLRM87FFREQyk8GDB/PZZ58xbNgwNmzYYO5yRF4ZmtmXNGM0GnFzc+PYsWN4eHhQqVIlAgICcHV1TVJfLVu25ODBg3z22Wc4OzsT9O1eJvgspt71cxxr+yXZrbK+sI9vzuykvJ0T39TuT9iThwz3X4rbrklUz1+aLBZWLKs/hKAHN/jkyDJ69+7Ntm3bElXjjRs3GDp0KNOnT6dQoUIJvm/dunWEh4fTu3fvRI2XWOPGjcPLy4tVq1bx3nvvpepYSfH333+zaNEiJk6cSJ5kbqVIrCdPnuDv78/nn3+epuOKiIhkVtOmTSMkJISuXbuSL18+bZMTSQMK+5JmfHx8OHToEAsXLqRfv34ANGzYEGtra0aNGpWovjZs2ICPjw8bN26kTZs2sQfzbYviHdf8VN34MV5/7qX/201f2IetdU62NBmLhSF2gcutiPsMPbyYsnkKsbXJ//aH/3k/hK+2b+H+/fuJenTMgAEDKFOmDP3790/Ue1u6dCm2tra8//77ibovMRYuXMjnn3/OzJkz6dy5c6qNkxwTJkzA3t6ewYMHp/nYR48eJSIiQr+IiIiIpBALCwuWLVvG9evXadWqFQcPHtRWOZFUpmX8kmb8/PwAaN++fbzrHTt2THRfO3bswNbWFjc3N6Kjo4m++ZDoyCgq5C1OgRx58L166qV9NC1SJS7oA7yRpzAAzYpWjdfujddiZ+UvX76c4Po2btzI9u3bWbx4MQaDIcH3nTlzhp9//pnOnTuTLVu2BN+XGFu2bGHQoEEMGTKETz75JFXGSK7Tp0+zatUqxo0bR86cOdN8fF9fX1577TXeeeedNB9bREQks7K2tmbjxo0UK1aMJk2acOXKFXOXJJKpaWZf0szt27exsrLCzs4u3vX8+fMnuq/r168TFhb23Ge23op4+tT7/7LLZhPve2uL2P8c7LLmeub1iIiIBNX28OFDBg4cyEcffYSjoyNhYWFA7BkDEHtuQZYsWZ4ZYpcuXQqQakv4Dx8+TMeOHXn//feZM2dOoj6ISEtjxozByckp1bcyPI+vry+1a9fWfn0REZEUljt3bnbt2oWzszOurq4cOnQozbfribwqFPYlzdjb2xMdHc2dO3fiBf5r164luq+8efNib2+Pj49P7IWwCPj2WNzrNlmyJ7vepLp16xbXr19n9uzZzJ49+6nX8+TJQ8uWLdmyZUu865GRkaxcuZLKlSunymF5f/zxB25ublSvXp0VK1ZgYZE+F/YEBASwbds2Vq1a9dwPc1JTZGQk/v7+TJ48Oc3HFhEReRU4ODjg4+ODs7MzLVu25Mcff0y1FY0ir7L0+du+ZEp169YFYP369fGur1u3LtF9NW/enNu3bxMTE0OVKlWoUt+ZKo5lqJKvFFXylaJMnoQfiPdSlomb/S5QoAD79+9/6qtx48Zky5aN/fv3M2XKlKfu27ZtG7du3UqVx+1dvXoVV1dXChYsyJYtW9LtX6gmk4lRo0ZRrly5JG3vSAlHjx7l8ePHcf++ioiISMorU6YMO3bs4NixY3Tp0oWYmBhzlySS6WhmX9KMq6srLi4uDB8+nPv371O5cmUCAgJYsWIFQKJmmjt06MDq1atp2rQpQ4YMoVq1amSJOEfwhSD2X/2dlk7VaV3cOWUKz5O4VQLZsmV75sFuXl5eWFpaPvfQt6VLl5I9e3Y6deqUhCKf7969ezRp0gSj0Yi3tze2trYp2n9K+vHHH/Hz82Pbtm1mW3ng5+dH7ty50+WjCEVERDKTmjVrsm7dOlq3bs3QoUOZN29eut1iKJIRKexLmrGwsGD79u0MHz6c6dOnExkZiYuLC6tWraJGjRqJCqGWlpZs27aNuXPnsnLlSqZNm4aVwZJCWfNQ1/Ftytk7xWtvIIl/cRgAp9eSdm8iXLlyhR9//JEuXbrw2mspN96TJ09o3bo1ly9f5tChQ4l6BGBaMxqNjB49GmdnZ5o3b262Onx9falVqxZWVvrjUUREJLW1aNGChQsX0rdvXwoVKsSIESPMXZJIpmEwmUwmcxchr7Y1a9bQuXNnDh8+jLNzMmbjwyNh5B6Iif+vdMXvB1MidwF+aDw68X1aGmBGQ8iRJel1mYnRaKRLly5s2rSJH3/8kTp16pi7pBf6/vvvad++PX5+fmarNSoqCltbWzw8PPj000/NUoOIiMiraMKECUyaNIkVK1bQtWtXc5cjkilo6krS1Nq1awkJCaFcuXJYWFhw5MgRZs2aRZ06dZIX9AFyWkOTUrDjHADnwkI4GHqGU7cD6VKqXtL6bFIqQwZ9gM8++4x169axYcOGdB/0o6OjGTt2LK6urmat9dixYzx69Ej79UVERNKYh4cHISEh9OzZk/z589OoUSNzlySS4SnsS5qysbFh3bp1TJkyhfDwcBwcHHB3d493YF10dPQL+7CwsHj+fu7GJeB4KFx7yLTj37M96Be6lWnAgLebJa5QCwMUyBXb378YjUaMRuMLb00Py7+//PJLZs+ezbx582jbtq25y3kpLy8vzp07l6TDGlOSr68vuXLlolKlSmatQ0RE5FVjMBj49ttvCQ0N5f3338fX15fKlSubuyyRDE3L+CVdCQwMpFixYi9sM2HCBDw8PJ7f4M5jmHUYHkSCMQn/elsYIHdW+MQZ7OIfzufh4cHEiRNfePvff/+Nk5NT4sdNIevXr6dDhw6MGDGC6dOnm62OhHr8+DGlS5fGxcXF7GHf1dUVg8GAt7e3WesQERF5VYWHh1O/fn2CgoIICAigePHi5i5JJMNS2Jd0JTIykt9///2FbRwdHXF0dHxxR3cew4KjcPVB4otwtIEBVZ8K+hD7CLurV6++8Pby5cub5fnwAPv378fV1ZX27duzfPlys51onxizZ89mxIgR/PHHH5QqVcpsdURFRZEnTx7GjRunw4FERETM6ObNmzg7O2MwGPD39ydv3rzmLkkkQ1LYl8wrxgi7L4L3+dgZ/hf9m24gdka/SanYpfuW6T8k/9fvv/9O7dq1qV69Ojt27DDbBw6Jcf/+fYoXL87777/PokWLzFrLzz//TI0aNThy5AjVq1c3ay0iIiKvuosXL+Ls7EyxYsXYu3cvOXPmNHdJIhmO+TcXi6QWSwtoWgrqFoUjwfBrKATfh+h/7bm3soBCuaGyA9QsnGEP47t8+TJNmjShRIkSbNy4MUMEfYid1Q8PD2f8+PHmLgVfX19y5syp/foiIiLpQIkSJdi5cyf16tWjQ4cObN68OV2ciySSkWhmX14tRlPsEv/IGLC2jF2qb2Ewd1XJcufOHWrVqsXjx48JCAigQIEC5i4pQW7cuEHx4sXp378/s2bNMnc5NG3aFKPRiI+Pj7lLERERkf/n4+ODm5sb7u7ufPfddxgMGfv3NpG0lPHWKoskh4UB8uaI3ZefN0eGD/qPHz+mRYsW3Lhxg927d2eYoA8wdepULC0tGTlypLlLITo6moMHD+qReyIiIumMq6srS5YsYcmSJUyaNMnc5YhkKFoLI5JBxcTE0LlzZ44fP86+ffsoXbq0uUtKsKCgIBYuXMi4ceOwt7c3dzkcP36chw8fUq9ePXOXIiIiIv/RvXt3rl69yujRo3F0dOTDDz80d0kiGYLCvkgGZDKZGDx4MFu3bmXLli3UqFHD3CUlioeHB7a2tgwdOtTcpQDg5+dHjhw5qFKlirlLERERkWcYOXIkwcHB9OvXDwcHB5o3b27ukkTSPYV9kQxo+vTpLFiwgO+++w43Nzdzl5MoZ8+eZcWKFXz11VfkypXL3OUAsYfzubi4kCVLxjygUUREJLMzGAzMmzeP0NBQ2rdvz759+zLcZIdIWtOefZEMZvny5YwePZoJEyZkyGVsY8eOpXDhwvTp08fcpQCx+/UPHTqkJfwiIiLpnKWlJatXr6ZSpUo0b96cc+fOmbskkXRNYV8kA9m9eze9e/emd+/eTJgwwdzlJNovv/zC5s2bmThxIlmzZjV3OQD89ttv3L9/X4fziYiIZADZs2dn27Zt5MuXj8aNG3Pt2jVzlySSbunReyIZxK+//krdunWpV68eW7ZsyZDPmn3vvfcIDQ3l999/x9LS0tzlADB79mzGjRtHWFgY1tbW5i5HREREEuDy5cvUrFmT/Pnz4+fnh42NjblLEkl3NLMvkgFcunSJpk2b8tZbb7F+/foMGfT37NnD3r17+fzzz9NN0IfY/frOzs4K+iIiIhlIkSJF8Pb25uLFi7Rt25bIyEhzlySS7mhmXySdu3nzJs7OzhgMBg4fPszrr79u7pISzWQyUb16dSwsLAgICMBgMJi7JCD28YX29vZ88sknjB071tzliIiISCLt37+fxo0b06FDB5YvX55ufscQSQ8y3vSgyCskPDyc5s2b8+DBA/z9/TNk0AfYvHkzR48eZd++fenqL+GTJ09y79497dcXERHJoOrXr8+KFSvo2LEjBQsWZNq0aeYuSSTdUNgXSaeio6P54IMPOHv2LH5+fhQvXtzcJSVJdHQ0Y8aMoWHDhtSvX9/c5cTj6+tLtmzZqFatmrlLERERkSTq0KEDoaGhDBs2jIIFCzJo0CBzlySSLijsi6RDJpOJfv36sXv3bnbu3EmlSpXMXVKSrVy5kj///JOVK1eau5Sn+Pn5UbNmzXTzZAARERFJmo8//pjg4GAGDx6Mg4MD77//vrlLEjE7HdAnkg55eHiwdOlSli1bRqNGjcxdTpJFRETg4eFB27ZtqVKlirnLiScmJoYDBw5Qr149c5ciIiIiKWDWrFl88MEHdO7cmYMHD5q7HBGz08y+SDrz3XffMWnSJKZNm0bXrl3NXU6yfPvttwQHB7N7925zl/KUU6dOERYWprAvIiKSSVhYWODl5cX169dp0aIFhw4d4q233jJ3WSJmo5l9kXRk27Zt9O/fn0GDBjFixAhzl5MsDx484PPPP6dHjx6ULVvW3OU8xdfXl6xZs2q/voiISCaSNWtWNm/eTJEiRXB1dSU4ONjcJYmYjcK+SDoREBBAhw4daN26NV999VW6OrU+Kb788ksePHjAhAkTzF3KM/2zXz9btmzmLkVERERS0GuvvYa3tzcWFhY0adKEsLAwc5ckYhYK+yLpwF9//YWbmxtVqlRh1apVWFpamrukZLl16xZffPEFAwYMoHDhwuYu5ylGoxE/Pz89ck9ERCSTcnR0xMfHh5CQEFq1akVERIS5SxJJcwr7ImYWGhqKq6sr+fPnZ+vWrZlipvmfZ9yOGjXKzJU826lTp7h7967264uIiGRib7zxBtu3b+fnn3+mW7duGI1Gc5ckkqYU9kXM6P79+zRt2pTIyEi8vb3JkyePuUtKtitXrvDNN98wfPhwXn/9dXOX80x+fn5YW1tTvXp1c5ciIiIiqcjFxYW1a9eyceNGhg0bhslkMndJImlGYV/ETCIjI3n//fe5dOkSPj4+FClSxNwlpYiJEydiY2PDsGHDzF3Kc/n6+lKjRg2yZ89u7lJEREQklbVq1Yqvv/6auXPnMnv2bHOXI5Jm9Og9ETMwGo307NmTAwcOsHv3bsqVK2fuklLEX3/9haenJ7Nnz8bGxsbc5TyT0WjkwIEDDBw40NyliIiISBrp378/ISEhfPrppzg6OtKpUydzlySS6hT2Rcxg1KhRrF69mvXr12eqfePjxo2jYMGC9OvXz9ylPNeZM2e4ffu2DucTERF5xUyePJng4GDc3d3Jnz8/7777rrlLEklVCvsiaWzevHnMnDmTL7/8kvbt25u7nBTz66+/8v3337N06dJ0fcjgP/v1a9SoYe5SREREJA0ZDAYWL17M9evXad26NQcOHKBChQrmLksk1RhMOqVCJM18//33fPDBBwwfPpxZs2aZu5wU1bhxYy5fvsypU6ewskq/nyO2bduW69evc/DgQXOXIiIiImbw8OFD6tWrR0hICAEBATg5OZm7JJFUoQP6RNKIn58fXbp0oWPHjsyYMcPc5aSo/fv38+OPPzJlypR0HfRNJhN+fn6ZauuEiIiIJE6uXLnYuXMnOXPmxNXVldu3b5u7JJFUoZl9kTRw+vRpatWqRZUqVdi1axfW1tbmLinFmEwmatasSUxMDL/88gsGg8HcJT3XmTNnePvtt/npp5947733zF2OiIiImNGFCxdwdnamZMmS7Nmzhxw5cpi7JJEUpZl9kVR25coVXF1dcXJyYtOmTZkq6ANs27aNn3/+mWnTpqXroA+xj9zLkiULNWvWNHcpIiIiYmYlS5Zkx44dnDx5ko4dOxIdHW3ukkRSlGb2RVLR3bt3qV27Ng8fPsTf3x9HR0dzl5SiYmJieOedd8ifPz979+41dzkv1b59e0JCQjh8+LC5SxEREZF0YteuXbRo0YLevXuzcOHCdD95IZJQmtkXSSURERG0atWK0NBQfHx8Ml3QB1i9ejVnzpxh6tSp5i7lpbRfX0RERJ6ladOmLF68mEWLFvH555+buxyRFJN+T9ISycBiYmLo2rUrv/zyC3v37qVs2bLmLinFRUZGMmHCBFq3bk316tXNXc5L/fnnn9y4cUNhX0RERJ7So0cPQkJCGDduHI6OjvTs2dPcJYkkm8K+SAozmUx8/PHHbNq0iU2bNuHs7GzuklLFd999x+XLl9m5c6e5S0kQX19frKysMu3/HyIiIpI8Y8aMITg4mD59+lCgQAGaNm1q7pJEkkV79kVS2MyZMxkxYgTffvstffv2NXc5qeLhw4eUKFGCJk2a4OXlZe5yEqRDhw5cvnwZf39/c5ciIiIi6VRMTAzvv/8+P/30E/v376datWrmLkkkybRnXyQFrVq1ihEjRjB27NhMG/QB5s6dS1hYGB4eHuYuJUFMJhO+vr7UrVvX3KWIiIhIOmZpacmaNWt45513aNasGRcuXDB3SSJJppl9kRTy008/0bRpU7p27crSpUsz7Umut2/fpnjx4ri7uzN37lxzl5Mgf/75J2+88QY+Pj40btzY3OWIiIhIOnf79m1cXFyIiorC39+f/Pnzm7skkUTTzL5ICjhx4gRt2rShYcOGLFq0KNMGfYAZM2YQExPDmDFjzF1Kgvn5+WFpaan9+iIiIpIg9vb2+Pj48OjRI5o3b87Dhw/NXZJIoinsiyTT33//TdOmTSlbtiwbNmwgS5Ys5i4p1YSEhDB//nyGDRtGvnz5zF1Ogvn6+lKlShVsbGzMXYqIiIhkEE5OTnh7e/PXX3/Rrl07oqKizF2SSKIo7Iskw61bt3B1dSVnzpzs3LmTXLlymbukVDVp0iRy5MjB8OHDzV1KgplMJvz8/PTIPREREUm0ChUqsHnzZvbu3cuHH36IdkBLRqKwL5JEjx49ws3Njbt377J79+4MNdOdFOfPn2fp0qWMGjWK1157zdzlJNj58+cJDQ3V4XwiIiKSJO+++y5eXl4sX76ccePGmbsckQSzMncBIhlRdHQ0HTp04NSpU/j6+lKiRAlzl5Tqxo8fT4ECBRg4cKC5S0mUf/bru7i4mLsUERERyaA6derE1atX+fTTTylYsCD9+/c3d0kiL6WwL5JIJpOJAQMGsGvXLrZv306VKlXMXVKqO3HiBOvWreO7774je/bs5i4nUXx9falUqRK5c+c2dykiIiKSgQ0fPpzg4GAGDhxIgQIFaN26tblLEnkhLeMXSaTJkyezePFilixZQpMmTcxdTpoYM2YMpUuXpkePHuYuJVG0X19ERERSisFgYM6cObRr145OnTpx+PBhc5ck8kIK+yKJsHTpUiZMmMCUKVNwd3c3dzlp4sCBA3h7ezN58mSsrDLWYqCLFy8SEhKi/foiIiKSIiwsLFi+fDnVq1fHzc2NP/74w9wliTyXwaQjJUUSZOfOnbRs2ZI+ffrwzTffYDAYzF1SqjOZTNSqVYvHjx9z7NgxLCwy1ueDS5YsoW/fvty5cydDHSooIiIi6VtYWBi1a9fm/v37BAQE4OjoaO6SRJ6SsX5zFzGTn3/+mXbt2uHm5sb8+fNfiaAPsR9w+Pv7M23atAwX9CH2cL6KFSsq6IuIiEiKsrW1xdvbG6PRSJMmTbh37565SxJ5imb2RV7i3LlzuLi4ULp0afbs2ZPhDqhLKqPRSIUKFbCzs2P//v0Z7gMOk8lEkSJF+OCDD/jiiy/MXY6IiIhkQmfOnKFWrVpUrFgRb29vsmbNau6SROJkvKk6kTR0/fp1XF1dyZs3L9u3b39lgj7A2rVrOXXqFNP+j737Do+qzNs4fs8kJAFCCKGHAAFEKaIU6cIMrqxUQbFhWxDWxYosFnoXsOuqsBYUEAFdUBEQeEU5Q0sEAUVFFCmBhE4IIZCQMvP+kSVLpKY+k5nv57q4dpmcObkHXdc7z/N7zpQpJa7oS9Lu3bsVHx/P4XwAAKDING7cWF9++aXWr1+vfv36ye12m44E5KDsAxdx8uRJdevWTWlpaVq+fLkiIiJMRyo26enpGjNmjG699Va1bdvWdJx8sSxLNptNN954o+koAADAh3Xo0EEff/yxPvnkEz377LOm4wA5StbR2kAxycjI0B133KE//vhDq1evVu3atU1HKlYzZszQ7t27tWjRItNR8u3svH54eLjpKAAAwMf16dNH//rXv/TEE0+oRo0aGjJkiOlIAGUf+DOPx6OBAwdq1apVWr58ua6//nrTkYrVqVOnNGHCBN1333269tprTcfJF4/HI8uy1KdPH9NRAACAn3j88ccVHx+vf/7zn6pevbruuece05Hg5yj7wJ+MHDlSs2fP1ty5c3XTTTeZjlPs3nzzTR07dkzjx483HSXf9uzZo7179zKvDwAAitWUKVO0f/9+/e1vf1PVqlXVqVMn05Hgx5jZB87x9ttva8qUKXr55ZfVt29f03GK3fHjx/XCCy/o4YcfVt26dU3HyTeXyyWbzaYOHTqYjgIAAPyIzWbT+++/L6fTqd69e2vr1q2mI8GPUfaB//rss8/0xBNPaMiQIRo6dKjpOEa8+OKLSk9P16hRo0xHKRDLsnT99derQoUKpqMAAAA/ExQUpAULFqhevXrq2rWr9u7dazoS/BRlH5C0du1a3Xvvvbrrrrv89pnsBw4c0BtvvKGnnnpK1apVMx2nQFwuF1v4AQCAMeXKldNXX32l4OBgdenSRYmJiaYjwQ9R9uH3tm3bpp49e6pt27aaNWuW7Hb//J/FpEmTFBISomeeecZ0lAKJi4vTnj175HA4TEcBAAB+rFq1alq+fLkOHz6sW2+9VampqZKknTt36v/+7/8Mp4M/8M9WA/xXQkKCunTpopo1a+qLL75QcHCw6UhG7Ny5U++++66ee+65Ev+ourPz+h07djQdBQAA+Lmrr75aS5cu1ebNm3XfffdpzZo1atGihbp3766UlBTT8eDjbB6Px2M6BGBCUlKSOnbsqKSkJMXExKhGjRqmIxlz//3369tvv9Uff/yhMmXKmI5TIA899JA2bdqkH3/80XQUAAAASdKSJUt06623ymazSZLcbreWLFmi7t27G04GX8bKPvzSmTNndNtttyk+Pl7Lly/366K/detWzZ07V2PGjCnxRV9iXh8AAHifhIQESdkl3+12KzAwUF9//bXhVPB1lH34HbfbrQcffFAxMTH68ssv1ahRI9ORjBo5cqTq1q2rAQMGmI5SYHv37tWuXbuY1wcAAF5j9uzZGjRokM7dUJ2ZmamlS5caTAV/QNmH33n66af1n//8R3PnztWNN95oOo5R69at05IlSzRx4kSVKlXKdJwCc7lcksS8PgAA8Bp169ZVgwYNJEmBgYE5r//xxx+Kj4+/8Juy3NLR09L+k9n/meUujqjwMczsw6+88sorevrpp/XWW2/pscceMx3HKI/HI4fDoeTkZG3evNknnkIwcOBAfffdd/rpp59MRwEAAMjh8XgUGxurd955R/Pnz9eZM2ckSRMmTNDo0aOzLzqVLsXGS5sOSPHJUuY5BT/QLkWFSS2qS22ipLJBBj4FSpqS/2/3wBWaN2+enn76aQ0fPtzvi74kLV++XGvWrNHzzz/vE0VfkizLYl4fAAB4HZvNprZt22rmzJk6ePCgXn31VVWoUEGnT/931f6rHdKwldJnv0p7knIXfSn793uSsr8+bGX29az24zJY2Ydf+Oabb9S1a1f17dtXM2fOzDkJ1V+53W61aNFCoaGhWr16tU/8ecTHx6tmzZpasGCB+vTpYzoOAADA5SWmStM2Zm/Xz6vIctKjLaWI0oWfCz7BN5bzgEv48ccfddttt+mmm27S+++/7xPFtqA+/fRT/fDDD5oyZYrP/Hkwrw8AAK7U2cWfPXv2SJL69eun6OjoIvt+NptN48aNy/1iYqr00jrpYEr+bnowJfv9ian5zvXZZ5+pb9++uuqqq1S6dGlFR0frvvvu044dO8679syZM3rppZd07bXXqmzZsqpataq6du2q9evX5/v7o2ixsg+ftmfPHrVr106RkZGyLEuhoaGmIxmXkZGhRo0a6eqrr/apU2AffvhhrV+/Xj///LPpKAAAwMvNnDlT/fv31+7duxUdHa2dO3cqOTlZzZo1K5LvFxsbq6ioKEVFRWW/kOWWpqzNLuzuAtQxu02qFioNv1EKyPs6buvWrVWtWjX17t1bdevW1b59+zR58mTt27dPsbGxaty4cc61Dz74oD7++GMNHz5cN910kxITEzV16lT9+OOPWrdunVq1apX/z4EiEXj5S4CS6dixY+rSpYtCQkK0dOlSiv5/ffjhh/rjjz+0YMEC01EKlWVZ6ty5s+kYAACgBKpXr16R3r9Nmza5X1ixM39b9//M7cm+z4qdUrf6eX774sWLVaVKlVyv3XTTTYqOjtZrr72m999/X1L2qv7cuXN17733atKkSTnXtm/fXpGRkfr4448p+16IbfzwSampqbr11lt17NgxrVixQlWrVjUdySukpqZq/Pjx6tu3r66//nrTcQrN/v37tWPHDg7nAwAA+XKhbfxJSUkaMGCAIiIiFBoaqu7du2vXrl0X3pJ/GbnecypdM1+dJtv0Hvo2/kf93fqXKn7QV2Hv36kHv3lFpzLSdPD0cd31f1MVPuNuVZ/1gJ5eP0MZWZm57nkmK0MTvp+nhvMGKeTWxqpYsaI6deqUp231fy76khQZGamoqCjt27cv5zW73S673a7y5cvnujYsLEx2u10hISFX/oeBYsPKPnxOVlaW7r33Xv3www9atWqV6tfP+085fdVbb72lw4cPa8KECaajFCrm9QEAQGFyu93q2bOnvv/+e40bN07NmzdXTEyMunTpUvCbx8ZL/925P9D6l26v207zOz+rLUd3asR3s5Xpduu3pHjdXredHm7URSvjf9ALWxYosmyE/nn9bZKkTHeWui4ZqzUHf9FTTXrppqjrlNkmUrGpe7R37161a9cu3/F27dqluLg49e7dO+e1UqVK6dFHH9WMGTN0880352zjHzFihMqXL6+///3vBfkTQRGh7MOneDwePfHEE1q8eLEWLVrEdqJzJCUlacqUKRo4cKCuuuoq03EKlWVZatiwITs4AABAoVi+fLnWrl2r6dOna9CgQZKkzp07KygoSMOHDy/YzTcdyCn7PaJb6eV2A7LvX7OZYg5t17w/XHq13UANub63JOnmqKZasW+zPv7dyin783a4tGr/Vr3neEIDG92SfbOgcPUcVbDSnZmZqQEDBig0NFRDhgzJ9bXXXntN5cuXV58+feR2Zz/2r1atWvr222997t8tfQXb+OFTJk+erOnTp+udd95R9+7dTcfxKi+//LLS0tI0evRo01EKncvlYgs/AAAoNGd3Dd511125Xu/bt2/BbpzlluKTc37bo3bLXF9uGF5TktT9Aq/HpRzJ+f2yvZsUEhCkhxqec15RfHKBDvvzeDwaMGCA1qxZo9mzZ6tmzZq5vv7888/r5Zdf1rhx47Rq1SotWrRI11xzjTp37qwtW7bk+/ui6FD24TNmzpypUaNGafz48RowYIDpOF7l0KFDev311/Xkk08qMjLSdJxCdeDAAf32229yOBymowAAAB9x7NgxBQYGKiIiItfrBd5FeDxNynTn/DYiuFyuLwcFBP739dDzXk/LTM/5/ZG0E4osGyG77Zw6l+nO92P4PB6PBg4cqDlz5mjmzJnq1atXrq//+uuvGjNmjMaPH6/Ro0fL6XTq1ltv1dKlSxUeHq5//vOf+fq+KFqUffiEZcuWaeDAgXr44Yd9cuW6oJ5//nkFBgbqueeeMx2l0K1evVqSKPsAAKDQVKxYUZmZmUpMTMz1+sGDBwt24/Ssgr3/vyqHlNf+U4lye9y5v5CP+58t+h9++KHef/993X///edd8+OPP8rj8ahly9w7DkqVKqXrr7+eRx97Kco+SryNGzfqjjvuUPfu3fX222/LZrOZjuRVdu/erX//+9969tlnVaFCBdNxCp1lWbrmmmtUrVo101EAAICPOLuI8Mknn+R6ff78+QW7cVBAwd7/X11rtVBaVrpmbl9ZoPt7PB79/e9/14cffqh33nlH/fv3v+B1Z3eGxsbG5nr9zJkz2rx5s6KiovL0fVE8OKAPJdoff/yh7t2767rrrtO8efMUGMjf0n82btw4RUREaPDgwaajFAnm9QEAQGHr0qWL2rdvr6FDhyo5OVktWrRQTEyMZs+eLSn7UXT5UiFECiz4emvf+g59uH2lBq2ept+SEtSpxnVy26Xv/vWdGjZqpHvuueeK7vPkk09qxowZeuihh9SkSZNcZT44OFjNmjWTJN14441q2bKlxo0bp9OnT6tjx446ceKE3nzzTe3evVsfffRRgT8TCh/NCCXW4cOH1aVLF1WoUEGLFy9WmTJlTEfyOj///LM++ugjvfnmmypbtqzpOIXu0KFD+vXXXxndAAAAhcput2vx4sUaOnSopk6dqvT0dLVv315z5sxRmzZtFB4enud72mw2KcAuRYVJBdz1HmgP0Ffdx2nK5v9o3h8uvb51kcqFlNX1p1qoS9euV3yfxYsXS5I++OADffDBB7m+Vrt2be3Zs0dS9p/H119/rZdeekn/+c9/9PLLLys0NFSNGjXSV199pa55+J4oPjaPx5P/IxsBQ1JSUtSpUyfFx8crJiZG0dHRpiN5pd69e2vr1q3avn27goKCTMcpdJ9++qnuvvtuJSQk+NzBgwAAwPvMnTtX9913n9atW3fFz7I/ceKEwsPD9eabb+rxxx+XvtklffZrzuP3CoVN0u0Npb/ULcSboqRjZR8lTkZGhu666y799ttvcrlcFP2LiI2N1aJFi/TRRx/5ZNGXsrfw169fn6IPAAAK3bx585SQkKAmTZrIbrcrNjZWL730kjp27HjFRT82NjZn7r9t27bZL7aJkr7YLmUVYtu326S2NS9/HfwKZR8lisfj0cMPP6yvv/5ay5Yty5kjQm4ej0fDhw/XtddeW/DnwXoxy7KY1wcAAEWiXLlymj9/viZNmqRTp06pevXq6tevnyZNmpRzTWZm5iXvce+99yorK0uvvPKKWrRokf1i2SCpa31pye+FF7ZrfalMqZzfut1uud3uS7xBnHXlB/grjBJlzJgxmjlzpubMmaObb77ZdByv9fXXX8uyLC1atEgBAYVz6qu3OXz4sLZt26aRI0eajgIAAHxQjx491KNHj4t+fc+ePapTp84l7zF27FiNGzfu/C/cUk/afEA6mCK5C7DCb7dJ1UKz73eOhx56SLNmzbrkW5nm9n3M7KPE+Pe//61HHnlEL774op555hnTcbzW2WegBgUFad26dT77KMIFCxbozjvvVHx8vGrUqGE6DgAA8DPp6enaunXrJa+JjIy8+LhhYqr00jrpZHr+Cr/dJoUFS0+3kyJK5/rSnj17dPTo0Uu+/YYbbsj790SJQtlHifDFF1+oT58+evzxx/X666/7bIEtDGdLsGVZOc+I9UVPPPGEli9frh07dpiOAgAAkD+JqdK0jdL+k3l/b2Q56dGW5xV94CzKPrze+vXr9Ze//EU9e/bU/Pnz8/9cUz+QmZmpa6+9VtHR0Vq+fLnpOEWqSZMmat26td5//33TUQAAAPIvyy2t2Ckt25G9wn+pdmZT9op+1/rZW/cD+PdiXBwz+/Bq27dvV8+ePdWqVSvNnj2bon8Zs2bN0m+//aa5c+eajlKkjh49qp9//lnPPfec6SgAAAAFE2CXutWXHLWl2Hhp0wEpPlnK/N8BexnK0o9Hd6vB/Tcp9OYGuQ7jAy6GlX14rf3796tt27YqV66c1qxZowoVKpiO5NXS0tJUv359tWvXLucRL77qs88+U58+fbR3717VrMljZgAAgI9xe7K3+KdnSUEBatfjL4r5LlZNmzZVTEyMQkJCTCdECcAyKbzSiRMn1K1bN7ndbi1fvpyifwWmTZumAwcOaOLEiaajFDnLslS3bl2KPgAA8E12m1SpjBRZTp6KpfXbjuzH9P3444/q378/J+njilD24XXS09N1++23Ky4uTsuWLVNUVJTpSF4vOTlZkydP1kMPPaSrr77adJwi53K55HQ6TccAAAAocnFxcUpMTJSU/dSl+fPnX/hxfsCfUPbhVdxut/r166e1a9dq0aJFuvbaa01HKhFeffVVpaSkaMyYMaajFLljx45p69atPv2kAQAAgLNiYmLOe23ChAmaM2eOgTQoSSj78CrPPfec5s+fr48//lgdO3Y0HadEOHLkiF555RU9/vjjfrELYs2aNZJE2QcAAH4hJiZGAQEBOb8PDMw+Y/3ll182FQklBGUfXuP111/Xyy+/rDfeeEN33HGH6TglxuTJk2W32zV8+HDTUYqFZVmKjo5W7dq1TUcBAAAocps2bVJWVlbO7zt27Kh58+Zp5cqVBlOhJODRe/AKn3zyiYYMGaJnn31WTzzxhOk4JUZcXJymTZumUaNGqWLFiqbjFAvm9QEAgD+ZMmWKDh48KIfDoc6dO6tOnTq65557TMdCCcCj92DcqlWr1KVLF911112aNWuW7HY2nFyphx56SEuWLNHOnTtVrlw503GKXGJioipVqqQPPvhA/fr1Mx0HAACgWD3xxBNatmyZ/vjjD9NRUALQqmDUTz/9pN69e8vhcGjGjBkU/Tz49ddfNWvWLI0aNcovir6UPa/v8XhY2QcAAH7J6XRq586dio+PNx0FJQDNCsbs3btXXbp0Ub169bRw4UIFBQWZjlSijBo1SjVr1tQ//vEP01GKjcvlUq1atRQdHW06CgAAQLE7e4C1y+UynAQlAWUfRiQmJqpLly4KCgrSV1995Tcr04Vl48aN+uyzzzRu3DgFBwebjlNsLMtiVR8AAPitypUrq3HjxrIsy3QUlACUfRS71NRU9erVS4cPH9by5ctVrVo105FKnBEjRqhRo0Z64IEHTEcpNklJSfrhhx8o+wAAwK85nU5W9nFFKPsoVllZWbr//vu1adMmLVmyRNdcc43pSCXON998o5UrV2rSpEm5nrnq687O6zscDtNRAAAAjHE4HNqxY4f2799vOgq8HGUfxcbj8Wjw4MH64osv9Mknn6hNmzamI5U4Ho9HI0aMUKtWrdS7d2/TcYqVy+VSzZo1VadOHdNRAAAAjDm78MHqPi6Hso9i88ILL+jtt9/W9OnT1bNnT9NxSqQvvvhCGzZs0JQpU2Sz2UzHKVaWZcnhcPjd5wYAADhXlSpV1LBhQ+b2cVmUfRSL2bNna/jw4RozZowefvhh03FKpKysLI0cOVI333yzbrrpJtNxitWJEye0ZcsW5vUBAACUPbdP2cflUPZR5FasWKEBAwZowIABGjdunOk4JdZHH32kX3/9VZMnTzYdpditXbtWbrebeX0AAABlb+X//fffdeDAAdNR4MUo+yhSmzZtUp8+fXTLLbfo3//+N1uw8+nMmTMaO3as+vTpo5YtW5qOU+wsy1KNGjVUr14901EAAACMY24fV4KyjyKza9cudevWTY0bN9Ynn3yiwMBA05FKrH//+9+Kj4/XxIkTTUcxwuVyyel08sMiAAAASdWqVdM111xD2cclUfZRJI4cOaIuXbqofPnyWrJkicqWLWs6Uol18uRJPf/88+rXr58aNmxoOk6xS05O1qZNm9jCDwAAcA7m9nE5lH0UulOnTqlHjx46ceKEli9frsqVK5uOVKK9/vrrOnHihMaOHWs6ihHr1q2T2+3mcD4AAIBzOJ1Obd++XYcOHTIdBV6Kso9ClZmZqbvvvlvbtm3TV199pbp165qOVKIdPXpUL730kh599FHVqlXLdBwjLMtS9erVddVVV5mOAgAA4DWY28flUPZRaDwejwYNGqQVK1Zo4cKFatGihelIJd7UqVPl8Xg0YsQI01GMsSyLeX0AAIA/qV69uq6++mq28uOiKPsoNOPHj9eMGTM0Y8YM/fWvfzUdp8SLj4/XW2+9paFDh/rtKMTJkyeZ1wcAALgIh8PByj4uirKPQvHuu+9q/PjxmjJlih588EHTcXzC+PHjFRoaqn/+85+moxizbt06ZWVlMa8PAABwAU6nU9u2bdPhw4dNR4EXouyjwBYvXqxHHnlEjz32mJ577jnTcXzC77//rg8//FAjR45UWFiY6TjGuFwuVa1aVVdffbXpKAAAAF7n7O7H1atXG04Cb0TZR4HExsbq7rvvVu/evfXGG28wV11IRo8ercjISD3yyCOmoxjFvD4AAMDF1ahRQ1dddRVz+7ggyj7y7bffflOPHj3UokULzZkzRwEBAaYj+YTNmzfr008/1dixYxUSEmI6jjEpKSn6/vvv2cIPAABwCU6nk7l9XBBlH/ly4MABdenSRVWrVtWXX36p0qVLm47kM0aMGKFrrrlGf/vb30xHMWr9+vXKzMzkcD4AAIBLcDgc+vnnn3XkyBHTUeBlKPvIs+TkZHXr1k3p6elatmyZKlSoYDqSz7AsSytWrNCkSZMUGBhoOo5RLpdLVapUUYMGDUxHAQAA8FrM7eNiKPvIk/T0dPXp00e7du3S8uXLVatWLdORfIbH49Hw4cPVokUL9enTx3Qc4yzLksPhYF4fAADgEmrWrKm6deuylR/n8e+lQ+SJ2+3WgAEDtHr1ai1fvlxNmjQxHcmnLF68WLGxsfq///s/vy+4p06d0oYNG/TGG2+YjgIAAOD1nE4nh/ThPKzs44qNGDFCc+bM0ezZs9WpUyfTcXxKVlaWRowYoU6dOunmm282Hce4mJgY5vUBAACukMPh0E8//aRjx46ZjgIvQtnHFXnzzTf1wgsv6LXXXtPdd99tOo7PmTt3rn755RdNnjzZ71f1pewt/JUqVVKjRo1MRwEAAPB6zO3jQij7uKwFCxZo8ODBGjp0qJ566inTcXxOenq6xowZo969e6tNmzam43gFl8slp9PJDz4AAACuQO3atVWnTh3m9pELZR+XtHr1at1///2655579OKLL5qO45PeffddxcXFadKkSaajeIXTp0/ru+++Yws/AABAHjgcDub2kQtlHxf1888/69Zbb1X79u314Ycfym7nb5fCdurUKU2aNEkPPPCAGjdubDqOV4iNjVVGRoacTqfpKAAAACWG0+nU1q1blZiYaDoKvATtDRe0b98+de3aVdHR0fr8888VHBxsOpJPeuONN5SYmKjx48ebjuI1LMtSxYoVmdcHAADIA4fDIY/HozVr1piOAi9B2cd5kpKS1LVrVwUEBOirr75SWFiY6Ug+KTExUS+++KIGDRqk6Oho03G8hmVZcjgc7CQBAADIg+joaNWuXZut/MjBv00jl7S0NPXq1UsHDhzQ8uXLFRkZaTqSz3rhhReUmZmpkSNHmo7iNVJTU5nXBwAAyCeHw8EhfchB2UcOt9utBx54QBs2bNDixYvVoEED05F8VkJCgv71r39pyJAhqlq1quk4XiM2Nlbp6enM6wMAAOSD0+nUDz/8oOPHj5uOAi9A2YckyePxaMiQIfrss880b948tWvXznQknzZx4kSVKVNGTz/9tOkoXsXlcikiIkLXXnut6SgAAAAljtPplMfj0dq1a01HgReg7EOS9PLLL+tf//qX3n77bfXu3dt0HJ/2xx9/aMaMGRo+fLjKly9vOo5XsSxLHTt2ZF4fAAAgH6Kjo1WzZk3m9iGJsg9Jc+bM0bPPPqtRo0Zp0KBBpuP4vDFjxqhq1ap67LHHTEfxKmlpaYqNjWULPwAAQD7ZbDY5nU7m9iGJsu/3vv76a/Xv31/9+/fXhAkTTMfxeT/88IPmzZunMWPGqHTp0qbjeJXvvvtOZ86c4XA+AACAAnA4HNqyZYuSkpJMR4FhlH0/tmXLFt1+++3q3Lmz3nnnHdlsNtORfN7IkSNVv3599e/f33QUr+NyuVShQgVdd911pqMAAACUWE6nU263m7l9UPb91e7du9WtWzc1aNBAn376qUqVKmU6ks9bs2aNvvrqK02cOJE/7wuwLEsdOnRgXh8AAKAA6tatqxo1arCVH5R9f3T06FF16dJFZcuW1dKlSxUaGmo6ks/zeDwaPny4mjZtqjvvvNN0HK9z5swZxcTEMK8PAABQQGfn9jmkD4GmA6B4nT59Wj179tTx48e1fv16ValSxXQkv/DVV19p3bp1WrZsGSvXF7BhwwalpaUxrw8AAFAIHA6H5s2bp+TkZIWFhZmOA0NoHX4kMzNTffv21datW7V06VJdddVVpiP5BbfbrREjRqhjx4665ZZbTMfxSpZlqXz58rr++utNRwEAACjxmNuHRNn3Gx6PR4899piWLl2qBQsWqGXLlqYj+Y358+dr69atmjJlCocgXoTL5VLHjh0VEBBgOgoAAECJd9VVVykyMpK5fT9H2fcTkyZN0rvvvqv3339fXbt2NR3Hb2RkZGjMmDHq2bOn2rVrZzqOV0pPT9f69evZwg8AAFBIbDabHA4Hc/t+jrLvB2bMmKExY8Zo0qRJ6tevn+k4fmXGjBnatWuXnn/+edNRvNbGjRuVmprK4XwAAACFyOl0atOmTTp58qTpKDCEsu/jli5dqn/84x8aNGiQRowYYTqOXzl9+rQmTJige++9V02aNDEdx2tZlqWwsDA1bdrUdBQAAACf4XA4lJWVpXXr1pmOAkMo+z5sw4YNuuuuu9SzZ0+99dZbzIsXszfffFNHjhzRhAkTTEfxapZlqUOHDszrAwAAFKKrr75a1apVYyu/H6Ps+6gdO3aoe/fuatq0qebOnUuRKmbHjx/X1KlT9fDDD6tu3bqm43gt5vUBAACKxtm5fQ7p81+UfR906NAh3XLLLapUqZK+/PJLlS5d2nQkv/PSSy/pzJkzGjVqlOkoXu3777/X6dOnmdcHAAAoAk6nUxs3blRKSorpKDCAsu9jTp48qW7duiktLU3Lly9XxYoVTUfyOwcPHtQbb7yhp556StWrVzcdx6u5XC6VK1dOzZo1Mx0FAADA5zidTmVlZWn9+vWmo8AAyr4PycjI0J133qkdO3Zo2bJlql27tulIfmnSpEkKCgrSM888YzqK17MsSzfeeKMCAwNNRwEAAPA511xzjapWrcrcvp+i7PsIj8ejgQMH6ttvv9UXX3yh66+/3nQkv7Rr1y698847GjZsmCpUqGA6jlfLyMjQunXr2MIPAABQRM7O7VP2/RNl30eMHDlSs2fP1qxZs3TTTTeZjuO3xo4dq8qVK+uJJ54wHcXrbdq0SadOneJwPgAAgCLkcDi0ceNGnTp1ynQUFDPKvg94++23NWXKFL388svq27ev6Th+66efftLHH3+s0aNHq0yZMqbjeD2Xy6XQ0FA1b97cdBQAAACf5XQ6lZmZydy+H6Lsl3Cff/65nnjiCT311FP65z//aTqOXxs5cqTq1q2rgQMHmo5SIliWpfbt26tUqVKmowAAAPishg0bqnLlyjyCzw9R9kuwtWvXqm/fvrrzzjv1yiuvyGazmY7kt9avX6/FixdrwoQJlNcrkJmZqbVr1zKvDwAAUMSY2/dflP0Satu2bbr11lvVtm1bzZ49W3Y7fylN8Xg8Gj58uK677jrdc889puOUCJs3b1ZKSgrz+gAAAMXA6XRqw4YNOn36tOkoKEY0xBLi1Vdf1Zo1ayRJCQkJ6tKli6KiovT5558rODjYcDr/tmLFCq1evVqTJ0/mhy5XyLIslSlTRjfccIPpKAAAAD7P4XAoIyNDMTExpqOgGNk8Ho/HdAhc2v79+1WjRg0FBgbq3Xff1WuvvaakpCTFxMSoRo0apuP5NbfbrRtuuEFlypTRmjVrGKW4Qt27d1dmZqZWrFhhOgoAAIDPc7vdqlq1qh555BFNmDDBdBwUk0DTAXB5X3/9taTsOeeHHnpIISEh2rRpE0XfC/znP//Rli1btHr1aor+FcrMzNSaNWs0bNgw01EAAAD8gt1uV8eOHZnb9zPsOS4B/u///k+Bgf/7uUxaWppmzJght9ttMBUyMjI0evRodevWTR06dDAdp8T44YcfdPLkSQ7nAwAAKEZOp1PfffedUlNTTUdBMaHsm5Tllo6elvafzP7PrPPLu9vt1vLly5WZmZnr9VdffVXTpk0rrqS4gJkzZ2rHjh16/vnnTUcpUSzLUunSpZnXBwAAKEYOh0Pp6emKjY01HQXFhG38xe1UuhQbL206IMUnS5nnFPxAuxQVJrWoLrWJksoGaevWrUpMTMy5xGazKTAwUHfeead69uxp4ANAklJTUzVu3Djdc889atq0qek4JYplWWrfvr2CgoJMRwEAAPAb1157rSIiImRZljp16mQ6DooBZb+4ZLmlFTulZTskt0e60LGImW5pT5IUlyR9sV3qWl/TP3s758tXX321Hn30UT3wwAOKiIgoruS4gLfffluHDx/WxIkTTUcpUbKysrRmzRo988wzpqMAAAD4FbvdLofDIZfLZToKigllvzgkpkrTNmZv178SHklZHmnJ75oU2kUJ7XZr2Avj1L59ew6B8wInTpzQlClTNGDAAF111VWm45QoP/zwg5KTk5nXBwAAMMDhcOi5555TWlqaQkJCTMdBEWNmv6glpkovrZMOpuTr7ZUzS2tJx2G6sVELir6XePnll3X69GmNHj3adJQSx+VyKSQkRC1btjQdBQAAwO84nU6dOXNG3333nekoKAY+W/Znzpwpm82mPXv2SJL69eun6Ojo4g2R5c5e0T+Znr11X5Jz0TA5F+XhkWNuT/b7p2284AF++fH+++/LZrMpNDT0vK/169dPNpvtvF8NGjQolO9d0h06dEivvfaannzySR59mA+WZaldu3YKDg42HQUAAMDvNGnSRBUqVOARfH7Cb7bxjx49WoMHDy7eb7pi53lb96d1eDTv93F7su+zYqfUrX6BIiUkJOjpp59WZGSkTpw4ccFrSpcurW+//fa81yBNnjxZgYGBeu6550xHKXHOzuv/85//NB0FAADAL9ntdnXs2FGWZWns2LGm46CI+U3Zr1evXvF+w1Pp2Yfx/UmjiFr5v+eyHZKjtlQ2/6eYDxo0SB07dlRERIQWLFhwwWvsdrvatGmT7+/hq/bs2aPp06dr7NixHJCYD1u3blVSUpIcDofpKAAAAH7L4XBoxIgRzO37AZ/dxv9nF9rGn5SUpAEDBigiIkKhoaHq3r27du3aJZvNpnHjxuXp/unp6Zo0aZIaNGig4OBgVa5RXf1XvqYjqblXz/+8jX9P8iHZpvfQS1sW6oUtCxQ95yGVfvd2ORcN0+9JCcrIytSw2JmKnPWgyr97p267pYcOHz6crz+DOXPmyOVyadq0afl6v78bN26cIiIiin+HiI84O6/fqlUr01EAAAD8ltPpVFpamjZs2GA6CoqY35T9P3O73erZs6fmzp2r5557Tp9//rlat26tLl265OtevXr10tSpU3Xvvfdq6dKlmnrzw/p63xY5Fw1XauaZy97j7V+Wat2BbXq7wyN63/mEth+PV8+vJmiA9YaOpJ7QB50G68U2/bVy41oNHDgwzxkPHz6sp556SlOnTlVUVNQlr01NTVW1atUUEBCgqKgoPf7440pMTMzz9/Qlv/zyiz766CONGjXqgmcd4PIsy1KbNm34CTIAAIBB1113ncLDw3kEnx/wm238f7Z8+XKtXbtW06dP16BBgyRJnTt3VlBQkIYPH56ne3366adavny5Fi5cqNtvvz37IL0vM3R9l6pquXCIZm7/Ro9c2+2S9wgPKqsvuo6S3Zb985ejacl6at17alAhSou6/u/U9+3JCXp98RdKTk5WWFjYFWd89NFHdc011+iRRx655HXXX3+9rr/+el177bWSsldjX3vtNX3zzTfauHGj3xbdUaNGqVatWnr44YdNRymR3G63Vq9eza4IAAAAwwICAtShQwdZlsXTpXyc367sn/1J1l133ZXr9b59++b5XkuWLFF4eLh69uypzMxMZR5JUWZ6hppWqqtqZSrI2v/TZe/RrdYNOUVfkhpWqClJ6l479yPKGpbPXpXfu3fvFedbuHChFi9erPfee++yj+8bMmSIhgwZos6dO6tz586aNGmSZs+ere3bt+u999674u/pS7777jt98cUXmjBhgoKC8n9egj/76aefdPz4ceb1AQAAvIDT6VRMTIzOnLn8DmSUXH67sn/s2DEFBgaed9Ba1apV83yvQ4cOKSkp6aJF8GjahU+9P1dESLlcvw+yZ/+liQgOveDraWlpV5QtJSVFjz32mJ544glFRkYqKSlJUvYZA1L2uQWlSpVS2bJlL3qP2267TWXLllVsbOwVfU9f4vF4NHz4cDVu3Fj33nuv6TgllmVZCg4O5uBHAAAAL+BwOJSamqqNGzfqxhtvNB0HRcRvy37FihWVmZmpxMTEXIX/4MGDeb5XpUqVVLFiRS1fvjz7haQ06d/f53y9XClzj607evSoDh06pFdeeUWvvPLKeV+vUKGCevXqpS+++OKS9/F4PLLb/W8jyMqVK7Vq1SotWrRIAQEBpuOUWC6Xi3l9AAAAL9G0aVOFhYXJsizKvg/zv/b2X2e3E3/yySe5Xp8/f36e79WjRw8dO3ZMWVlZuuGGG3RDp3a6IfIa3VClvm6oUl/XVLj0gXh5EnDpbfh/Vq1aNa1ateq8X7fccotCQkK0atUqTZo06ZL3WLBggU6fPu13q7Iej0cjRoxQ27Zt1bNnT9NxSiy32y2Xy8UWfgAAAC9xdm6fQ/p8m9+u7Hfp0kXt27fX0KFDlZycrBYtWigmJkazZ8+WpDytYt9zzz36+OOP1a1bNw0ePFitWrVSqbTfFf9HnFbt36pe0a11W912hRO8Qt52CYSEhMjpdJ73+syZMxUQEJDra3Fxcbr33nt1zz336KqrrpLNZpPL5dLrr7+uxo0b5+spACXZZ599pu+//16rVq267FkHuLhffvlFiYmJF/z7EAAAAGY4nU6NGTNG6enpnEvlo/y27Nvtdi1evFhDhw7V1KlTlZ6ervbt22vOnDlq06aNwsPDr/heAQEB+vLLL/XGG2/oo48+0pQpUxRoC1BUcAU5Iq9Vk4rRua63KZ/F0SYpunz+3nsFwsLCVLVqVb366qs6dOiQsrKyVLt2bT355JMaMWLEJef6fU1mZqZGjhypW265hZJaQJZlKSgoyO92hgAAAHizs3P733//vdq1K6SFSXgVm8fj8ZgO4U3mzp2r++67T+vWrSvY3/Sn0qVhK6Ws3H+8zf7zpOqFVdOCW0bk/Z4BNumFzlKZUvnPhSvywQcfaMCAAdq0aZOaN29uOk6J1qdPHx05ckSrV682HQUAAAD/lZmZqYiICA0bNkwjRuSjm8Dr+e3KviTNmzdPCQkJatKkiex2u2JjY/XSSy+pY8eOBf/pVtkgqWt9acnvkqTfkxK05sAv+unYHt1f35m/e3atT9EvBmlpaRo7dqzuvPNOin4Bud1urV69WoMGDTIdBQAAAOcIDAzMmdun7Psmvy775cqV0/z58zVp0iSdOnVK1atXV79+/XIdWJeZmXnJe9jt9ovP999ST9p8QDqYoimb/6PFcRv04DU36dFru+ctqN0mVQvNvt853G633G73Jd8aGOjXf4nzZfr06Tpw4IAmTpxoOkqJt23bNh09epRRCAAAAC/kcDg0YcIEZWRkqFQpFhV9Ddv4L2HPnj2qU6fOJa8ZO3asxo0bd/ELElOll9ZJJ9Mldz7+qO02KSxYerqdFJH7cL5x48Zp/Pjxl3z77t27FR0dnffv66eSk5NVr1499e7dW++9957pOCXe22+/rSFDhigpKUllypQxHQcAAADn2LBhg1q3bq2YmBjOV/JBLPteQmRkpDZu3HjZay4porT0THtp2kZp/8m8h6gWKj3a8ryiL0kPP/ywevToUbB8yOXVV1/VyZMnNXbsWNNRfIJlWWrVqhVFHwAAwAs1b95coaGhsiyLsu+DWNkvLlluacVOadmO7BX+S/2p25S9ot+1fvbW/YArfwwg8u/IkSOqW7eu/vGPf+jll182HafE83g8qlq1qh5++OFcozEAAADwHl27dpXH49Hy5ctNR0EhY2W/uATYpW71JUdtKTZe2nRAik+WMs+ZuQ+0S1FhUovqUtuaHMZXzKZMmSKbzaZhw4aZjuITfv31Vx05ckQOh8N0FAAAAFyEw+HQ888/z9y+D6LsF7eyQdJf6mb/cnuyZ/rTs6SggOyt+nab6YR+ae/evXr77bc1cuRIVapUyXQcn+ByuRQYGMhzWwEAALyY0+nU8OHDtXnzZrVu3dp0HBQi9oebZLdJlcpIkeWy/5Oib8z48eNVvnx5DRkyxHQUn2FZllq2bKmyZcuajgIAAICLaNGihcqWLSuXy2U6CgoZZR9+b/v27Zo5c6ZGjhypcuXKmY7jEzwejyzL4pF7AAAAXq5UqVJq3769LMsyHQWFjLIPvzdq1ChFRUVp0KBBpqP4jN9++02HDx9mXh8AAKAEcDqdWrt2rTIzM01HQSGi7MOvff/991q4cKHGjx+v4OBg03F8hmVZCggIUPv27U1HAQAAwGU4HA6dPHlSW7ZsMR0FhYiyD782YsQINWzYUA888IDpKD7F5XKpZcuWCg0NNR0FAAAAl3HDDTeoTJkyzO37GMo+/Na3336rr7/+Ws8//7wCAgJMx/EZZ+f12cIPAABQMgQFBaldu3bM7fsYyj78ksfj0fDhw9WqVSv17t3bdByfsmPHDh08eJDD+QAAAEoQp9OpNWvWKCsry3QUFBLKPvzSokWLtGHDBk2ePFk2G488LEzM6wMAAJQ8DodDycnJ+uGHH0xHQSGh7MPvZGVlaeTIkbr55pv1l7/8xXQcn2NZllq0aMFjDAEAAEqQli1bqnTp0mzl9yGUffidOXPmaNu2bZo8ebLpKD7H4/HI5XIxrw8AAFDCBAcHq23bthzS50Mo+/ArZ86c0dixY3X77berZcuWpuP4nD/++EP79+9nXh8AAKAEcjqdWr16NXP7PoKyD7/yzjvvaN++fZo0aZLpKD7J5XLJbrfrxhtvNB0FAAAAeeR0OnXixAlt3brVdBQUAso+/EZKSoomTZqkv/3tb2rYsKHpOD7Jsiw1b95cYWFhpqMAAAAgj1q1aqWQkBDm9n0EZR9+4/XXX9eJEyc0btw401F80tl5fbbwAwAAlEzM7fsWyj78wrFjx/TSSy/p0UcfVa1atUzH8Um7du1SfHw8h/MBAACUYA6HQ6tXr5bb7TYdBQVE2YdfmDp1qtxut0aMGGE6is9iXh8AAKDkczqdOn78OHP7PoCyD58XHx+vt956S//85z9VuXJl03F8lmVZatq0qcLDw01HAQAAQD61bt1awcHBbOX3AZR9+LwJEyaobNmyGjp0qOkoPsvj8ciyLOb1AQAASriQkBC1adOGQ/p8AGUfPu3333/XBx98oBEjRnBCfBHas2eP9u3bx7w+AACAD3A6nczt+wDKPnza6NGjVb16dT366KOmo/g0y7Jks9nUoUMH01EAAABQQA6HQ4mJifr5559NR0EBUPbhszZv3qxPP/1U48aNU0hIiOk4Ps3lcqlp06aqUKGC6SgAAAAooDZt2igoKIi5/RKOsg+fNXLkSF1zzTX629/+ZjqKz7Msiy38AAAAPqJ06dJq3bo1c/slHGUfPsnlcmn58uWaOHGiAgMDTcfxaXv27FFcXByH8wEAAPgQ5vZLPso+fI7H49Hw4cPVokUL9enTx3Qcn+dyuZjXBwAA8DEOh0NHjx7Vtm3bTEdBPrHkCZ+zZMkSxcTEaMWKFbLb+XlWUbMsS9ddd50iIiJMRwEAAEAhadu2rUqVKiXLsnTttdeajoN8oAnBp2RlZWnEiBHq1KmTOnfubDqOX3C5XMzrAwAA+JgyZcqoVatWHNJXgrGyD58yb948/fzzz4qJiZHNZjMdx+ft3btXu3fvZl4fAADABzmdTr377rvyeDz8u3UJxMo+fEZ6errGjBmjXr16qU2bNqbj+IWzP+llXh8AAMD3OJ1OHTlyRL/++qvpKMgHVvbhM9577z3t2bNHixcvNh3Fb1iWpSZNmqhSpUqmowAAAKCQtW3bVoGBgbIsS40aNTIdB3nEyj58wqlTpzRx4kQ98MADaty4sek4fsPlcrGFHwAAwEeVLVuWuf0SjLIPn/Cvf/1LiYmJGj9+vOkofmPfvn3auXMnh/MBAAD4MIfDIcuy5PF4TEdBHlH2UeIlJibqhRde0KBBgxQdHW06jt84+xPejh07Gk4CAACAouJ0OnX48GH99ttvpqMgjyj7KPFefPFFZWZmauTIkaaj+BWXy6XGjRurcuXKpqMAAACgiLRr104BAQGyLMt0FOQRZR8l2v79+/Wvf/1LTz31lKpWrWo6jl+xLIt5fQAAAB8XGhqqli1bUvZLIMo+SrSJEyeqdOnSeuaZZ0xH8SsJCQn6448/mNcHAADwAw6HQy6Xi7n9EoayjxJr586dev/99zVs2DCVL1/edBy/cnZen7IPAADg+5xOpw4ePKjff//ddBTkAWUfJdaYMWNUpUoVPf7446aj+B2Xy6VGjRqpSpUqpqMAAACgiLVv314BAQE8gq+EoeyjRPrxxx81d+5cjR07VqVLlzYdx+9YlsWqPgAAgJ8oV66cWrRowdx+CUPZR4k0cuRIXXXVVerfv7/pKH7nwIED+v333zmcDwAAwI84nU7m9ksYyj5KnLVr12rp0qWaOHGiSpUqZTqO3zm7fatjx46GkwAAAKC4OBwO7d+/X3/88YfpKLhClH2UKB6PR8OHD1fTpk111113mY7jlyzLUoMGDVStWjXTUQAAAFBMbrzxRtntdub2SxDKPkqUZcuWae3atZo8ebLsdv72NcHlcjGvDwAA4GfCwsLUvHlz5vZLENoSSgy3260RI0aoQ4cO6tKli+k4fungwYPavn078/oAAAB+yOl0yrIs5vZLCMo+SoxPPvlEP/74o6ZMmSKbzWY6jl9avXq1JLGyDwAA4IccDocSEhK0a9cu01FwBSj7KBEyMjI0evRo9ejRQ+3btzcdx29ZlqWrr75a1atXNx0FAAAAxezs3D5b+UsGyj5KhA8++EC7du3S888/bzqKX3O5XGzhBwAA8FPh4eFq1qwZh/SVEJR9eL3Tp09r/Pjxuvfee3XdddeZjuO3Dh8+rG3btrGFHwAAwI85HA7m9ksIyj683ltvvaUjR45o/PjxpqP4tbM/waXsAwAA+C+n06l9+/Zpz549pqPgMij78GpJSUmaOnWqHn74YdWrV890HL/mcrl01VVXqUaNGqajAAAAwJAOHTrIZrMxt18CUPbh1V566SWlpaVp1KhRpqP4PcuymNcHAADwc+Hh4WratClz+yUAZR9e6+DBg3r99dc1ePBgTn837MiRI/rll1/Ywg8AAICcuX14N8o+vNakSZMUFBSkZ5991nQUv7d69WpJzOsDAAAge24/Li6OuX0vR9mHV9q9e7feffddPffcc6pQoYLpOH7P5XKpXr16qlmzpukoAAAAMOzs3D5b+b0bZR9eaezYsapYsaKefPJJ01Gg7Hl9VvUBAAAgSREREbruuuvYyu/lKPvwOj/99JPmzJmjMWPGqEyZMqbj+L1jx47pp59+4nA+AAAA5HA6nazseznKPrzOqFGjVKdOHQ0YMMB0FIh5fQAAAJzP4XBo9+7d2rt3r+kouAjKPrxKTEyMvvzyS02YMEFBQUGm40DZW/jr1KmjWrVqmY4CAAAAL9GxY0dJYnXfi1H24TU8Ho+GDx+u6667Tn379jUdB//lcrlY1QcAAEAuFStWVJMmTZjb92KUfXiN//u//5PL5dLzzz8vu52/Nb1BYmKitm7dyrw+AAAAzsPcvnejUcEruN1ujRgxQu3atVP37t1Nx8F/rVmzRh6Ph5V9AAAAnMfhcGjnzp2Kj483HQUXQNmHV1iwYIE2b96sqVOnymazmY6D/7IsS7Vr11Z0dLTpKAAAAPAyzO17N8o+jMvMzNTo0aPVtWtXdejQwXQcnMPlcrGFHwAAABdUuXJlNW7cmLl9L0XZh3EzZ87U77//rueff950FJzj+PHj+uGHH9jCDwAAgItyOp2UfS9F2YdRqampGjdunO655x41a9bMdByc4+y8Piv7AAAAuBin06k//vhDCQkJpqPgTyj7MGratGk6ePCgJkyYYDoK/sTlcqlmzZrM6wMAAOCimNv3XpR9GHPixAlNmTJFAwcOVP369U3HwZ9YliWn08mBiQAAALioKlWqqFGjRpR9L0TZhzGvvPKKTp06pdGjR5uOgj9JSkpiXh8AAABXxOFwMLfvhSj7MOLw4cN69dVX9cQTT6hGjRqm4+BP1q5dK7fbzbw+AAAALsvpdOr333/XgQMHTEfBOSj7MGLy5MkKDAzUsGHDTEfBBbhcLkVFRalu3bqmowAAAMDLMbfvnSj7KHZxcXGaPn26nnnmGUVERJiOgwuwLEsOh4N5fQAAAFxWtWrV1KBBA8q+l6Hso9iNGzdO4eHhGjx4sOkouIDk5GRt3ryZLfwAAAC4Ysztex/KPorVtm3bNHv2bI0ePVqhoaGm4+ACzs7rczgfAAAArpTT6dT27dt18OBB01HwX5R9FKtRo0apVq1aevjhh01HwUVYlqXIyEhdddVVpqMAAACghDi7ULR69WrDSXAWZR/FZsOGDfr88881fvx4BQUFmY6Di3C5XMzrAwAAIE+qV6+uq6++mq38XoSyj2IzfPhwNW7cWPfdd5/pKLiIkydPatOmTczrAwAAIM+cTieH9HkRyj6KxcqVK/Xtt9/q+eefV0BAgOk4uIh169YpKyuLeX0AAADkmcPh0LZt23T4wCHp6Glp/8ns/8xym47ml2wej8djOgR8m8fjUatWrRQYGKj169ezPdyLDRs2TLNmzdL+/fv56wQAAIArdypdJ7/+VX98skbXV6ore9Y5NTPQLkWFSS2qS22ipLKM9BaHQNMB4Ps+++wzff/991q1ahUF0su5XC45nU7+OgEAAODKZLmlFTulZTtUzu1R0wp1ZMv603pyplvakyTFJUlfbJe61pduqScFsNG8KLGyjyKVmZmpJk2aqFatWlqxYoXpOLiElJQUhYeH66233tKgQYNMxwEAAIC3S0yVpm3M3q6fV5HlpEdbShGlCz8XJDGzjyL20Ucfafv27Zo8ebLpKLiMs/P6HM4HAACAy0pMlV5aJx1Myd/7D6Zkvz8xtXBzIQdlH0UmLS1NY8eO1Z133qkWLVqYjoPLcLlcqlq1qq655hrTUQAAAHAJM2fOlM1m0549eyRJ/fr1U3R0dJF9P5vNpnHjxv3vhSx39or+yXTJnc+N4m5P9vunbcz3AX6fffaZ+vbtq6uuukqlS5dWdHS07rvvPu3YsSPXdXv27JHNZrvory5duuTvM3g5ZvZRZP79739r//79mjhxoukouAKWZcnhcDCvDwAAUMKMHj1agwcPLrL7x8TEKCoq6n8vrNiZv637f+b2ZN9nxU6pW/08v/2FF15QtWrVNHLkSNWtW1f79u3T5MmT1bx5c8XGxqpx48aSpOrVqysmJua893/xxRd64YUXdNtttxX4o3gjZvZRJE6ePKm6deuqV69eev/9903HwWWcOnVK4eHheuONN/Too4+ajgMAAIBLmDlzpvr376/du3cX6Yr+BZ1Kl4atlP58CF9BBNikqTfn+ZT+w4cPq0qVKrle279/v6Kjo/Xggw9etod06tRJGzZs0IEDBxQWFpbn2N6ObfwoEq+++qpOnjypsWPHmo6CK7B+/XplZmYyrw8AAFACXWgbf1JSkgYMGKCIiAiFhoaqe/fu2rVr1/lb8q9ArvfExmvmtq9lm95D38b/qL9b/1LFD/oq7P079eA3r+hURpoOnj6uu/5vqsJn3K3qsx7Q0+tnKCMrM9c9z2RlaML389Rw3iCFTO+titWrqlOnTlq/fv0V5/pz0ZekyMhIRUVFad++fZd8786dO+VyuXTXXXf5ZNGX2MaPInD06FG98soreuyxx1SzZk3TcXAFXC6XKleurIYNG5qOAgAAgAJyu93q2bOnvv/+e40bN07NmzdXTExM4cymbzog/XdRf6D1L91et53md35WW47u1IjvZivT7dZvSfG6vW47Pdyoi1bG/6AXtixQZNkI/fP67O3yme4sdV0yVmsO/qKnmvTSTTWuU2blEMXWSNbevXvVrl27fMfbtWuX4uLi1Lt370te98EHH8jj8WjgwIH5/l7ejrKPQjdlyhRJ0vDhww0nwZViXh8AAMB3LF++XGvXrtX06dNzHqncuXNnBQUFFezf0bPcUnxyzm97RLfSy+0GZN+/ZjPFHNqueX+49Gq7gRpyfW9J0s1RTbVi32Z9/LuVU/bn7XBp1f6tes/xhAY2uiX7ZoF29ZzYRbLn/99HMzMzNWDAAIWGhmrIkCEX/xhZWZo1a5YaNGig9u3b5/v7eTu28aNQ7du3T2+//baefvppVapUyXQcXIHTp09rw4YNbOEHAADwES6XS5J011135Xq9b9++Bbvx8TQp838n5/eo3TLXlxuGZ+/q7X6B1+NSjuT8ftneTQoJCNJDDTv/76JMd4Eew+fxeDRgwACtWbNGs2fPvuQO4+XLlyshIUEDBgzI9/crCVjZR6EaP368wsLCLvmTNHiXmJgYZWRkyOFwmI4CAACAQnDs2DEFBgYqIiIi1+tVq1Yt2I3Ts3L9NiK4XK7fBwUE/vf10PNeT8tMz/n9kbQTiiwbIbvtT2vPf7r/lTq7HX/OnDmaNWuWevXqdcnrZ8yYoVKlSunBBx/M1/crKVjZR6HZvn27PvzwQ40cOVLlypW7/BvgFSzLUqVKldSoUSPTUQAAAFAIKlasqMzMTCUmJuZ6/eDBgwW7cVBAwd7/X5VDymv/qUS5Pe7cX8jH/c8W/Q8//FDvv/++7r///ktef/jwYS1ZskS33nrrBQ/48yWUfRSa0aNHKyoqKmcuCCWDy+VSx44dZbfzjwMAAABfcHbH5ieffJLr9fnz5xfsxhVCpMCC/ztj11otlJaVrpnbV/7vxUC7FFE6T/fxeDz6+9//rg8//FDvvPOO+vfvf9n3zJ49WxkZGT6/hV9iGz8KyaZNm7RgwQJ98MEHCg4ONh0HVyg1NVXfffedXn75ZdNRAAAAUEi6dOmi9u3ba+jQoUpOTlaLFi0UExOj2bNnS1L+F3kC7FJUmPRzwfL1re/Qh9tXatDqafotKUGdalwnd5Uy+m58rBo2bKh77rnniu7z5JNPasaMGXrooYfUpEkTxcbG5nwtODhYzZo1O+89M2bMUM2aNXXLLbcU7EOUAJR9FIoRI0aoYcOGeuCBB0xHQR7ExsYqPT2deX0AAAAfYrfbtXjxYg0dOlRTp05Venq62rdvrzlz5qhNmzYKDw/P8z1zntrUorq0omD5Au0B+qr7OE3Z/B/N+8Ol17cuUrnQcrr+hmZ5ejzg4sWLJWU/Ru+DDz7I9bXatWtrz549uV5bv369tm/frjFjxvjFrlabx+PxmA6Bkm3VqlW66aabtHDhQt1+++2m4yAPxo4dq7feektHjhzxi3/gAQAA+LO5c+fqvvvu07p16674WfYnTpxQeHi43nzzTT3++OPSqXRp2EopqxBrZIBNeqGzVKZU4d0TrOyjYDwej4YPH66WLVvqtttuMx0HeeRyueRwOCj6AAAAPmbevHlKSEhQkyZNZLfbFRsbq5deekkdO3a84qIfGxubM/fftm3b7BfLBkld60tLfi+8sF3rU/SLAGUfBfLll1/qu+++08qVK/+3tQclQlpammJjY/XCCy+YjgIAAIBCVq5cOc2fP1+TJk3SqVOnVL16dfXr10+TJk3KuSYzM/OS97j33nuVlZWlV155RS1atPjfF26pJ20+IB1MkdwFWOG326Rqodn3O4fb7Zbb7b7Im7IFBlJlL4dt/Mi3rKwsXXfddapevbpWrlx5+TfAq1iWpU6dOumHH37Q9ddfbzoOAAAAitGePXtUp06dS14zduxYjRs37sJfTEyVXlonnUzPX+G326SwYOnpduedwt+vXz/NmjXrkm+nxl4ePw5Bvn388cfatm2bPvzwQ9NRkA8ul0sVKlRQkyZNTEcBAABAMYuMjNTGjRsve81FRZSWnmkvTdso7T+Z9wDVQqVHW17wcXvjxo3LPh8ABcLKPvLlzJkzatCggZo3b66FCxeajoN86NSpk8qXL68vvvjCdBQAAACUVFluacVOadmO7BX+S7VLm7JX9LvWz966H8C5UUWJlX3ky7vvvqu9e/fqq6++Mh0F+XB2Xn/y5MmmowAAAKAkC7BL3epLjtpSbLy06YAUnyxlnjNzH2iXosKyH9vXtiaH8RUTVvaRZykpKapXr566devGFv4SavXq1XI4HNq8ebOaNWtmOg4AAAB8iduTPdOfniUFBWRv1bdzmHdxY2UfefbGG28oKSnp4od1wOu5XC6Fh4fruuuuMx0FAAAAvsZukyqVMZ3C7zEkgTw5duyYXnzxRT3yyCOqXbu26TjIJ8uy1KFDBwUEBJiOAgAAAKAIUPaRJy+88IKysrI0YsQI01GQT2fOnFFMTIycTqfpKAAAAACKCGUfVywhIUFvvvmmhg4dqipVqpiOg3zauHGjUlNT5XA4TEcBAAAAUEQo+7hiEyZMUNmyZTV06FDTUVAAlmUpLCxMTZs2NR0FAAAAQBHhgD5ckR07dmjGjBl68cUXFRYWZjoOCsDlcjGvDwAAAPg4VvZxRUaPHq3q1avr0UcfNR0FBZCenq5169Yxrw8AAAD4OFb2cVlbtmzRJ598ovfee08hISGm46AAvv/+e+b1AQAAAD/Ayj4ua+TIkbr66qvVr18/01FQQJZlqVy5cmrWrJnpKAAAAACKECv7uKTVq1dr2bJl+vTTTxUYyN8uJd3ZeX3+WgIAAAC+jZV9XJTH49Hw4cPVvHlz9enTx3QcFFBGRobWrl3LFn4AAADAD7C8h4taunSp1q9frxUrVshu5+dCJd3333+v06dPczgfAAAA4AdocLggt9utESNGyOl0qnPnzqbjoBC4XC6FhoaqefPmpqMAAAAAKGKs7OOC5s2bp59++kkxMTGy2Wym46AQWJalG2+8kXl9AAAAwA+wso/zpKena8yYMerVq5fatGljOg4KQUZGhtatW8e8PgAAAOAnWOLDed5//33t3r1bixYtMh0FhWTz5s1KSUlhXh8AAADwE6zsI5dTp05p4sSJuv/++3XttdeajoNC4nK5VLZsWbVo0cJ0FAAAAADFgLKPXN58800dO3ZM48ePNx0FhciyLLVv316lSpUyHQUAAABAMaDsI8fx48f1wgsv6B//+Ifq1KljOg4KSWZmptauXcsWfgAAAMCPUPaR48UXX1R6erpGjRplOgoK0ZYtW3Ty5EkO5wMAAAD8CGUfkqQDBw7ojTfe0JAhQ1S1alXTcVCILMtSmTJldMMNN5iOAgAAAKCYUPYhSZo4caJCQkL09NNPm46CQuZyudSuXTsFBQWZjgIAAACgmFD2oZ07d+q9997TsGHDFB4ebjoOClFWVpbWrFnDvD4AAADgZyj70NixY1WlShU9/vjjpqOgkP3www9KTk5mXh8AAADwM4GmA8CsrVu3au7cuZo+fbrKlCljOg4KmWVZKl26tFq2bGk6CgAAAIBiZPN4PB7TIWBOz549tX37dm3bto1nsPugW2+9VadPn9bKlStNRwEAAABQjNjG78fWrVunJUuWaOLEiRR9H5SVlaXVq1ezhR8AAADwQ6zs+ymPxyOHw6GTJ09q06ZNstv5uY+v2bx5s1q0aKHVq1erQ4cOpuMAAAAAKEbM7Pup5cuXa82aNfrqq68o+j7K5XIpJCRErVq1Mh0FAAAAQDFjZd8Pud1uNW/eXGFhYXK5XLLZbKYjoQj06tVLJ0+e1Lfffms6CgAAAIBixsq+H/r000/1448/au3atRR9H+V2u7VmzRoNHjzYdBQAAAAABrCy72cyMjLUqFEjNWjQQIsXLzYdB0Xkhx9+ULNmzWRZFgf0AQAAAH6IlX0/88EHH2jnzp1auHCh6SgoQi6XS8HBwWrdurXpKAAAAAAMYGXfj6Smpuqqq66S0+nUxx9/bDoOitBtt92m48ePy7Is01EAAAAAGMAx7H7krbfe0uHDhzVhwgTTUVCE3G63Vq9eLafTaToKAAAAAEMo+34iKSlJU6ZM0d///nfVq1fPdBwUoZ9//lmJiYnM6gMAAAB+jLLvJ15++WWlpaVp9OjRpqOgiFmWpaCgILVp08Z0FAAAAACGUPb9wKFDh/Taa69p8ODBql69uuk4KGIul0utW7dW6dKlTUcBAAAAYAhl3w9MmjRJQUFBevbZZ01HQRFzu91yuVzM6wMAAAB+jrLv43bv3q133nlHzz77rCpUqGA6DorYtm3bdOzYMco+AAAA4Oco+z5u3Lhxqlixop588knTUVAMLMtSqVKlmNcHAAAA/Fyg6QAoOj///LM++ugjvfXWWypbtqzpOCgGZ+f1y5QpYzoKAAAAAINY2fdho0aNUnR0tAYOHGg6CoqBx+ORZVk8cg8AAAAAK/u+KjY2VosWLdKcOXMUFBRkOg6KwbZt23T06FHm9QEAAACwsu+LPB6Phg8friZNmqhv376m46CYuFwuBQYGqm3btqajAAAAADCMlX0f9PXXX8uyLC1evFh2Oz/P8ReWZalVq1aczwAAAABANo/H4zEdAoXH7XarVatWCg4O1tq1a2Wz2UxHQjHweDyqVq2aBgwYoMmTJ5uOAwAAAMAwVvZ9zMKFC7Vp0ya5XC6Kvh/Zvn27Dh8+zLw+AAAAAEnM7PuUzMxMjR49Wl27dlXHjh1Nx0ExOjuv365dO9NRAAAAAHgBVvZ9yKxZs/Tbb79p3rx5pqOgmFmWpRtuuEGhoaGmowAAAADwAqzs+4i0tDSNGzdOd999t5o1a2Y6DoqRx+ORy+ViCz8AAACAHJR9HzFt2jQdOHBAEydONB0Fxez333/XwYMH5XA4TEcBAAAA4CUo+z4gOTlZkydP1oABA1S/fn3TcVDMLMtSQECA2rdvbzoKAAAAAC9B2fcBr7zyik6dOqUxY8aYjgIDXC6XWrRooXLlypmOAgAAAMBLUPZLuMOHD+vVV1/VE088oRo1apiOg2Lm8XhkWRbz+gAAAAByoeyXcJMnT5bdbtdzzz1nOgoM+OOPP3TgwAHKPgAAAIBcKPslWFxcnKZPn65nnnlGFStWNB0HBliWJbvdzrw+AAAAgFwo+yXY+PHjFR4erqeeesp0FBhydl4/LCzMdBQAAAAAXoSyX0Jt27ZNs2bN0qhRoxQaGmo6Dgw4O6/PI/cAAAAA/Bllv4QaPXq0atasqYcffth0FBiyc+dOJSQkMK8PAAAA4DyBpgMg7zZu3KjPPvtMs2bNUnBwsOk4MMTlcslut+vGG280HQUAAACAl7F5PB6P6RDIm5tvvlkHDx7Ujz/+qICAANNxYMgDDzygX3/9Vd9//73pKAAAAAC8DCv7Jcw333yjb775Rp9//jlF3495PB65XC7deeedpqMAAAAA8EKs7JcgHo9HrVu3lt1uV0xMjGw2m+lIMGTXrl2qV6+evvzyS/Xs2dN0HAAAAABehpX9EuTzzz/Xxo0b9e2331L0/ZzL5ZLNZlOHDh1MRwEAAADghVjZLyGysrLUpEkT1axZUytWrDAdB4b97W9/008//aTNmzebjgIAAADAC7GyX0J89NFH+vXXX/XRRx+ZjgIv4HK5dPvtt5uOAQAAAMBL2U0HwOWdOXNGY8eO1R133KEWLVqYjgPD9uzZo7i4ODkcDtNRAAAAAHgpyr6X+vHHH5WQkCBJ+ve//62EhARNmjTJcCp4A8uymNcHAAAAcEls4/dSf/3rX3X8+HH94x//0Lx589SvXz9dc801pmPBC7hcLl133XWKiIgwHQUAAACAl2Jl30udPHlSGRkZevvtt3Xs2DGFh4crJSXFdCx4Acuy5HQ6TccAAAAA4MUo+14qMzNTknT2YQmvvfaaatWqpe3bt5uMBcPi4uK0Z88eyj4AAACAS6LseyGPx6OMjIxcr9lsNpUrV07lypUzlArewOVySRLz+gAAAAAuibLvhbKyss57rW/fvvrpp59Uo0YNA4ngLc7O61esWNF0FAAAAABejLLvhdLT03P+e9myZTVv3jx99NFHCgsLM5gK3sCyLB65BwAAAOCyOI3fpCy3dDxNSs+SggKkCiFSgF02m02SFB0dLcuyVLt2bcNB4Q327dunXbt2Ma8PAAAA4LIo+8XtVLoUGy9tOiDFJ0uZ7v99LdAuRYWpdIvq2hqzSQ1aNFGpUqXMZYVXOTuv37FjR8NJAAAAAHg7yn5xyXJLK3ZKy3ZIbo/kucA1mW5pT5IUl6QmdpuUWE66pZ4UwLQFsrfwX3vttapUqZLpKAAAAAC8HGW/OCSmStM2SvtPXtn1HklZHmnJ79LmA9KjLaWI0kUaEd7P5XLplltuMR0DAAAAQAngs0vGM2fOlM1m0549eyRJ/fr1U3R0dPEHSUyVXlonHUyRJDkXDZNz0bArf//BlOz3J6YWWqT3339fNptNoaGh533N4/HovffeU4sWLRQWFqaKFSvK4XBo6dKlhfb9kXcJCQn6448/mNcHAAAAcEV8tuz/2ejRo/X5558X7zfNcmev6J9Mz966L2lah0c1rcOjV34Ptyf7/dM2Zt+vgBISEvT0008rMjLygl8fO3asHn74YbVq1UoLFy7UzJkzFRwcrB49euizzz4r8PdH/jCvDwAAACAvbB6P50LT4yXezJkz1b9/f+3evdvMir4kfbUjeyt+YelxtdStfoFu0bNnT9lsNkVERGjBggVKSUnJ9fWoqCjVqVNHa9asyXktLS1N1apVk8Ph0KJFiwr0/ZE/Dz/8sNatW6dffvnFdBQAAAAAJYDfrOxfaBt/UlKSBgwYoIiICIWGhqp79+7atWuXbDabxo0bl6f7p6ena9KkSWrQoIGCg4NVuVJl9R/6qI6knsh13Z+38e9JPiTb9B56actCvbBlgaLnPKTS794u56Jh+j0pQRlZmRoWO1ORsx5U+dua6raevXT48OF8/RnMmTNHLpdL06ZNu+g1pUqVUvny5XO9FhISkvMLZrhcLrbwAwAAALhiflP2/8ztdqtnz56aO3eunnvuOX3++edq3bq1unTpkq979erVS1OnTtW9996rpUuXamq/ofp63xY5Fw1XauaZy97j7V+Wat2BbXq7wyN63/mEth+PV8+vJmiA9YaOpJ7QB50G68W2/bXym280cODAPGc8fPiwnnrqKU2dOlVRUVEXvW7w4MFavny5ZsyYoePHj+vAgQP65z//qRMnTujJJ5/M8/dFwe3fv1+///67HA6H6SgAAAAASgi/PY1/+fLlWrt2raZPn65BgwZJkjp37qygoCANHz48T/f69NNPtXz5ci1cuFC333579oubS+v6LiFquXCIZm7/Ro9c2+2S9wgPKqsvuo6S3Zb985ejacl6at17alAhSou6js65bnvWEb2++FMlJycrLCzsijM++uijuuaaa/TII49c8rqnnnpKpUuX1mOPPZbzQ4WIiAgtXrxY7du3v+Lvh8Jzdl6fsg8AAADgSvntyv7ZAnXXXXfler1v3755vteSJUsUHh6unj17KjMzU5ln0pW597iaVqqramUqyNr/02Xv0a3WDTlFX5IaVqgpSepeu2Wu6xqWqipJ2rt37xXnW7hwoRYvXqz33ntPNpvtktd++OGHGjx4sB5//HGtXLlSX331lf7617+qV69eWrFixRV/TxQel8ulBg0aqGrVqqajAAAAACgh/HZl/9ixYwoMDFRERESu1/NTqA4dOqSkpCQFBQVd8OtH005c8PVzRYSUy/X7IHv2X5qI4NyPxwtSgKTsQ/OuREpKih577DE98cQTioyMVFJSkqTsMwak7HMLSpUqpbJly+r48eM5K/ovv/xyzj26du0qp9OpQYMGaffu3Vf0fVF4LMtSp06dTMcAAAAAUIL4bdmvWLGiMjMzlZiYmKvwHzx4MM/3qlSpkipWrKjly5dnv3DklDRjS87Xy5UqXeC8+XX06FEdOnRIr7zyil555ZXzvl6hQgX16tVLX3zxhX777TelpqaqZcuW5113ww03yOVyKSUlRaGhoed9HUXj4MGD+u233zR+/HjTUQAAAACUIH5b9h0Oh1588UV98sknuebY58+fn+d79ejRQ/Pnz1dWVpZat24tHT0tLU65/BuLQbVq1bRq1arzXp86dapcLpeWLVumSpUqSZIiIyMlSbGxsfrb3/6Wc63H41FsbKwqVKigsmXLFk9wSGJeHwAAAED++G3Z79Kli9q3b6+hQ4cqOTlZLVq0UExMjGbPni1Jstuv/DiDe+65Rx9//LG6deumwYMHq1WLG1TqwFbFnziiVfu3qld0a91Wt13hBA+49Mz9n4WEhFzwkW0zZ85UQEBArq/VqlVLt99+u959910FBwerW7duOnPmjGbNmqV169Zp4sSJl535R+FyuVy65pprVK1aNdNRAAAAAJQgflv27Xa7Fi9erKFDh2rq1KlKT09X+/btNWfOHLVp00bh4eFXfK+AgAB9+eWXeuONN/TRRx9pypQpCnTbFFWmohyR16pJxehc19tUgMJcoWhHAj7++GO99dZb+uijj/TBBx+oVKlSuvrqqzVnzhzde++9Rfq9cT7LsljVBwAAAJBnNo/H4zEdwpvMnTtX9913n9atW6d27QqwGv/NLumzX6U//ek2+8+TqhdWTQtuGZH3e9ok3d5Q+kvd/OdCiXHo0CFVq1ZNc+fOzddTIgAAAAD4L79d2ZekefPmKSEhQU2aNJHdbldsbKxeeukldezYsWBFX5LaRElfbJeystv+70kJWnPgF/10bI/ur+/M3z3tNqltzYLlQomxevVqSczrAwAAAMg7vy775cqV0/z58zVp0iSdOnVK1atXV79+/TRp0qScazIzMy95D7vdfuH5/rJBUtf60pLfJUlTNv9Hi+M26MFrbtKj13bPX+Cu9aUypXJ+63a75Xa7L/mWwEC//ktcolmWpfr16+ccnAgAAAAAV4pt/JewZ88e1alT55LXjB07VuPGjbvwF7Pc0pS10sEUyV2AP2a7TaoWKg2/UQr43w8Wxo0bd9lHsu3evVvR0dH5/94w5tprr1Xbtm313nvvmY4CAAAAoISh7F9Cenq6tm7deslrIiMjL73ympgqvbROOpmev8Jvt0lhwdLT7aSI3Ifz7d+/X/v377/k26+77joFBQXl/fvCqCNHjqhKlSqaM2eO7rvvPtNxAAAAAJQwlP3ikJgqTdso7T+Z9/dGlpMebXle0YdvW7hwoe644w7t27dPUVFRpuMAAAAAKGEY6C4OEaWzt+Cv2Ckt25G9wn+pH7HYlL2i37W+dEu9XFv34R8sy1K9evUo+gAAAADyhbJfXALsUrf6kqO2FBsvbTogxSdLmeccsBdol6LCpBbVs0/dP+cwPvgXy7LkdDpNxwAAAABQQrGN3yS3J3uLf3qWFBSQvQPAbjOdCoYdPXpUlStX1uzZs/XAAw+YjgMAAACgBGJl3yS7TapUxnQKeJnVq1dLkhwOh+EkAAAAAEoqhsEBL+NyuVSnTh3VqlXLdBQAAAAAJRRlH/AyzOsDAAAAKCjKPuBFEhMT9dNPP1H2AQAAABQIZR/wIqtXr5bH42FeHwAAAECBUPYBL+JyuRQdHa3atWubjgIAAACgBKPsA17EsixW9QEAAAAUGGUf8BLHjx/Xjz/+yLw+AAAAgAKj7ANeYs2aNczrAwAAACgUlH3AS1iWpVq1aik6Otp0FAAAAAAlHGUf8BIul0sOh0M2m810FAAAAAAlHGUf8AJJSUnasmUL8/oAAAAACgVlH/ACa9eulcfjoewDAAAAKBSUfcALWJalqKgo1alTx3QUAAAAAD6Asg94Acuy5HQ6mdcHAAAAUCgo+4BhJ06c0JYtW3jkHgAAAIBCQ9kHDFu7dq3cbjfz+gAAAAAKDWUfMMzlcikyMlL16tUzHQUAAACAj6DsA4Yxrw8AAACgsFH2AYOSk5O1efNmtvADAAAAKFSUfcCgdevWKSsri8P5AAAAABQqyj5gkMvlUvXq1VW/fn3TUQAAAAD4EMo+YJBlWXI4HMzrAwAAAChUlH3AkJMnT+r7779nXh8AAABAoaPsA4asX7+eeX0AAAAARYKyDxhiWZaqVq2qa665xnQUAAAAAD6Gsg8Y4nK5mNcHAAAAUCQo+4ABp06d0saNG5nXBwAAAFAkKPuAAevXr1dmZiZlHwAAAECRoOwDBliWpSpVqqhBgwamowAAAADwQZR9wADLspjXBwAAAFBkKPtAMTs7r88j9wAAAAAUFco+UMxiYmKUkZHBvD4AAACAIkPZB4qZy+VSpUqV1KhRI9NRAAAAAPgoyj5QzJjXBwAAAFDUKPtAMTp9+rQ2bNjAFn4AAAAARYqyDxSj2NhYpaenczgfAAAAgCJF2QeKkcvlUsWKFdW4cWPTUQAAAAD4MMo+UIwsy1LHjh1lt/M/PQAAAABFh8YBFJPU1FTFxsYyrw8AAACgyFH2gWLy3XffMa8PAAAAoFhQ9oFiYlmWKlSooCZNmpiOAgAAAMDHUfaBYuJyuZjXBwAAAFAsaB1AMUhLS1NMTAzz+gAAAACKBWUfKAYbNmzQmTNnKPsAAAAAigVlHygGlmUpPDyceX0AAAAAxYKyDxQDy7LUsWNHBQQEmI4CAAAAwA9Q9oEidubMGcXExPDIPQAAAADFhrIPFLENGzYoLS2NeX0AAAAAxYayDxQxl8ul8uXL6/rrrzcdBQAAAICfoOwDRcyyLHXo0IF5fQAAAADFhrIPFKH09HStX7+eLfwAAAAAihVlHyhCGzduVGpqKofzAQAAAChWlH2gCLlcLoWFhalp06amowAAAADwI5R9oAhZlqUbb7xRgYGBpqMAAAAA8COUfaCIZGRkaN26dczrAwAAACh2lH2giHz//fc6ffo08/oAAAAAih1lHygilmUpNDRUzZs3Nx0FAAAAgJ+h7ANFxOVyMa8PAAAAwAjKPlAEMjIytHbtWub1AQAAABhB2QeKwObNm3Xq1CnKPgAAAAAjKPtAEbAsS2XLlmVeHwAAAIARlH2gCFiWpRtvvFGlSpUyHQUAAACAH6LsA4UsMzNTa9eu5ZF7AAAAAIyh7AOFbPPmzUpJSWFeHwAAAIAxlH2gkLlcLpUpU0Y33HCD6SgAAAAA/BRlHyhklmWpffv2zOsDAAAAMIayDxSis/P6bOEHAAAAYFKg6QCAL/nhhx+UnJzM4XwAAADIvyy3dDxNSs+SggKkCiFSAOu0yBvKPlCIXC6XSpcurZYtW5qOAgAAgJLkVLoUGy9tOiDFJ0uZ7v99LdAuRYVJLapLbaKkskHmcqLEsHk8Ho/pEICv6Nmzp1JTU7Vy5UrTUQAAAFASZLmlFTulZTskt0e6VDuzSbLbpK71pVvqsdqPS+LvDqCQZGVlafXq1czrAwAA4MokpkpT1kpLfpeyLlP0peyvZ3myr5+yNvv9wEVQ9oFC8uOPPzKvDwAAgCuTmCq9tE46mJK/9x9MyX4/hR8XQdkHCollWQoJCVGrVq1MRwEAAMBFzJw5UzabTXv27JEk9evXT9HR0cUbIsstTdsonUzP3rovyblomJyLhl35Pdye7PdP25h9v0Lw/vvvy2azKTQ0NHfcrCy9+uqr6tKli6KiolSmTBk1bNhQw4YNU1JSUqF8bxQ+ZvaBQtKrVy+dPHlS3377rekoAAAAuIiZM2eqf//+2r17t6Kjo7Vz504lJyerWbNmxRfiqx3ZW/HPsS1xrySpUUStvN+vx9VSt/oFipSQkKDGjRurbNmyOnHihFJS/rfjICUlRZGRkerbt686d+6sSpUqafPmzZo0aZKqV6+u77//XqVLly7Q90fh4zR+oBCcndcfMmSI6SgAAADIg3r16hXvNzyVnn0Y35/kq+SftWyH5KhdoFP6Bw0apI4dOyoiIkILFizI9bXSpUtr9+7dqlixYs5rTqdTtWrV0p133qmFCxfq/vvvz/f3RtFgGz9QCH766SclJSVxOB8AAEAJc6Ft/ElJSRowYIAiIiIUGhqq7t27a9euXbLZbBo3blye7p+enq5JkyapQYMGCg4OVuUa1dV/5Ws6knoi13V/3sa/J/mQbNN76KUtC/XClgWKnvOQSr97u5yLhun3pARlZGVqWOxMRc56UOXfvVO33dJDhw8fztefwZw5c+RyuTRt2rQLfj0gICBX0T/r7Pjqvn378vV9UbRY2QcKgWVZCg4OZl4fAACghHO73erZs6e+//57jRs3Ts2bN1dMTIy6dOmSr3v16tVLa9as0bPPPqt27dop7t/faOzy9+Q89Lu+v+M1lQ4MvuQ93v5lqa6LiNbbHR5R0pkUDV0/Qz2/mqDWVa9WKXugPug0WHEnD+vp2A80cOBAffnll3nKePjwYT311FOaOnWqoqKi8vTes+OrjRs3ztP7UDwo+0AhsCxLbdu2VUhIiOkoAAAAKIDly5dr7dq1mj59ugYNGiRJ6ty5s4KCgjR8+PA83evTTz/V8uXLtXDhQt1+++3ZB+l9maHru1RVy4VDNHP7N3rk2m6XvEd4UFl90XWU7LbsTdlH05L11Lr31KBClBZ1HZ1z3fbkBL2++AslJycrLCzsijM++uijuuaaa/TII4/k6bMlJCRo2LBhuuGGG9SjR488vRfFg238QAG53W6tXr2aR+4BAAD4AJfLJUm66667cr3et2/fPN9ryZIlCg8PV8+ePZWZmanMIynKTM9Q00p1Va1MBVn7f7rsPbrVuiGn6EtSwwo1JUnda7fMdV3D8tmr8nv37r3ifAsXLtTixYv13nvvyWazXfH7EhMT1a1bN3k8Hn3yySey26mV3oiVfaCAfvrpJx0/fpx5fQAAAB9w7NgxBQYGKiIiItfrVatWzfO9Dh06pKSkJAUFXfjgvKNpJy74+rkiQsrl+n2QPbvCRQSHXvD1tLS0K8qWkpKixx57TE888YQiIyNzHqGXnp4uKfvcglKlSqls2bK53nf8+HF17txZCQkJ+vbbb1W3bt0r+n4ofpR9oIBcLpeCgoLUunVr01EAAABQQBUrVlRmZqYSExNzFf6DBw9e0fszMjKUkJCguLg4nTx5UmXKlFHnzp114MABuRNPa/r1A3KuLVfK3OPqjh49qkOHDumVV17RK6+8ct7XK1SooF69eumLL77Iee348eO6+eabtXv3bn3zzTe67rrrijEx8oqyDxSQZVlq06YNzxYFAADwAQ6HQy+++KI++eSTXHPs8+fPl5S98v3rr78qLi4u16+9e/cqLi5OCQkJcrvdue7522+/qVGjRqrTLlrN0q9SgOfKt8xfsYC83bNatWpatWrVea9PnTpVLpdLy5YtU6VKlXJeP1v0d+3apa+//lrNmjUrcGQULco+UABn5/Ufe+wx01EAAABQQB6PRy1bttT111+vp556Sl999ZWCgoL066+/ateuXZKkKVOmaMqUKZIku92uqKgo1a5dW7Vr11bHjh1z/nvt2rVVo0YN3X333fruu+/Ut29ftWrVStZnvyn+jzit2r9VvaJb67a67QonfIW8LTyFhIRccAx15syZCggIyPW11NRU3XLLLdqyZYtef/11ZWZmKjY2NufrlStXVr169fKbHEWEsg8UwC+//KJjx45xOB8AAEAJkJWVpcTEREnSokWLdPr0acXExOjQoUNq1KiR9u7dq1OnTuVcv2TJEtlsNkVERKhLly5atGiR7r//fv3973/PKfOBgZeuVF9++aXeeOMNffTRR5oyZYoCbQGKCq4gR+S1alIxOte1NuVzxd8mKbp8/t57BQ4dOqSNGzdKkgYPHnze1//2t79p5syZRfb9kT82j8fjMR0CKKneeustDR06VMePH1eZMmVMxwEAAPBraWlpOdvpz91af/ZXfHy8MjMzc66vUKFCrpX42rVrq1atWjn/vXLlyjmn1M+dO1f33Xef1q1bp3btCrAafypdGrZSyspdw5r950nVC6umBbeMyPs9A2zSC52lMqXynws+h5V9oAAsy1KrVq0o+gAAAMUgKSnporPycXFxOnToUM61NptN1atXzynubdq0Oa/QlytX7oLfZ968eXK5XGrSpInsdrtiY2P10ksvqWPHjgUr+pJUNkjqWl9a8rsk6fekBK058It+OrZH99d35u+eXetT9HEeyj6QTx6PRy6XS4MGDTIdBQAAoMRzu906dOjQeWX+3EKfnJycc31QUJBq1qyp2rVrq3HjxurWrVuuFfqoqKiLPvLucsqVK6f58+dr0qRJOnXqlKpXr65+/fpp0qRJOdecu0PgQux2+8WfP39LPWnzAXkOpmjK5v9ocdwGPXjNTXr02u55C2q3SdVCs+93Drfbfd4hgX92ufEDlHxs4wfy6ZdfftG1116rr7/+WjfffLPpOAAAAF4tPT1d8fHxFyzzcXFx2rdvX84z3iUpLCzsvG315/6qWrXqxct0EduzZ4/q1KlzyWvGjh2rcePGXfTrx3bEK2vqalUKDpM9P7P6dpsUFiw93U6KyH0437hx4zR+/PhLvn337t2Kjo7O+/dFiUHZB/Lp7bff1pAhQ3T8+HGVLVvWdBwAAACjTp48ecE5+bO/Dhw4oHOrR9WqVS86K1+7dm2Fh4eb+zCXkZ6erq1bt17ymsjISEVGRl7wa6dOndJNN92kjEPJinnwTQUfPZP3EJHlpEdbnlf0JWn//v3av3//Jd9+3XXX5XvnA0oGyj6QT3fddZcSEhK0bt0601EAAACKlMfj0ZEjRy568F1cXJyOHz+ec31gYGCuR9L9udDXqlVLISEhBj+ROZmZmbrtttu0atUquVwutWjaTFqxU1q2Q3J7pEu1M5uyV/S71s/euh9gZmcDSgbKPpAPHo9H1apV08CBA/X888+bjgMAAFAgmZmZSkhIuOjBd3v37lVqamrO9WXKlLng1vqzRT4yMlIBAQEGP5F38ng8evjhhzVz5kwtWbJEt9xyy/++eCpdio2XNh2Q4pOlzHNm7gPtUlSY1KK61LYmh/HhinAqA5AP27dv1+HDh+V0Ok1HAQAAuKzTp09fcDX+7GsJCQnKysrKub5SpUo5q/Bdu3Y9r9BHRETkPJIOV278+PF6//33NWvWrNxFX8o+pf8vdbN/uT1SYqqUniUFBWRv1bfz5428oewD+WBZlgIDAwv+6BUAAIAC8ng8SkxMvOisfFxcnI4ePZpzvd1uV40aNXJW4W+88cbzVuY5j6jwvffeexo/frwmT56sBx988NIX221SJR7tjIJhGz+QD3fffbf27dun9evXm44CAAB8XFZWlg4cOHDRWfm9e/cqJSUl5/qQkJBch939+eC7GjVqqFQptoEXp8WLF6t379565JFH9Oabb7IrAsWCsg/kkcfjUfXq1dW/f39NmTLFdBwAAFDCnTlz5rz5+HPLfHx8vDIyMnKuDw8Pv+jBd7Vr11aVKlUok14kNjZWN910k7p27apPP/2UswxQbNjGD+TRb7/9pkOHDjGvDwAArsiJEycuOisfFxengwcP5rq+evXqOcW9VatW5xX6sLAwQ58EefXbb7+pR48eatGihebMmUPRR7Gi7AN55HK5FBAQwLw+AACQ2+3W4cOHL1nmT5w4kXN9qVKlVKtWLdWqVUsNGzZUly5dcq3QR0VFKTg42OAnQmE5ePCgunTpoipVqmjRokUqXbq06UjwM2zjB/Kob9++2r17t2JjY01HAQAARSwjI0Px8fEXPPRu79692rt3r86cOZNzfbly5S46K1+7dm1Vq1ZNdjvPRvd1ycnJcjqdOnTokGJiYlSrVi3TkeCHWNkH8sDj8cjlcl3+BFUAAFAipKSkXPTgu7i4OO3fv1/nro1VqVIlp7g3bdr0vEIfHh7OvLyfS09PV58+fbRz506tWbOGog9jKPtAHuzYsUMHDhyQw+EwHQUAAFyGx+PR0aNHL3rwXVxcnBITE3OuDwgIUFRUlGrXrq169erppptuyrVCX6tWLbZi45I8Ho8GDBig1atXa/ny5bruuutMR4Ifo+wDeXB2Xr99+/amowAA4PcyMzO1f//+i87K7927V6dPn865vnTp0jkr8C1bttQdd9yRa8t9ZGSkAgP512Pk3/DhwzVnzhzNnz9fnTp1Mh0Hfo5/mgF5YFmWmjdvzim4AAAUg9TU1Is+V/7sI+mysrJyrq9YsWLOKvwtt9xy3rx8xYoV2WKPIvPmm2/qhRde0Kuvvqq7777bdByAsg9cKY/HI8uydN9995mOAgBAiefxeJSUlHTBOfmzhf7w4cM519tsNtWoUSNnFb5du3bnPWc+NDTU4CeCP1uwYIEGDx6soUOHasiQIabjAJI4jR+4Yn/88Yfq16+vJUuWqHv37qbjAADg1dxutw4cOHDRg+/i4uKUkpKSc31wcHCuw+7+fPBdVFSUSpUqZfATARe2evVq/fWvf9Xtt9+uOXPm8LQFeA1W9oErZFmW7Ha7brzxRtNRAAAw7syZM9q3b99FD77bt2+fMjIycq4vX758TnHv1KnTeYW+SpUqlCSUOL/88ot69eql9u3b68MPP+TvYXgVyj5whVwul5o1a6by5cubjgIAQJFLTk6+6MF3cXFxOnjwYK5H0lWrVi2nuN9www3nrdDz/5/wNfHx8erSpYtq1aqlzz77TMHBwaYjAblQ9oErcHZen8NWAAC+wOPx6PDhwxc9+C4uLk5JSUk51wcGBqpmzZqqXbu2rrnmGv31r389b4t9SEiIuQ8EFLOkpCR17dpVdrtdy5Yt44dZ8EqUfeAK7N69W/Hx8XI6naajAABwWRkZGUpISLjk4XdnzpzJuT40NDRnFb5t27a65557cpX5atWqKSAgwOAnArxHWlqaevfurYSEBK1bt06RkZGmIwEXRNkHroBlWbLZbMzrAwC8wqlTpy46Kx8XF6f9+/fL7XbnXF+5cuWc4t6jR4/zHklXoUIFHkkHXAG3260HH3xQ3333nVauXKmGDRuajgRcFGUfuAKWZalZs2YKDw83HQUA4OM8Ho+OHTt20Vn5uLg4HTt2LOf6gICAnEfS1alTR06n87xT7cuUKWPwEwG+wePxaMiQIVq4cKEWLlyo9u3bm44EXBJlH7gMj8cjl8ulPn36mI4CAPABWVlZ2r9//yUPvzt9+nTO9aVLl84p7y1atNDtt9+e6+C7GjVqKDCQf6UDitrLL7+sf/3rX5o2bZp69+5tOg5wWfw/A3AZe/bs0d69e5nXBwBckbS0tAuuxp99LT4+XpmZmTnXR0RE5BT3zp0759peX6tWLVWuXJkt9oBhH3/8sZ599lmNHDlSjzzyiOk4wBWh7AOX4XK5ZLPZ1KFDB9NRAACGeTwenThx4pIH3x06dCjnepvNpsjIyJzi3qZNm/PKfLly5Qx+IgCXs3LlSvXv31/9+vXTxIkTTccBrpjNc+4DUgGcp1+/fvrxxx+1ZcsW01EAAEXM7Xbr4MGDFz34Li4uTidPnsy5Pigo6Lz5+D8/ki4oKMjgJwJQEFu2bFHHjh1144036ssvv1SpUqVMRwKuGCv7wGW4XC7msgDAR6Snp2vfvn0XnZXft2+f0tPTc64PCwvLKe4Oh+O8Ql+1alXZ7XaDnwhAUdm9e7e6deumBg0a6D//+Q9FHyUOZR+4hLi4OO3Zs0cOh8N0FADAFTh58uRFZ+Xj4uJ04MABnbupsWrVqjnFvXnz5uet0PMUFsA/HT16VF26dFHZsmW1dOlShYaGmo4E5BllH7iEs/P6HTt2NB0FAPyex+PRkSNHLjorHxcXp+PHj+dcHxgYqKioKNWuXVv169fXzTffnGuLfc2aNRUSEmLwEwHwRqdPn1bPnj11/PhxrV+/XlWqVDEdCcgXyj5wCZZlqUmTJoqIiDAdBQB8XmZmphISEi55+F1aWlrO9WXLls1ZhW/durXuuuuuXGW+evXqCggIMPiJAJQ0mZmZ6tu3r7Zu3SrLsnTVVVeZjgTkG2UfuATLstSzZ0/TMQDAJ5w+ffqCc/JnfyUkJMjtdudcX6lSpZzi3q1bt1xFvnbt2oqIiOCRdAAKjcfj0WOPPaalS5dq8eLFatmypelIQIFQ9oGL2Lt3r3bv3s28PgBcAY/Ho8TExIsefBcXF6ejR4/mXG+321WjRo2c4t6xY8dcs/K1atVS2bJlDX4iAP5m0qRJevfdd/XBBx+oa9eupuMABUbZBy7C5XJJEvP6ACApKytLBw4cuGSZP3XqVM71ISEhOcW9WbNm6t27d67D72rUqMHJ1gC8xgcffKAxY8Zo4sSJ6t+/v+k4QKGwec49khZAjoEDB2rDhg3aunWr6SgAUOTS0tJyPZLuz6V+3759yszMzLm+QoUK5z1T/twyX6VKFbbYAygRli5dql69emngwIGaPn06/+yCz2BlH7gIy7LYwgXAZ5w4ceKSB98dPHgw51qbzabq1avnlPlWrVqdV+bDwsIMfhoAKBwbNmzQXXfdpR49eujtt9+m6MOnUPaBC4iPj9fOnTvldDpNRwGAy3K73Tp06NBFD76Li4tTcnJyzvWlSpXKKfKNGjVS165dc5X5qKgoBQcHG/xEAFD0duzYoe7du+v666/X3LlzeXoHfA7b+IEL+Pjjj3X//ffr8OHDqly5suk4APxcenq64uPjLzorv2/fPp05cybn+nLlyp23En/u76tVqya73W7wEwGAWYcOHVK7du1UqlQprVu3ThUrVjQdCSh0rOwDF2BZlho3bkzRB1AsUlJSLjgnf/bX/v37de7P5qtUqZJT3Js2bXpeoQ8PD2crKgBcREpKirp3767Tp08rJiaGog+fRdkHLsDlcqlz586mYwDwAR6PR0ePHr1kmU9MTMy5PiAgQFFRUapdu7bq1aunm266KdeqfM2aNVW6dGmDnwgASq6MjAzdcccd+v3337V69WpFR0ebjgQUGco+8Cf79+/Xjh079Pzzz5uOAqAEyMzM1P79+y96iv3evXt1+vTpnOtLly6dU9xbtmypO+64I1eZj4yMZG4UAIqAx+PRwIED9e2332rZsmVq2rSp6UhAkaLsA3/icrkkSR07djScBIA3SE1NveTBdwkJCcrKysq5vmLFijnb6m+55ZbzHktXsWJFttgDgAGjRo3S7Nmz9fHHH+svf/mL6ThAkaPsA39iWZYaNmyoqlWrmo4CoIh5PB4dP378ogffxcXF6ciRIznX2+12RUZG5hT39u3bn3cQXmhoqMFPBAC4kGnTpmny5Ml66aWXdO+995qOAxQLTuMH/qRBgwa66aabNG3aNNNRABSQ2+3WgQMHLlnmU1JScq4PDg4+7+T6c38fFRWlUqVKGfxEAIC8+vzzz9WnTx8NHjxYr776Krur4Dco+8A5Dhw4oMjISM2fP19333236TgALuPMmTPat2/fRQ++27dvnzIyMnKuL1++/Hnb6s8t9FWqVOGRdADgQ9auXaubb75ZvXr10rx58/hnPPwK2/iBc6xevVqS5HA4DCcBIEnJyckXPfguLi5OBw8ezPVIumrVquUU+BtuuOG8Ql++fHmDnwYAUJy2bdumW2+9VW3atNGsWbMo+vA7rOwD53jkkUe0atUqbd++3XQUwOd5PB4dPnz4glvrzxb6pKSknOtLlSqlmjVrnrfN/txH0gUHB5v7QAAAr5GQkKC2bduqfPnyWrNmjcLDw01HAoodZR84R8OGDeVwOPTvf//bdBSgxMvIyFB8fPxFZ+X37t2rM2fO5FwfGhp6wTn5s7+qVavGI+kAAJd14sQJdejQQcePH1dMTIyioqJMRwKMYBs/8F+HDh3S9u3bNWbMGNNRgBLh1KlTlzz4bv/+/XK73TnXV65cOae49+zZ87xCX6FCBQ5NAgAUyJkzZ9S7d2/t27dPa9eupejDr1H2gf9yuVySmNcHpOwt9seOHbvowXdxcXE6duxYzvUBAQGqUaOGateurTp16sjpdOZaoa9Vq5bKlClj8BMBAHyd2+3W3/72N8XExOjrr79W48aNTUcCjKLsA//lcrl09dVXKzIy0nQUoMhlZWVp//79Fz34Li4uTqdPn865vnTp0jnFvUWLFrr99ttzbbmvUaOGAgP5vxQAgDnPPPOMPv30U/3nP/9Rhw4dTMcBjOPfzID/siyLVX34jLS0tAuuxp99LT4+XpmZmTnXR0RE5JT5zp07n3eKfeXKldliDwDwWq+++qpeffVVvfnmm+rTp4/pOIBXoOwDkg4fPqxt27Zp5MiRpqMAl+XxeHTixIkLzsmfLfSHDh3Kud5msykyMjKnuLdp0+a8Ml+uXDmDnwgAgPybP3++hg4dqmHDhunxxx83HQfwGpzGD0hasGCB7rzzTsXHx6tGjRqm48DPud1uHTx48KIH38XFxenkyZM51wcFBeU67O7PB99FRUUpKCjI4CcCAKBofPvtt+rSpYvuuecezZo1i11owDlY2QeUvYX/qquuouijWKSnp2vfvn0XPfhu3759Sk9Pz7k+LCwsp7g7HI7zCn3VqlVlt9sNfiIAAIrfjz/+qNtuu02dOnXSjBkzKPrAn1D2AWUfzse8PgrLyZMnL3nw3YEDB3TupqqqVavmFPfmzZuft0IfHh5u7sMAAOCF4uLi1LVrV1111VVasGCBSpUqZToS4HUo+/BbPXv2VHp6ulq3bq2ff/5ZQ4cONR0JJYDH49GRI0cuevBdXFycjh8/nnN9YGCgoqKiVLt2bdWvX18333xzrjJfq1YthYSEGPxEAACULImJierSpYtCQkK0dOlSzp0BLoKZffitOnXqaM+ePbLb7XK73QoODlaHDh00ePBg9ejRw3Q8GJKZmamEhISLHny3d+9epaam5lxfpkyZXPPxf/5VvXp1BQQEGPxEAAD4jtTUVN1888367bfftH79el199dWmIwFei5V9+K2OHTtq3759ysrKkiSdOXNGK1euVJ06dSj7Puz06dOXPPguISFBbrc75/pKlSrlFPeuXbueV+YjIiKYEQQAoBhkZWXp3nvv1ZYtW7Rq1SqKPnAZlH34rXbt2umjjz7K+X1gYKAaNGigV1991WAqFITH41FiYuIly/zRo0dzrrfb7apRo0ZOce/YseN5p9qXLVvW4CcCAABS9v/HP/HEE/ryyy+1aNEitW7d2nQkwOtR9uG32rZtm3NImt1uV0REhJYtW6bQ0FDDyXAxWVlZOnDgwEUPvouLi9OpU6dyrg8JCckp782aNVPv3r1zlfkaNWpwoA8AACXAlClTNH36dL333nvswASuEDP78FtZWVkqW7aszpw5o+DgYK1fv17Nmzc3HcuvpaWl5TyS7kKFft++fcrMzMy5Pjw8/IJz8mcLfZUqVdhiDwBACTdz5kz1799f48aN09ixY03HAUoMyj78Wq1atbRv3z4tWrRIt956q+k4Pu/EiRMXPfguLi5OBw8ezHV99erVL3rwXa1atRQWFmbokwAAgOKwbNky9ezZUw899JDeeecdfogP5AFlH/4lyy0dT5PSs6SgAM1d/rl27dmtUaNGmU5W4rndbh0+fPiis/J79+7ViRMncq4vVapUzqPnLlTmo6KiFBwcbPATAQAAkzZu3KhOnTqpU6dO+vzzzxUYyAQykBeUffi+U+lSbLy06YAUnyxl/u+kdQXapagwqUV1qU2UVDbIXE4vl5GRofj4+IuW+X379unMmTM515crV+68bfXn/qpWrZrsdrvBTwQAALzVzp071bZtW9WtW1fffPMNB+YC+UDZh+/KcksrdkrLdkhuj3Spv9Ntkuw2qWt96ZZ6UoD/ldCUlJSLHnoXFxen/fv369x/XFSpUuWCc/Jnf4WHh7PVDgAA5Nnhw4fVrl072e12rV+/XpUqVTIdCSiRKPvwTYmp0rSN0v6TeX9vZDnp0ZZSROnCz2WIx+PR0aNHL3mKIs8vIAAAN5pJREFUfWJiYs71AQEBioqKuujBd7Vq1VLp0r7z5wMAALxDSkqKbrrpJu3du1cxMTGqU6eO6UhAiUXZh+9JTJVeWiedTM9e0c8ru00qFyQ9077EFP7MzEzt37//ogff7d27V6dPn865vnTp0pc8+C4yMpK5OAAAUKwyMjLUq1cvrVmzRi6Xi6ckAQVE2UehOftYlN27dys6Olr9+vWTZVnas2dP8YXIcktT1koHU3KKvnPRMEmS1Wvqld/HbpOqhUrDb8zXln7LstSpU6cLfi0mJkZt2rTJ9drmzZv17LPPKjY2VoGBgbrpppv08ssvq27dupKk1NTUi26v37t3r+Lj45WV9f/t3XlclWX+//H3OWwioGzKIgHl4FJquSu4YGXuuWSKWnqopklbbB707at+v47YOOXoNKPfabFsOkdFRdPJBZPGcdQMpbFtsprcEg1wV0RQPMI5vz/4xXgCCRA4eHg9Hw8ej7jPdV/X55Died/XdV93SVl/QUFBN9z4LioqSkFBQSyxBwAADYbdbtcTTzyh5cuXa8uWLXrggQecXRJwy2PqDnVm9uzZmj59ev0O+uGRckv33+g7rfr92Oyl/Xx4RBoaU+7lvLw8vfXWW3rsscfUokWLG3bz8ssvlwv9HTp0cPj+3//+t/r376+YmBj9+te/Vm5urjZu3Ki77rpLbdu21YkTJ3T69Omy9kajUeHh4WWz8HFxceVm5n19fav/ngEAAJxkzpw5evfdd7V8+XKCPlBLCPuoM61bt67fAQutpZvx/cSdgZE173PrIal/lMMu/WlpaXr88cd1+vRp+fj46Jlnnrnh6TExMerRo4dOnDhRNjO/a9cuh5n5AwcOqLi4WF988YW++OILeXl5KSwsTOfPn5fNZtPTTz9d7pF0Hh4eNX9PAAAADchbb72l3/72t5o/f74effRRZ5cDuAzCPupMRcv48/LylJSUpPfff19Wq1X9+/fXn//8Z7Vu3Vpz5sxRcnJylfu3Wq1asGCBUlJSdPToUTXz9tXwsC5a0CtRLbybl7X76TL+rPxTun3l41rQK1E22fXmNx/o1OU89Qxpo7f7P6vb/UI0e1+Klh/4hwqLi3TvF3F6668pcnd317PPPqtVq1bJaDTK3d1dx48f19WrV/XDDz843COfmZkpSXr66ac1ceJEXbt2raye5s2blwX3/v376+DBg7r//vs1b948RUVFqWXLljIajRo0aJCOHj2q3/zmNzfxfwEAAKDh2rhxo6ZNm6ZnnnlGL774orPLAVwKYR/1xmazacSIEfr000+VnJysLl26aO/evRo8eHCN+vpxA5cXX3xRsbGxOrZku+akL1X8qYP6dOyf5O3uVWkfr3+zRZ0Co/V636nKu1qgpD1/0YgPXlLPkDbyMLrr3QHTdezSab2Q+a7uv/9+ZWVlqbCwsGx8m82mP//5z/rDH/7g8Ei60NBQBQQESCrdUbakpETe3t6655579Jvf/Mbh/R44cEBvvPGGRo8erZ49ezrU16lTJ23btk1FRUVq0qRJtX9GAAAADdmePXuUkJCg0aNHa9GiRewnBNQywj7qTXp6uj7++GO9+eabeuqppyRJAwcOlKenp2bOnFmtvtauXav09HStX79eY8aMKd2Yb9M13T04RN3X/1qW77Zraoehlfbh7+mjDUP+V0ZD6QZ8Z4vy9XzGUrULiNDGIbPL2v37YrYW/2tjhX0EBASUzcj/uMS+SZMm+uKLL7Rs2TLFx8crKChIhw8f1sKFCzV8+HBt2bJFgwYNkiSdO3dOkhQYGFiu78DAQNntdl24cEFhYWHV+vkAAAA0ZN99951GjBih7t27KyUlRW5ubs4uCXA51d9mHKihXbt2SZLGjRvncHzChAnV7istLU3+/v4aMWKEiouLVXymQMXWa7on+A6FNg3Qztz9P9vH0MhuZUFfktoH3CZJGhbV3aHdnf6lx++///6yZ8v/+A+S1WrVY489pvvuu0+/+MUvymbgO3furEWLFmnUqFHq27evEhMTtWfPHoWFhVW4RK2yK9lc5QYAAK4kNzdXgwcPVmhoqDZu3MgKRqCOEPZRb86dOyd3d/dys9ghISHV7uvUqVPKy8uTp6enPDw85BHWXB5vjZTHWyN18vIFnS26+LN9BDbxc/je01i60CXQy7fC46+88orOnj2r1atX64EHHpCbm5sKCgpU1adX+vv7a/jw4frqq6905coVSaWPyJP+M8N/vfPnz8tgMMjf379K/QMAADR0+fn5Gjp0qIqLi5Wenl526yOA2scyftSboKAgFRcX6/z58w6B/+TJk9XuKzg4WEFBQUpPTy89kFckLfm07HU/D++brrciTZs2VUJCghISEnTmzBmdOHGiWjPvP14Y+PGc1q1by9vbW/v3l1+JsH//fofVAgAAALcyq9WqMWPGKCsrS7t379Ztt93m7JIAl8bMPupN//79JUlr1qxxOJ6amlrtvoYPH65z586ppKRE3bp1U7cBseoW3lbdWsaoW8sYtQ2IqJWaJUluFYf5Fi1aqFOnTlXu5sKFC0pLS9M999xTFuDd3d01YsQI/fWvf9WlS5fK2h4/flw7duwo3Y8AAADgFmez2ZSYmKjdu3drw4YN6tixo7NLAlweM/uoN4MHD1ZcXJySkpKUn5+vrl27au/evVq+fLkkyWis+rWnhIQErVy5UkOHDtX06dPVo0cPeRQdVPbhY9qR+5VGRvfU6Dtia6fwgOqvEpg4caIiIyPVrVs3BQcH69ChQ3r11Vd16tQpWSwWh7Zz585V9+7dNXz4cM2YMUNFRUX6zW9+o+DgYCUlJdXOewAAAHCiGTNmaPXq1UpNTVV8fLyzywEaBcI+6o3RaNTmzZuVlJSk+fPny2q1Ki4uTikpKerVq1e17k13c3PTpk2btHjxYq1YsUKvvPKK3A1uivAKUP/wDuoYFO3Q3qAabnJnkBTdvNqnderUSWvWrNGSJUtUUFCgwMBA9enTRytWrFD37o4bALZr1047d+7Uf//3f2vs2LFyd3fXvffeqz/84Q9q0aJFzeoGAABoIBYvXqyFCxdq0aJF5TZqBlB3DPaq7i4G1JFVq1Zp0qRJysjIUGzsTczGF1qlGX+XShz/SHd+7zm1bhaqdYNmVb9PN4P0+4FSU4+a1wUAANBIrV27VgkJCXrhhRe0YMECZ5cDNCrM7KNerV69Wjk5OerYsaOMRqMyMzO1cOFC9evX7+aCviT5eEpDYqS0g5Kkg3k52n3iG+0/l6VHYuJr1ueQGII+AABADezcuVOPPvqoJkyYoPnz5zu7HKDRIeyjXvn5+Sk1NVXz5s1TYWGhwsLCZDKZNG/evLI2xcXFlfZhNBpvfH//oNbS5yekkwV65fP3tPnYPzW57b2a1mFY9Qo1GqRQ39L+rmOz2WSz2So91d2dv1YAAKBx279/v0aNGqW+ffvKbDZXa28mALWDZfxoULKysnT77bdX2mbOnDlKTk6+cYPzV6SFGdIlq2SrwR9vo0Fq5iW9ECsFOm7Ol5ycrLlz51Z6+tGjRxUdHV39cQEAAFzADz/8oN69eys4OFgfffSRmjVr5uySgEaJsI8GxWq16quvvqq0TXh4uMLDwyvv6PwV6Y19Uu6lyttVOICfNK17uaAvSbm5ucrNza309E6dOsnT07P64wIAANziLly4oD59+qiwsFB79+5VWFiYs0sCGi3CPlxXiU368Ii09VDpDH9lf9INKp3RHxJTunTfjaVmAAAA1VFUVKQHHnhA33zzjTIyMtSuXTtnlwQ0aoR9uL5Cq5SZLX12QsrOl4qvu+fe3ShFNJO6hkm9b2MzPgAAgBooKSnR+PHjtWXLFm3fvv3mN14GcNMI+2hcbPbSJf7WEsnTrXSpvtHg7KoAAABuWXa7Xc8995zeeOMN/fWvf9XIkSOdXRIAsRs/GhujQQpu6uwqAAAAXMaCBQv02muvacmSJQR9oAFhZh8AAABAjaxYsUKTJ0/W7Nmz9dJLLzm7HADXIewDAAAAqLa//e1vGjZsmCZPnqx33nlHBgO3RgINCWEfAAAAQLV8/vnn6t+/v/r166cNGzbIw4NNjoGGhrAPAAAAoMq+//57xcbGKjIyUjt27JCPj4+zSwJQAcI+AAAAgCo5e/asYmNjZbfblZGRoZYtWzq7JAA3wG78AAAAAH7W5cuXNXz4cOXl5Wnv3r0EfaCBI+wDAAAAqFRxcbHGjx+vr7/+Wjt37lTr1q2dXRKAn0HYBwAAAHBDdrtd06ZN09atW5WWlqZu3bo5uyQAVUDYBwAAAHBDL730kpYuXSqz2azBgwc7uxwAVWR0dgEAAAAAGqZ33nlHycnJ+t3vfieTyeTscgBUA7vxAwAAACgnLS1No0aN0q9+9Su99tprMhgMzi4JQDUQ9gEAAAA4+OSTTzRgwAANGjRI69atk5ubm7NLAlBNhH0AAAAAZQ4ePKjY2Fi1a9dO27Ztk7e3t7NLAlADhH0AAAAAkqSTJ08qNjZWXl5eysjIUGBgoLNLAlBD7MYPAAAAQJcuXdKwYcN09epV7dixg6AP3OII+wAAAEAjZ7VaNXbsWB0+fFi7d+9WVFSUs0sCcJMI+wAAAEAjZrfb9cQTT2jHjh1KT09Xp06dnF0SgFpA2AcAAAAasVmzZmnFihVavXq17r33XmeXA6CWGJ1dAAAAAADneO211zR//ny9+uqrSkhIcHY5AGoRu/EDAAAAjdD69ev18MMP6/nnn9cf//hHZ5cDoJYR9gEAAIBGZvfu3Ro4cKBGjRqlVatWyWhkwS/gagj7AAAAQCPyzTffqE+fPurcubO2bt0qLy8vZ5cEoA4Q9gEAAIBGIjs7W71791ZAQIB2796t5s2bO7skAHWEsA8AAAA0Anl5eerbt6/y8/O1Z88etWrVytklAahDPHoPAAAAcHFXr17V6NGjlZOTo4yMDII+0AgQ9gEAAAAXZrPZNHnyZGVmZmrbtm1q3769s0sCUA8I+wAAAICLstvtSkpK0nvvvaf169erT58+zi4JQD0h7AMAAAAu6o9//KMWLVqk119/XaNHj3Z2OQDqERv0AQAAAC5o1apVmjRpkmbNmqXf/e53zi4HQD0j7AMAAAAuZvv27RoyZIgmTJggi8Uig8Hg7JIA1DPCPgAAAOBCvvzyS/Xr10+xsbHavHmzPDw8nF0SACcg7AMAAAAuIisrS71791arVq20c+dO+fr6OrskAE5C2AcAAABcwLlz5xQXF6dr165pz549CgkJcXZJAJyI3fgBAACAW9yVK1f04IMP6ty5cwR9AJII+wAAAMAtraSkRBMmTNCXX36pHTt2KCYmxtklAWgACPsAAADALcput+uZZ55RWlqaNm7cqB49eji7JAANhNHZBQAAAAComoMHD2r37t1l37/88stasmSJ3n77bQ0bNsyJlQFoaNigDwAAALhFDBw4UNu3b9eiRYvk5+enxx57TC+99JJmz57t7NIANDCEfQAAAOAWUFRUpObNm8tqtZYd++Uvf6m33npLBoPBiZUBaIhYxg8AAADcAjIyMhyCviRdunRJ165dc1JFABoywj4AAABwC9i2bZvc3NwcjqWmpuqRRx5xUkUAGjJ24wcAAACcqcQmXSiSrCWSp5sU0ERyKz8nt2nTJpWUlEiSjEajbDabmjVrpu7du9d3xQBuAdyzDwAAANS3QquUmS19dkLKzpeKbf95zd0oRTSTuoZJvSIkH09lZ2frtttuK2sSGxurqVOn6qGHHpK3t7cT3gCAho6wDwAAANSXEpv04RFp6yHJZpcq+yRukGQ0SENitD/8inrG9tKYMWP0P//zP2rfvn19VQzgFkXYBwAAAOrD+SvSG/uk3EvVPzfcT5rWXQpkFh9A1bBBHwAAAFyWxWKRwWBQVlaWJMlkMik6Orr+Czl/RVqYIZ0skCTFb5yh+I0zqn7+yYLS889fqbWS3nnnHRkMBvn6+pZ77f/+7//Uq1cvBQcHy8vLS5GRkUpISNA333xTa+MDqFvM7AMAAMBlWSwWJSYm6ujRo4qOjtaRI0eUn5+vzp07118RJTbplY9LA7ut9KP3t+ePS5LuDIysej9GgxTqK83sU+EGftWRk5Oju+66Sz4+Prp48aIKCgocXp8zZ46MRqPuvvtuBQQE6Pvvv9f8+fOVk5Ojzz77TG3btr2p8QHUPcI+AAAAXNZPw75TfHBISjtYe/0NbyMNjbmpLkaMGCGDwaDAwECtW7euXNivyL///W/deeedmj17tl566aWbGh9A3WMZPwAAABqNipbx5+Xl6fHHH1dgYKB8fX01bNgwff/99zIYDEpOTq5W/1arVfPmzVO7du3k5eWlFsEtlJg0TWeuXHRo99Nl/Fn5p2R4c7gWfrFev/9inaJTHpP322MUv3GGDubl6FpJsWZkWhS+bLKaj75Ho0eM1OnTp2v0M0hJSdGuXbv0xhtvVOu8Fi1aSJLc3Xl6N3Ar4G8qAAAAGi2bzaYRI0bo008/VXJysrp06aK9e/dq8ODBNepr5MiR2r17t1588UXFxsbqWPqnmrPkD4o/dVCfjv2TvN29Ku3j9W+2qFNgtF7vO1V5VwuUtOcvGvHBS+oZ0kYeRne9O2C6jhWc1gvbLXriiSe0adOmatV4+vRpPf/885o/f74iIiJ+tn1JSYmKi4t19OhRzZgxQy1btlRiYmK1xgTgHIR9AAAANFrp6en6+OOP9eabb+qpp56SJA0cOFCenp6aOXNmtfpau3at0tPTtX79eo0ZM6b04OfeuntwE3Vf/2tZvtuuqR2GVtqHv6ePNgz5XxkNpQtwzxbl6/mMpWoXEKGNQ2aXtfuu5IwWbV6r/Px8NWvWrMo1Tps2TW3bttXUqVOr1N7Hx0dXr16VJLVp00Y7d+7UbbfdVuXxADgPy/gBAADQaO3atUuSNG7cOIfjEyZMqHZfaWlp8vf314gRI1RcXKziq1YVH7+ge4LvUGjTAO3M3f+zfQyN7FYW9CWpfUBpsB4W1d2hXXuPEEnS8ePHq1zf+vXrtXnzZi1dulQGg6FK5+zZs0d79+5VSkqK/Pz8NGDAAHbkB24RzOwDAACg0Tp37pzc3d0VGBjocDwkJKTafZ06dUp5eXny9PSs8PWzRRcrPH69wCZ+Dt97Gks/rgd6OT4ez1NukqSioqIq1VZQUKCnn35azz77rMLDw5WXlyepdI8BqXTfAg8PD/n4+Dic16VLF0lSr1699OCDD+oXv/iFZs2apY0bN1ZpXADOQ9gHAABAoxUUFKTi4mKdP3/eIfCfPHmy2n0FBwcrKChI6enppQfOFEp/+aLsdT8P75uut6bOnj2rU6dO6dVXX9Wrr75a7vWAgACNHDlSGzZsuGEffn5+ateunQ4erMUnCwCoM4R9AAAANFr9+/fXggULtGbNGof72FNTU6vd1/Dhw5WamqqSkhL17NlTOntZ2vzzj7SrD6GhodqxY0e54/Pnz9euXbu0detWBQcHV9rH2bNntX//fsXFxdVVmQBqEWEfAAAAjdbgwYMVFxenpKQk5efnq2vXrtq7d6+WL18uSTIaK9/i6uLFi9q1a5datmypuLg4DR48WEOHDtX06dPVo2s3eZz4StkXz2hH7lcaGd1To++IrZ3C3ap2z/2PmjRpovj4+HLHLRaL3NzcHF67ePGiBg4cqIkTJyomJkbe3t46ePCgFi9erKtXr2rOnDk3WTyA+kDYBwAAQKNlNBq1efNmJSUlaf78+bJarYqLi1NKSop69eolf3//Ss9fs2aNfvWrXzkc8/b21m9/+1uVlJTIx6OJIpoGqX94B3UMinZoZ1D1AruDgLq7JaBJkya6++679fbbb+uHH35QUVGRQkNDFR8fr/Xr1+vOO++ss7EB1B6D3W63O7sIAAAAoCFZtWqVJk2apIyMDMXG3ng2/tixY4qOjq7wtaCgIJ1e/YmMG76TfvKJu/N7z6l1s1CtGzSr+sUZJI1pL913R/XPBdBoMLMPAACARm316tXKyclRx44dZTQalZmZqYULF6pfv36VBn2pdJf7iIgIZWdnlx0zGo2KjIzUP//5TxmbNpc2HZBKStP+wbwc7T7xjfafy9IjMfE1K9hokHrzrHsAlSPsAwAAoFHz8/NTamqq5s2bp8LCQoWFhclkMmnevHllbYqLi8v++8KFC0pNTdXy5cv16aefOjyuzs3NTS1bttSuXbvUokWL0oNDYqS00h3sX/n8PW0+9k9NbnuvpnUYVrOCh8RITT3KvrXZbLLZbJWe4u7Ox36gsWEZPwAAAFCJrKws3X777ZW2cXd3V3Fxsfz9/ZWZmam2bdv+58USm/TKx9LJAsl2Ex+9jQYp1Fea2Udy+8/GgcnJyZo7d26lpx49evSGtxsAcE2EfQAAAOAGvvvuO/3lL3+RxWLR2bNndccdd2jEiBEaPHiww6PqFi1apA0bNmjXrl3q2rVr+Y7OX5EWZkiXrDUL/EaD1MxLeiFWCnTcnC83N1e5ubmVnt6pUyd5enpWf1wAtyzCPgAAAHCdvLw8rVmzRhaLRZmZmQoICNDEiRNlMpnUtWtXGQzld9G/evWqLl68qJYtW9644/NXpDf2SbmXql9UuJ80rXu5oA8AN0LYBwAAQKNXUlKi7du3y2Kx6P3335fVatXgwYNlMpn04IMPysvLq5YGskkfHpG2Hiqd4a/sk7hBpTP6Q2KkQa0dlu4DwM8h7AMAAKDROnTokCwWi5YvX67s7Gy1a9dOiYmJeuSRRxQeHl53Axdapcxs6bMTUna+VHzdBnvuRimimdQ1rHTX/es24wOAqiLsAwAAoFHJz8/X2rVrZbFYlJGRoebNm2vChAkymUzq0aNHhcv065TNXrrE31oiebqVLtU31nMNAFwOYR8AAAAuz2azaceOHbJYLFq/fr2Kior0wAMPyGQyaeTIkfL25l54AK6FsA8AAACXdeTIES1btkzLli3T8ePH1aZNG5lMJj366KOKiIhwdnkAUGfcnV0AAAAAUJsKCgr03nvvyWKx6KOPPpKfn58SEhJkMpnUu3fv+l+mDwBOQNgHAADALc9ms+mjjz6SxWLRunXrdPnyZd13331KSUnR6NGj1bRpU2eXCAD1imX8AAAAuGVlZWWVLdM/evSoWrduLZPJpMmTJysyMtLZ5QGA0zCzDwAAgFtKYWGh1q9fL4vFoh07dsjX11fjxo3TsmXL1KdPH5bpA4AI+wAAALgF2O12ZWRkyGw2a+3atSooKNCAAQO0bNkyPfTQQ/Lx8XF2iQDQoLCMHwAAAA3W8ePHtWLFClksFh0+fFjR0dFly/Rvv/12Z5cHAA0WYR8AAAANyuXLl7VhwwaZzWZt375d3t7eevjhh2UymdSvXz8ZjUZnlwgADR5hHwAAAE5nt9uVmZkps9msNWvWKD8/X/369ZPJZNLYsWPl5+fn7BIB4JZC2AcAAIDT5OTklC3TP3DggCIjIzVlyhRNmTJFrVu3dnZ5AHDLIuwDAACgXhUVFWnjxo0ym83atm2bvLy89NBDD8lkMmnAgAEs0weAWkDYBwAAQJ2z2+3at2+fzGazUlNTlZeXp7i4OJlMJo0bN07NmjVzdokA4FII+wAAAKgzJ06cUEpKiiwWi7799ltFRERo8uTJmjJlitq0aePs8gDAZRH2AQAAUKuuXr2qzZs3y2w2Kz09XZ6enho9erRMJpPuu+8+ubm5ObtEAHB5hH0AAADcNLvdrs8//1xms1mrVq3ShQsX1KtXL5lMJo0fP17+/v7OLhEAGhXCPgAAAGrs1KlTWrlypcxms77++muFhYVp8uTJMplMateunbPLA4BGi7APAACAarFardqyZYvMZrM++OADubm5adSoUUpMTNT9998vd3d3Z5cIAI0eYR8AAABV8uWXX8pisWjlypU6e/asunfvrsTERI0fP16BgYHOLg8AcB3CPgAAAG7ozJkzWrVqlcxms/71r38pJCREjz76qEwmk+666y5nlwcAuAHCPgAAABxcu3ZNW7duldlsVlpamgwGgx588EElJiZq0KBBLNMHgFsAYR8AnKnEJl0okqwlkqebFNBEcjM6uyoAjdT+/ftlsViUkpKi06dPq0uXLkpMTNSECRMUFBTk7PIAANXAZVkAqG+FVikzW/rshJSdLxXb/vOau1GKaCZ1DZN6RUg+ns6rE0CjcO7cOa1evVpms1mff/65WrRooUceeUQmk0mdOnVydnkAgBpiZh8A6kuJTfrwiLT1kGSzS5X99jVIMhqkITHSoNbM9gOoVcXFxfrwww9lNpu1adMm2e12DR8+XImJiRoyZIg8PDycXSIA4CYR9gGgPpy/Ir2xT8q9VP1zw/2kad2lQO/arwtAo/Ltt9/KYrFoxYoVOnnypDp16qTExERNmjRJLVq0cHZ5AIBaRNgHgLp2/oq0MEO6ZC2d0a8uo0Hy85T+K47AD6DaLly4oNTUVJnNZu3bt09BQUGaNGmSEhMTdc899zi7PABAHWFdKACXZbFYZDAYlJWVJUkymUyKjo6u3yJKbKUz+tcF/fiNMxS/cUbV+7DZS89/Y19pfzWwc+dOGQyGCr8yMzNveJ7dble/fv1kMBj0zDPP1GhsAPWvpKRE6enpGj9+vMLCwvTss88qNDRU69evV25urhYvXkzQBwAXxwZ9ABqN2bNna/r06fU76IdHyi3df6PvtOr3Y7OX9vPhEWloTI3LefnllzVgwACHYx06dLhh+9dff12HDx+u8XgA6td3332nZcuWafny5crNzdVdd92l3/3ud5o0aZJCQ0OdXR4AoB4R9gE0Gq1bt67fAQutpZvx/cSdgZE173PrIal/VI136Y+JiVGvXr2q1DYrK0szZ87U8uXLNWbMmBqNB6DuXbx4UWvWrJHZbFZmZqYCAgI0ceJEmUwmde3aVQaDwdklAgCcgGX8ABqNipbx5+Xl6fHHH1dgYKB8fX01bNgwff/99zIYDEpOTq5W/1arVfPmzVO7du3k5eWlFq3ClPj3P+nMlYsO7X66jD8r/5QMbw7Xwi/W6/dfrFN0ymPyfnuM4jfO0MG8HF0rKdaMTIvCl01W87cf1uhBw3X69Oma/hiq7Mknn9TAgQM1evToOh8LQPWUlJRo27ZtmjhxokJDQzV16lQFBgZq7dq1OnHihF577TV169aNoA8AjRgz+wAaLZvNphEjRujTTz9VcnKyunTpor1792rw4ME16mvkyJHavXu3XnzxRcXGxurYku2ak75U8acO6tOxf5K3u1elfbz+zRZ1CozW632nKu9qgZL2/EUjPnhJPUPayMPorncHTNexS6f1Qua7euKJJ7Rp06Zq1/n0008rISFBTZs2Ve/evTV79mz16dOnXLt33nlH//znP/Xtt99WewwAdefQoUNatmyZli1bpuzsbLVr105z587VI488ovDwcGeXBwBoQAj7ABqt9PR0ffzxx3rzzTf11FNPSZIGDhwoT09PzZw5s1p9rV27Vunp6Vq/fn3pkvcSm7Tpmu4eHKLu638ty3fbNbXD0Er78Pf00YYh/yujoXTR1dmifD2fsVTtAiK0ccjssnbf5edo0eYNys/PV7NmzapUX/PmzTV9+nTFx8crKChIhw8f1sKFCxUfH68tW7Zo0KBBZW1zcnL0wgsvaMGCBYQHoAHIz8/Xe++9J7PZrIyMDDVv3lwTJkyQyWRSjx49mL0HAFSIZfwAGq1du3ZJksaNG+dwfMKECdXuKy0tTf7+/hoxYoSKi4tVfKZAxdZruif4DoU2DdDO3P0/28fQyG5lQV+S2gfcJkkaFtXdoV375hGSpOPHj1e5vs6dO2vRokUaNWqU+vbtq8TERO3Zs0dhYWF68cUXHdo+9dRTuvvuu/XLX/6yyv0DqF02m03/+Mc/9Oijjyo0NFS//OUv5evrq9WrV+vEiRN688031bNnT4I+AOCGmNkH0GidO3dO7u7uCgwMdDgeEhJS7b5OnTqlvLw8eXpWvHHe2aKLFR6/XmATP4fvPY2lv6IDvXwrPF5UVFTtOq/n7++v4cOHa8mSJbpy5Yq8vb21bt26shUPFy861my1WpWXlycfHx95eHjc1NgAKvb999+XLdM/duyY2rRpo9mzZ+vRRx9VRESEs8sDANxCCPsAGq2goCAVFxfr/PnzDoH/5MmT1e4rODhYQUFBSk9PLz2QVyQt+bTsdT8P75uu96eGDBmimJgYRUVFlX1FRkaW/befn9/P9mG32yWpbHbw66+/VnFxcYU79i9dulRLly7V+++/r1GjRtXqewEas4KCAq1bt05ms1kfffSR/Pz8lJCQIJPJpN69ezN7DwCoEcI+gEarf//+WrBggdasWaOpU6eWHU9NTa12X8OHD1dqaqpKSkrUs2fP/3/P/iWp2FabJUuSbP//c//IkSN17do1HTt2TJmZmcrOzlZxcXFZu4CAgBteCIiKipK7u7vS0tJ0zz33qEmTJpJKn1gQHx9fbswBAwZo1KhRmj59ujp06FDr7wlobGw2m3bv3i2z2ax169bp8uXLuu+++5SSkqLRo0eradOmzi4RAHCLI+wDaLQGDx6suLg4JSUlKT8/X127dtXevXu1fPlySZLRWPVtTRISErRy5UoNHTpU06dPV48ePeRRdFDZh49pR+5XGhndU6PviK2Vuo1BpSHgqaeeUrdu3cqOl5SU6MSJEzp27Fi5L4vFosuXLztcDDAYDLLb7QoNDdWTTz5Z7mJAq1at5O7+n38mWrVqVeGFAABVl5WVpeXLl8tisejo0aNq3bq1ZsyYocmTJysyMtLZ5QEAXAhhH0CjZTQatXnzZiUlJWn+/PmyWq2Ki4tTSkqKevXqJX9//yr35ebmpk2bNmnx4sVasWKFXnnlFbkb3BThFaD+4R3UMSjaob1BNVyWa5AU3fyGNURERCgiIkJxcXEOr82fP19r1qzR999/r8LCQvn4+CgqKkp33XWXrl69qs8++0zvv/++zp4969Bfq1atFBUVJUnKzMzU22+/7bBSgNlH4OcVFhbqr3/9q8xms3bs2CFfX1+NGzdOy5YtU58+fVimDwCoEwb7jzdsAgAkSatWrdKkSZOUkZGh2NibmI0vtEoz/i6VOP6a7fzec2rdLFTrBs2qfp9uBun3A6WmdbNBXmFhoY4fP15uZcCPx3JycmSz/efWhODgYIfVAD/9CggIIMigUbLb7crIyJDZbNbatWtVUFCgAQMGyGQy6aGHHpKPj4+zSwQAuDhm9gE0aqtXr1ZOTo46duwoo9GozMxMLVy4UP369bu5oC9JPp7SkBgp7aAk6WBejnaf+Eb7z2XpkZj4mvU5JKbOgr4k+fj4qH379mrfvn2Fr1+7dk05OTkVXgjYsmWLjh8/7vCUAF9f33K3B1y/MiAsLExubm519n6A+nb8+HGtWLFCFotFhw8fVnR0tF544QVNnjxZt99+u7PLAwA0IszsA2jU0tLSlJycrMOHD6uwsFBhYWEaNWqU5s2bp2bNmkmSw33uFTEajTe+v7/EJr3ysXSyQIl//5M2H/unHozuodf7TpW3u1fVCzUapFBfaWYfye0/Y9lsNoeZ9opcf999XbPb7Tp9+nS5CwHXf+Xl5ZW19/DwUERExA0vBkRGRsrLqxo/J8AJLl++rA0bNshsNmv79u3y9vbWww8/LJPJpH79+lVr/w8AAGoLYR8AKpGVlfWzs3Fz5sxRcnLyjRucvyItzJAuWSVbDX7lGg1SMy/phVgp0PERfsnJyZo7d26lpx89elTR0dHVH7eO5Ofn3/BCwLFjx3TixAmH9qGhoRVeCPjxv5s3r3gPA6Au2e12ZWZmymw2a82aNcrPz1e/fv1kMpk0duzYKj36EgCAukTYB4BKWK1WffXVV5W2CQ8PV3h4eOUdnb8ivbFPyr1U/SLC/aRp3csFfUnKzc1Vbm5upad36tRJnp6e1R/XSa5evaoffvjhhhcDfvjhB127dq2sffPmzSt9xGBISAj7BqDW5OTklC3TP3DggCIjIzVlyhRNmTJFrVu3dnZ5AACUIewDQH0psUkfHpG2Hiqd4a/st69BpTP6Q2KkQa0dlu43djabTSdPnqzwQsCPXwUFBWXtvby8yi4AVLR/QEREhDw86m4fBNz6ioqKtHHjRpnNZm3btk1eXl566KGHZDKZNGDAAJbpAwAaJMI+ANS3QquUmS19dkLKzpeKr7vn3t0oRTSTuoZJvW+r0834XJXdbldeXl6FFwF+XC1w+vTpsvZGo1Hh4eE33EgwKiqKndMbIbvdrn379slsNis1NVV5eXmKjY1VYmKiHn74YW4fAQA0eIR9AHAmm710ib+1RPJ0K12qb2TJeV27cuVKudsErv8+OztbJSUlZe0DAwNveCEgMjJSwcHB3CpQ20ps0oWi//zdCGhSLytcTpw4oZSUFFksFn377bdq1apV2TL9Nm3a1Pn4AADUFsI+AAA/UVxcrNzc3BteDDh27JiuXLlS1r5p06YVrgz48Vh4eHi9PhXhllXVVS+9IkofbVlLrl69qs2bN8tsNis9PV0eHh4aM2aMTCaT7rvvPh4PCQC4JRH2AQCoJrvdrrNnz1b6VIHz58+XtXdzc6vwEYPX7yXg7V1+A8ZGwwn7Wdjtdn3++ecym81atWqVLly4oJ49eyoxMVHjx4+Xv79/jfoFAKChIOwDAFAHCgoKbngh4NixY8rNzdX1/wS3bNmy0qcK+Pv7u+atAnX0pIobOXXqlFauXCmz2ayvv/5aYWFhmjx5sqZMmaL27dtXvwYAABoowj4AAE5w7do1ZWdn3/BiwPHjx2W1Wsva+/n53fCJAlFRUQoNDb31doU/f0VamCFdspbO6FeX0SD5eUr/FVdp4LdardqyZYvMZrM++OADubm5adSoUTKZTBo4cCC3WAAAXBJhHwCABshms+n06dOVPlXg4sWLZe09PDx022233XAjwYiICHl5eUmSLBaLEhMTdfToUUVHR8tkMmnnzp3KysqqvzdYYpNe+Vg6WVAW9OM3zpAk7Rw5v+r9GA1SqK80s0+5Jf1ffvmlLBaLVq5cqbNnz6pbt25KTExUQkKCAgMDS8fauVMDBgyosOu9e/eqV69eZd+bTCYtW7asXLu2bdvqu+++q3rNAADUAy5lAwDQABmNRoWGhio0NFQ9e/assM3FixcrvBDw73//W+np6Tp58mRZW4PBoNDQUEVFRclmK934bsWKFerSpYvGjx+vxx9/vFbr//LLLxUQEKCoqKiKG3x4pNzS/Tf6Tqv+QDZ7aT8fHpGGxujMmTNatWqVzGaz/vWvfykkJEQmk0lTpkxRhw4dbtjNyy+/XC70V9Te29tb//jHP8odAwCgoWFmHwAAF1VUVKQffvih3IqAzMxMHThwQG5ubg6PGPT397/h4wWjoqLUsmXLKu8bEBYWpry8PC1YsEBPP/204y0GhVZpxt+lktr7CGIzSlNyVyh183oZDAY9+OCDMplMGjRokDw8PG543o8z+++9957Gjh1b6Rgmk0nr1q1TQUFBrdUNAEBdYWYfAAAX1aRJE8XExCgmJsbh+I/L+A8cOCAvLy89+eST2rdvn5KSksouDPztb3/TkSNHVFxcXHaep6enrFar7rjjDt17773l9hBo1aqVPDw8dPXq1bJVBc8995xWrVqlXr16aevWrTp69KiaeftqeFgXLeiVqBbezcv6/+ky/qz8U7p95eNa0CtRNtn15jcf6NTlPPUMaaO3+z+r2/1CNHtfipYf+IcKi4sUGRCiuXPn6sknn1RwcHBd/3gBAGjQCPsAADRSPz4SsGXLlvLx8dGMGaVh22azqX///jp27JhmzZql0NBQffTRR9q+fbvOnDkjT09PffHFF9qwYYPOnj1b1p/RaFSrVq3UsmVLh3EyMzOVmZmp+++/X4sXL1b20p2ak75U8acO6tOxf5K3u1eldb7+zRZ1CozW632nKu9qgZL2/EUjPnhJPUPayMPorncHTFfWpdP6r8x3lZmZqVmzZlX7Z/H0008rISFBTZs2Ve/evTV79mz16dOnXLsrV64oNDRUZ86cUVhYmEaNGqWXXnqpbA8AAAAaCsI+AABwkJ6ero8//lhvvvmmnnrqKUnS1KlTNX/+fM2cOVPjx49XcnKyJOny5cvlHjH4ySefVNjv3//+d10ruqqdnWfq7sEh6r7+17J8t11TOwyttB5/Tx9tGPK/MhpKbwU4W5Sv5zOWql1AhDYOmV3W7kB+jhZt3qD8/Hw1a9asSu+1efPmmj59uuLj4xUUFKTDhw9r4cKFio+P15YtWzRo0KCytnfffbfuvvvusnv5d+3apT/96U/avn279u3bJ19f3yqNCQBAfSDsAwAAB7t27ZIkjRs3zuH4hAkTNHPmTIdjTZs2Vbt27dSuXbuyY++++662b98uqXRjQLvdLg8PD3Xp0kWzn/kvFe+4pnuC71Bo0wDtzN3/s2F/aGS3sqAvSe0DbpMkDYvq7tCuffMISdLx48cr3Yzvep07d1bnzp3Lvu/bt69Gjx6tjh076sUXX3QI+7/+9a8dzh04cKA6d+6ssWPHaunSpeVeBwDAmQj7AADAwblz5+Tu7l5uaXpISEiVzs/NzZVUuqzf399f58+f17Vr1/TJJ5/o/oQHHdqeLbpYURcOApv4OXzvaSz9+BLo5Vvh8aKioirVeSP+/v4aPny4lixZoitXrlS62/7o0aPl4+OjzMzMmxoTAIDaRtgHAAAOgoKCVFxcrPPnzzsE/usf5VeZiRMnKjQ0VCNGjNDzzz+vbdu2KT09vfTFvCJpyadlbf08GuZj6358WFFVnj5gt9sdnzYAAEADwL9MAADAQf/+/SVJa9ascTiemppapfPvuOMOPfHEEwoJCdHw4cN17tw5lZSUqFu3buo2IFbdwtuqW8sYdWsZo7YBEbVXuFvVHgv4cy5cuKC0tDTdc889atKkSaVt161bp8uXL6tXr161MjYAALWFmX0AAOBg8ODBiouLU1JSkvLz89W1a1ft3btXy5cvl6RqzWInJCRo5cqVGjp0qKZPn64ePXrIo+igsg8f047crzQyuqdG3xFbO4UHVH+VwMSJExUZGalu3bopODhYhw4d0quvvqpTp07JYrGUtTt27JgmTpyohIQE/eIXv5DBYNCuXbu0aNEi3XXXXXriiSdq5z0AAFBLCPsAAMCB0WjU5s2blZSUpPnz58tqtSouLk4pKSnq1auX/P39q9yXm5ubNm3apMWLF2vFihV65ZVX5G5wU4RXgPqHd1DHoGiH9gbVcHbeICm6ebVP69Spk9asWaMlS5aooKBAgYGB6tOnj1asWKHu3f+zAWCzZs0UEhKiP/7xjzp16pRKSkoUFRWl5557TrNmzZKPj0/N6gYAoI4Y7D/elAYAAFCJVatWadKkScrIyFBs7E3MxhdapRl/l0ocP4J0fu85tW4WqnWDZlW/TzeD9PuBUlOPmtcFAIALYWYfAACUs3r1auXk5Khjx44yGo3KzMzUwoUL1a9fv5sL+pLk4ykNiZHSDkqSDublaPeJb7T/XJYeiYmvWZ9DYgj6AABch7APAADK8fPzU2pqqubNm6fCwkKFhYXJZDJp3rx5ZW2Ki4sr7cNoNN74/v5BraXPT0gnC/TK5+9p87F/anLbezWtw7DqFWo0SKG+pf1dx2azyWazVXqquzsfgwAArotl/AAAoNqysrJ0++23V9pmzpw5Sk5OvnGD81ekhRnSJatkq8HHEaNBauYlvRArBTpuzpecnKy5c+dWevrRo0cVHR1d/XEBALgFEPYBAEC1Wa1WffXVV5W2CQ8PV3h4eOUdnb8ivbFPyr1U/SLC/aRp3csFfUnKzc1Vbm5upad36tRJnp6e1R8XAIBbAGEfAAA4V4lN+vCItPVQ6Qx/ZZ9MDCqd0R8SU7p0363qjwEEAKAxIewDAICGodAqZWZLn52QsvOl4uvuuXc3ShHNpK5hUu/b2IwPAICfQdgHAAANj81eusTfWiJ5upUu1TcanF0VAAC3DMI+AAAAAAAuhhvdAAAAAABwMYR9AAAAAABcDGEfAAAAAAAXQ9gHAAAAAMDFEPYBAAAAAHAxhH0AAAAAAFwMYR8AAAAAABdD2AcAAAAAwMUQ9gEAAAAAcDGEfQAAAAAAXAxhHwAAAAAAF0PYBwAAAADAxRD2AQAAAABwMYR9AAAAAABcDGEfAAAAAAAXQ9gHAAAAAMDFEPYBAAAAAHAxhH0AAAAAAFwMYR8AAAAAABdD2AcAAAAAwMUQ9gEAAAAAcDGEfQAAAAAAXAxhHwAAAAAAF0PYBwAAAADAxRD2AQAAAABwMYR9AAAAAABcDGEfAAAAAAAXQ9gHAAAAAMDFEPYBAAAAAHAxhH0AAAAAAFwMYR8AAAAAABdD2AcAAAAAwMUQ9gEAAAAAcDGEfQAAAAAAXAxhHwAAAAAAF0PYBwAAAADAxRD2AQAAAABwMYR9AAAAAABcDGEfAAAAAAAXQ9gHAAAAAMDFEPYBAAAAAHAxhH0AAAAAAFwMYR8AAAAAABdD2AcAAAAAwMUQ9gEAAAAAcDGEfQAAAAAAXAxhHwAAAAAAF0PYBwAAAADAxRD2AQAAAABwMYR9AAAAAABcDGEfAAAAAAAXQ9gHAAAAAMDFEPYBAAAAAHAxhH0AAAAAAFwMYR8AAAAAABdD2AcAAAAAwMUQ9gEAAAAAcDGEfQAAAAAAXAxhHwAAAAAAF0PYBwAAAADAxRD2AQAAAABwMYR9AAAAAABcDGEfAAAAAAAXQ9gHAAAAAMDFEPYBAAAAAHAxhH0AAAAAAFwMYR8AAAAAABdD2AcAAAAAwMUQ9gEAAAAAcDGEfQAAAAAAXAxhHwAAAAAAF0PYBwAAAADAxRD2AQAAAABwMYR9AAAAAABcDGEfAAAAAAAXQ9gHAAAAAMDFEPYBAAAAAHAxhH0AAAAAAFwMYR8AAAAAABdD2AcAAAAAwMUQ9gEAAAAAcDGEfQAAAAAAXAxhHwAAAAAAF/P/ALg0hBL8oUvsAAAAAElFTkSuQmCC",
       "text/plain": [
        "
" ] @@ -2632,7 +4466,7 @@ } ], "source": [ - "fe = cinnabar.wrangle.FEMap('cinnabar_input.csv')\n", + "fe = FEMap.from_csv('cinnabar_input.csv')\n", "fe.generate_absolute_values() # Get MLE generated estimates of the absolute values\n", "fe.draw_graph()" ] @@ -2655,13 +4489,13 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 120, "id": "1a747b7f-a06c-4027-9556-433242fb50ce", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAHPCAYAAAC/ewovAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsQUlEQVR4nO3dd1xTV/8H8E/C3oKIgCKiKOJARdxaFReK1lV33Xs+1cdWcYLaovbB2tZR6+6jYh3UFgfu1YpWRYu7olZxgLI3Ccn5/eFDfoQEyA033EC+79crL0nuON8MPl5O7j1HxBhjIIQQYhDEQhdACCGk4lDoE0KIAaHQJ4QQA0KhTwghBoRCnxBCDAiFPiGEGBAKfUIIMSAU+oQQYkAo9AkhxIBQ6BNCiAGh0CeEEANCoU8IIQaEQp8QQgwIhT4hhBgQCn1CCDEgFPqEEGJAKPQJIcSAUOgTQogBodAnhBADQqFPCCEGhEKfEEIMCIU+IYQYEAp9QggxIBT6hBBiQCj0CSHEgFDoE0KIAaHQJ4QQA0KhTwgRxP79++Ho6IjMzEylx+vWrQuRSIQffvhB6fF+/fqhbt26FVhhyUJDQxEQEAAHBweIRCLs3r1bZZ3z589jxIgR8PDwgIWFBerXr4+5c+ciOTlZZV2pVIr69evjm2++0XntFPqEkAqXk5ODhQsXYuHChbCxsVG7zubNmyu4Ks19//33yMnJQZ8+fUpcZ9u2bUhLS8Py5csRFRWFhQsX4ueff0aHDh2Qk5OjtK6JiQlWrFiBlStXIikpSbfFM0IIqWBbtmxhZmZmLCUlRWWZu7s7a9iwIROJROzy5cuKxwMDA5m7u3sFVlmygoICxhhjN27cYADYrl27VNZ59+6dymMHDx5kANiePXtUluXn5zMHBwcWEhLCe71F0ZE+IaTCbdmyBX379oW9vb3a5R4eHujdu7feHu0bGRmVuU6NGjVUHmvWrBkA4M2bNyrLTE1NMWzYMPz444+Qy+XlL7IEFPqEkAr16tUrxMbGomvXrqWuN3PmTERERCAxMVHrthhjKCgoKPXGGNN6/1xFR0cDAFq2bKl2edeuXfH69Wv89ddfOquBQp8QUqGuXr0KAGjVqlWp6wUGBsLFxQXbt2/Xuq1Lly7BxMSk1NuePXu03j8XycnJWLZsGdq1a4devXqpXafwNfnjjz90VoexzvZMCCFqFHZtODk5lbqeWCzG1KlT8cMPP2DRokVatdWqVSvcuHGj1HU8PDy02jcXUqkUw4YNQ35+PsLDwyESidSuV/iavH79Wme1UOgTQipUbm4uAMDc3LzMdSdPnoyQkBAcO3ZMq7asra3RokWLUtfRpH++PBhjGD9+PP7880+cO3eu1NNOC1+TwtdIF6h7hxBSoRwdHQEAKSkpZa7r5OSEIUOGYNOmTVq1pQ/dO3PnzkVERAR+/fVXtGnTptR1C1+TwtdIF+hInxBSoby9vQEAT58+RfPmzctcf8aMGejSpQsaNmzIuS2hu3cWL16MrVu3IiIiAv7+/mWu//TpUwBA48aNdVYThT4hpEK1adMGlpaWuHbtGgYPHlzm+p07d0bTpk1x9+5duLu7c2rLxsYGfn5+2pZaokuXLuH9+/d49uwZAODmzZuwtrYGAHzyyScAgK+//hqhoaH497//DUdHR1y7dk2xfY0aNVC/fn2V/UZHR0MsFpd5ZlO56PQqAEIIUWPcuHGsQYMGape5u7uz3r17Kz22efNmBkBvLs7q0qULA6D2psk648aNU7vfDh06sMDAQJ3WLmKsAk9SJYQQALdv34avry9+//13dOzYUehy9MKTJ0/QsGFDREVFoXfv3jprh0KfECKI0aNHIyUlBSdPnhS6FL0wbtw4vH79GmfPntVpO3T2DiFEEF9//TXatWunMsqmISooKECDBg0qZNgJOtInhBADQkf6hBBiQAw69AsnaxCJRDAxMYGHhwc+/fRTPHnyRLHOxYsXFevcv39f8XhqaipMTU1VJlC4fv06+vbtC2dnZ1hZWcHb2xuTJk1CfHy8Yp3du3cr9ln81q5duwp57nxJSEjAyJEjUa1aNdjY2GDAgAH4559/tNpX0fej+C0gIEBp3cOHD6Nly5YwNzeHo6MjRo0aVe5L14u+1yKRCDdv3lRZR5N2S3p/dXHqoLb4fN+4PN+CggL85z//QZMmTWBubg4nJycEBATovItHk0lPuNDk9fvtt9/g7+8PZ2dnmJmZwcPDA1OmTMGrV69U9nfz5k2l1+7ixYvlqq80Bn+efrt27fDNN99AKpUiJiYGwcHBOHbsGP766y+lc4Lt7Oxw8OBBhISEAAB++eUXWFlZIS0tTbHOmTNn0KdPH/To0QNbtmyBtbU17t+/jz179uDp06dwc3NTanv79u1o0qSJ0mMlTSihjwoKCtC7d2+kpKRg27ZtMDMzw8KFC+Hv74+7d+/CysqK0/5++eUX5OfnKz0WGxuLadOmYcCAAYrHzp8/j6FDh+KTTz5BaGgo4uPjsWjRIsTExOCvv/6CmZlZuZ7Xpk2b4Ovrq7iISNt2IyIi4OLiorhfeB438GEslnnz5mHv3r2wtbVFSEgIJkyYUK66NcX3+1aotOdbaNKkSQgPD8eCBQvQs2dPZGRk4MKFC5BKpVo/H018//338PT0RJ8+fbB///5y7UvT1+/t27do1qwZpk6dCmdnZ7x48QLBwcE4ceIE7t27pzSstLe3N6KjoxETE4NZs2aVq74y6fSEUD2n7nzgnTt3MgCKiQwuXLjAALAxY8awRo0aKdbr3bs3GzdunNIECt27d2ceHh5MKpWqtJWfn6/4edeuXQwAi46O1sGzqjj79+9nAFhUVJTisdu3bzMA7Ntvv+WljZkzZzJzc3OWmpqqeKxr167M3d1dMZEFY4yFh4czAGz37t1at1X4Xl+4cEHtck3bLXx/nz9/XmJba9euZZ6enuz48eNs586dzNLSkt28eVPr2rng+33T5Pkyxtjly5cZAPb9999zbqO8NJn0RFPlef3OnDnDALAdO3aoXV7WZ5APBt29o07btm0BfPhfuqiePXsiMTERsbGxSE5OxsWLFxVX3hV6/fo1HB0dYWys+geUqalpuep69OgRHj16VK598O3kyZOwtbVFz549FY+1aNECnp6eOHHiRLn3n5ubi/3792PQoEGoVq2a4vF79+6hXbt2SgNlFdZw+vTpcrdbEj7bvXLlCubOnYu+fftiwoQJCAgIwKVLl8rcjo/Pga7ft5IcOHAAVlZWmDJlis7aKAmfg6qV5/Wzs7MDAJ3/ZVMaCv1iCvtni499YWJiggEDBuDgwYOIiIhAu3bt4OzsrLSOr68vbty4geXLl+PFixdltiWTyVQmdChpxhxvb2+V7gahPXr0CA0bNoRYLIZEIkFeXh4AwMvLCw8fPiz3/g8fPoy0tDSVbg+JRAITExOlxwr/Uy36fQzfuLbbvn17GBkZoWbNmpg6darSAGNeXl6IiIhAQkIC7ty5g99//x2NGjVSLH/w4AESEhJU9snH50BX71tpzxcA7ty5g8aNG+PAgQOoW7cujI2N4eXlVWHj2fOF6+snk8mQl5eHO3fuYN68eahZs6ZGw0/oisGHPvvfzDp5eXm4ffs2Fi5ciM6dO2Py5Mkq6w4dOhQHDx7Ezz//jGHDhqksX7t2LXx9fbFq1SrUrVsXdevWxb/+9a8Sg6hTp04qI/4tXryY9+eoK6mpqYojcF9fX9SrVw85OTmoVq0aUlNTy73/7du3o06dOujevbvS456enoiNjVV67M8//wQApe9Y+KZpuy4uLli1ahV2796N06dPY/r06di7dy+6du2q+M5i8eLFyM/Ph4uLC1q2bImhQ4fCz88P3377Ldq0aYOZM2cqffnPJ77fN02eLwAkJSUhPj4eCxcuRHBwMKKiotCyZUuMHz8ep06d4uvp6RzX169jx46wsLBAy5YtkZeXhxs3bqidSrHC6KzjqBJwd3dXGROjV69eLDs7W7FOYR9beHg4k0gkzN7enhkbG7OEhAS1/YMFBQXs3LlzbN68eczX15cBYJaWluzixYuKdQr7QHft2sVu3LihdHv16lVFvgTl4unpyXr06MEYY+yjjz5i3t7eLC8vj40aNYrZ2tqWa9+PHz9mANiyZctUlm3dupUBYKtXr2ZJSUksJiaGNW7cmNna2jIvLy+t2yyrP7U87e7Zs0flsyKXy9n9+/fZd999xwIDA1nz5s3ZV199xV68eKH1c9CELt+3Quqer6enJwPAjhw5onhMKpUyNzc35u/vz0u7ZeGjT5/r6/fw4UMWHR3Ndu3axRo0aMBatGjBkpKS1O67Ivr0DT7027dvz27cuMGuXLnC5s2bxwCwSZMmKdYpGvqMMfbll1+yuXPnMsY0+wD9+eefzNramnXo0EHxWFX5ItfPz4/5+fmpPB4YGMjq1KlTrn1//vnnTCQSsadPn6osKygoYLNnz2bGxsYMADM2NmaLFi1inTp1Yh07dtS6zbJ+4crTblZWFhOJRGzmzJmMMcbevn3LJk+ezLy9vdn8+fNZTEwM27hxI3NxcWF2dnZs7ty5ak8I4IMu37dCxZ8vY4y1atWKAVD6Up4xxgYNGsRcXFx4abcsfIR+eV6/ly9fKj436tAXuRXA1tYWfn5+6NSpE9avX49PP/0UO3fuLHEM7sWLF+Pbb7/VeP+tW7dGr169eOnj1jfe3t548uSJysTSjx8/Lle/s1QqxU8//YSPPvoI9erVU1luZGSE77//HklJSYiNjUVCQgJWrVqF+/fvlzjhNB/K027h9HiF/1pbW2PYsGG4d+8ewsLCkJWVhaCgIKxduxbh4eE4ffo01q9fr5Pnoav3rajizxdAiePhM8YgFleeKCrP6+fm5oZatWrhzp07OqywdJXnla4ga9euhZmZGZYvX855W3VfvMnlcjx9+rTM+UDLoo9n7wQEBCA9PV1pgKjY2FjExcWhb9++arfR5HlERkYiMTEREydOLHU9Ozs7NGvWDNWrV8eePXuQmpqKkSNHcn8iHGnT7tGjR8EYU1x8Z21tjZ49eyrC7vr16+jZsyfGjBmDPn36YMaMGfj9999V9sPH50BX71tRxZ8v8P9nOp0/f17xmFQqxc2bN9G0aVO1+ym8YE/bC8e0Vdrz1fT1K/6fAgC8fPkSr169gqurK/9Fa8jgL84qztXVFdOmTcO3336L69evc9p24sSJEIvF+OSTT1CvXj2kpKRg586d+Ouvv9RO91b0Ct9CxsbGaq9kLDyCUPdBEsqwYcOwdu1aTJ48GWFhYTA1NcWiRYvg4eGBSZMmqd1Gk+exfft22NjYYMiQIWqXJyYm4rvvvkPnzp1hZmaGc+fO4euvv8bEiRPRoUOH8j+xEmjabvfu3eHv74/mzZvD3NwcV69exbp169C6dWsMHz5c7b7btm2LlStXYs+ePXB0dMSWLVswZswYlfX4+Bzw/b5p+nxHjRqFNWvWYPr06UhNTUXt2rWxbds2vHr1CuHh4WrbLTybTd1p0FxoMumJps9X09evU6dO+Oijj+Dn54fq1avjyZMnWLduHczMzDB37txyPZ9y0VnHUSWg7uIsxhhLSEhglpaWLCAgQKVPv6ji/YNHjx5lgwYNYu7u7szMzIw5OTmxjz76iP3yyy9K2xX26au72dnZqa21cLm+efv2LRs+fDiztbVl1tbWrH///uzZs2clrl/W84iPj2disVjpe5XikpOTWbdu3Vi1atWYmZkZa9y4MQsLC1O6aEobZfWnatrunDlzWP369ZmVlRUzNjZmHh4ebMGCBSwzM7PU9jdu3Mhq1arFHBwc2MyZM5Uu6CvE1+eAz/eNy/ONj49nw4cPZ/b29szU1JS1bNlS6YvdopKTk5lIJGKdOnXS7kkWocmkJ0WV9Tpr8voFBweztm3bsho1ajBTU1Pm7u7ORowYwR48eFDifiuiT59G2STkfy5evIhu3brh7Nmz6NKlS7mPLkn5/PLLLxg8eDBOnjypMvZSVVRQUIBLly6hR48euHDhgs6mTKQ+fUKK6dGjB0xMTNQOuEYqzqVLl+Dr62sQgX/z5k2YmJigR48eOm+LjvQJ+Z/MzEw8fvxYcb9x48awtLQUsCJiKHJycvDgwQPFfS8vL50NvkihTwghBoS6dwghxIBQ6JeByyQqXbt2VRo0q1C/fv1Qt25dxX2aRKVkmk6yQZOolA/f71tRs2bNgkgkwvTp01WWRUdHo1evXnB0dES1atXQoUMHREZG8tJuafh+vpp8DvR1EhUKfQ0VTqJSqHASlfLYvn07oqOjlW47duwob6kVpnAyid9//x3btm3Dvn378Pfff8Pf3x/Z2dla7XPSpElYvHgxBgwYgJMnT2Lbtm1o1KiR0lC0hZOZeHp64ujRowgNDcWpU6fQvXt3lUlYtLFp0yZER0eXOImKpu1GREQovbdFZ2uSSqWYPXs2qlWrhjp16mDXrl3lrltTunjfCl2/fh2HDh1Su+zRo0fo0aMHcnJysGvXLvz888+oUaMGBgwYoNMhsfl+vpp+DgonUdmwYQNOnTqF4OBgnD17Fm3btlUZmK1wEhV11/PwTmcng1YRXCZR6dKli9qBtwIDA5m7u7viflUZe4fvyTg0nWSDJlEpH11NfiOVSpmPjw/bsmULA8CmTZumtHz16tUMgNKAcrm5uczc3JyNGzdO63bLwvfzLc/njyZRqUQ0mURFl/RxGAa+J+PQdJINmkRFPydRCQsLg5GREaZOnap2eUFBAQDlKUHNzc3LPb1lWfh+vuX5HNAkKpWIJpOocEWTqCjTdJINmkRF/yZRef78OVauXImNGzeWOHjamDFjYGdnhy+++AIJCQlITk7G8uXLUVBQoNNhCfh+vlw/BzSJSiVW1iQqXNEkKso0nWSDJlEpH11MfjNjxgwMGTKk1LGP6tWrh6tXr+LKlStwcXGBo6MjfvzxR5w6dQq+vr5atasJvp8v18+fvk2iQteZc9CzZ08kJSXh+fPn2LdvX7l/KXft2qUyuqCLi4vadZmeX05RvXp1yOVyGBkZgTGmNKSupuRyORISEnDkyBHFkVDXrl0VA3j17t0bADBt2jRMmzYNX375JaZPn46XL19i7ty5sLW11ekQvZq227t3b0WtwIcByerXr49x48YhPDwc48ePh4ODA/744w88fPgQ586dw6lTp9CrVy8MHz4chw8fRp06ddTWwPfngI/3bf/+/bh69arShW3q/PPPPxgwYADq1auH9evXw8TEBLt370bfvn1x4sQJdOzYUdunoTE+ni/Xz9/u3buRlpaGR48e4auvvsLHH3+Ms2fPonr16nw8Je509m1BFcFlEpWuXbuW+EWuh4eH4n5V+SKX78k4NJ1kgyZRKR8+37esrCxWs2ZNFhISwjIzMxU3/G8yoszMTCaTyRhjjI0aNYrVrFmT5ebmKraXy+XM19eXtWnTpnxPqhR8f07L8zmgSVQqodImUbG0tFTbJy+Xy6vk5fx8T8ah6SQbNIlK+fD5vr1//x6JiYlYsWIFbGxsFDcA2LFjB2xsbBATEwMAuH37Nry8vGBubq7YXiQSoXnz5rh79245n1XJ+P6cludzQJOoVDEeHh5ISEhQOleXMYZnz57Bw8OjXPvWx7N3+J6Mg+skGzSJinb4fN9cXFxw5coVlRsADBgwAFeuXFF8QW1vb49Hjx4hNzdXsT1jDHfu3Cmxj5uPSVR0NWlMWZ+D4v/JAPoxiQp175SBy3j6t2/fZqampszf358dPnyY/fbbb2zIkCFMJBKxEydOKLYr7N7Zvn07i46OVrrduHFDbR3Qw/H0C8/LrlOnDjt06BD79ddfmbe3N/Pw8GBZWVlqtynteeTl5bGGDRuyGjVqsO3bt7OoqCg2ZMgQBoBduXJFsV5CQgJbvHgxO3nyJDt//jxbsmQJMzU1ZRMnTizX8ynrT2tN2/X392erV69mkZGR7MyZMywkJIRZWVmx1q1bM4lEonbfly9fZjY2Nmz37t3s2LFjrFGjRuzLL79UWY+PzwHf71tJ6xc/T7/wXPbu3buzX3/9lZ08eZKNHDmSAWBhYWFq9+Pm5sYAsPj4eM2fYDF8P19NPwcdOnRgixYtYocPH2YXLlxgP/74I/P09GSWlpbszp07avdNE6PrAS6hX/hY3759WY0aNVi1atVYly5d2JkzZ5S2o0lUSp9EpaxJNmgSFf2aRKWk9YuHPmOMHT9+nHXu3Jk5ODgwOzs71qZNG7Zv3z61++BzEhU+n6+mnwOaRIUQPUeTqOgXmkSlq07aoT59QoqhSVT0A02ioht0pE/I/9AkKkQoNIkKIYQQnaDuHUIIMSAU+oQQYkAo9AkhxIBQ6BNCiAGh0CeEEANCoU8IIQaEQp8QQgwIhT4hhBgQCn1CCDEgFPqEEGJAKPQJIcSAUOgTQogBodAnhBADQqFPCCEGhEKfEEIMCIU+IYQYEAp9QggxIBT6hBBiQCj0CSHEgFDoE0KIAaHQJ4QQA2IsdAH6TC6X482bN7CxsYFIJBK6HEIIKRFjDJmZmXB1dYVYXPLxPIV+Kd68eQM3NzehyyCEEI3Fx8ejdu3aJS6n0C+FjY0NgA8voq2trcDVkKpAIpEgLCwMAPDvf/8bpqamAldE+CKXy5GUlITU1FRYWlrC2FjzeGWMIS0tDRkZGTA3N4eRkZFG2506dQqRkZFYt24dsrKyMHjwYEVulYRCvxSFXTq2trYU+oQXEokE5ubmAD58rij0qwa5XI73799DKpWiZs2anAM/NTUVMpkMjo6OGgd+RkYGvvvuO6Snp+PUqVPo1asXAJTZFU2hTwgh5VAY+CkpKbCystIq8NPT02FhYaFx4AMfDho2b96MU6dOYfTo0Xj//r1G21HoE0KIloQI/Pz8fJiZmQEAmjRpgiZNmnCqmU7ZJIQQLQgR+MeOHcPgwYPx+vVrbcum0CeEEK6ECHypVIodO3bg9evXOHr0qJaVU/cOIYRwIlQfvomJCbZu3YqIiAhMnTpVm9IB0JE+IYRoTIjAT0tLU/zs5OSE6dOnl3rxVVko9AkhRANCBP7x48fRr18/3Lp1S9uyVVDoE0JIGYQIfMYYTpw4gaysLJw/f17b0lVQnz4hhJRCqD58kUiEsLAwHD16FMOGDdOmdLXoSJ8QQkogRODHx8crfjY3N8eIESPK1YdfHIU+IYSoIVQf/sCBA3HkyBFtyy4ThT4hhBQjVJfOo0ePIJPJ8OjRI23K1gj16RNCSBFCBT4AzJ8/Hz4+PujevTun7RhjkEgkGq1LR/qEEPI/QgT+3bt3wRgD8OHL2549e3Lqw2eMITs7G5aWlhqtT6FPCCEQrg9/7NixWLt2rSL4uSgMfCsrK1SrVk2jbSj0CSEGT6guHalUCgAoKCjgHPpFA9/BwUHjdqlPnxBi0ITswx84cCDc3d3RvHlzrbp0CgOfS810pE8IMVhCBP7Vq1eRm5uruN+yZcsKC3yAQp8QYqCE6sOfNWsWPvvsM+Tn53OuubyBD1DoE0IMkFBdOq6urrCwsICbmxtMTEw41cxH4APUp08IMTBC9uG3bNkS4eHhcHNzq9AunaKq/JH+9u3bIRKJYG1tLXQphBCBCRH4Z8+eRWJiouK+u7u7YIEPVPHQf/36NRYsWABXV1ehSyGECEyIwD99+jQ+//xzTJ48GampqZxr5jvwgSoe+tOnT8dHH32Enj17Cl0KIURAQnXpNG3aFK6urmjbti3s7Ow41ayLwAeqcJ/+3r17cenSJTx48ABLly4VuhxCiECE7MN3dXXFf//7X1SrVk3QLp2iquSR/rt37/DZZ59hzZo1qF27ttDlEEIEIkTgnzhxAnfv3lXcd3Bw0JvAB6rokf7MmTPh5eWFGTNmcNouPz9f6dzZjIwMvksjhFQQIQL/999/x5IlS2BlZaU4S4cLXQc+oOdH+hcvXoRIJNLodufOHQDAkSNHEBkZiW3btkEkEnFqLzQ0FHZ2doob1zeMEKIfhOrSadWqFXx9fREQEIBatWpxqrk8gS+XyzUeWlmvj/S9vLywbds2jdatU6cOsrKyMGvWLMyZMweurq5IS0sDAMWLkZaWBhMTE1hZWandR1BQEObPn6+4n5GRQcFPSCUjZB++hYUFNm3aBFNT0wrr0pHL5cjMzNT4tHQR02Y8zzIKyMvL03hsZz79888/8PDwKHWdAQMG4OjRoxrtLyMjA3Z2dkhPT4etrS0PFRJDJ5FIEBoaCuDDQYapqanAFVUtQg2tAACBgYFa1cxH4NvY2MDCwgKOjo5l5lW5j/Tz8vJw4MABHD9+HH/88QfevXsHxhjMzMzQuHFj+Pv7Y/To0WjevHl5myqTs7MzLly4oPL4mjVrcOnSJZw8eRKOjo46r4MQUvGECPzY2FjF2YFubm7w8fHhVDNfgV+zZk2lQdxKo3Xo5+bmYt26dfj222+Rnp6ORo0aoXv37nBycoK5uTlSUlLw7NkzbNu2DWFhYejQoQPWrVuH9u3ba9tkmczNzdG1a1eVx3fv3g0jIyO1ywghlZ+Q5+EPGTJE8TMXfAa+iYmJ7kO/QYMGsLKywtKlSzF69GjUrFlT7XqMMVy4cAG7du1Ct27dsHHjRkyePFnbZgkhRImQffhisRiLFy9W/MylXT4Dn1PNnNYuYuXKlXjw4AHmz59fYuADH+Z89Pf3x3//+188ePAAnp6e2japtd27dyMrK6vC2yWE6JZQffjfffedYqYrsVhcaQIfKMeR/sSJEzlvU69ePdSrV0/bJgkhREGIwH/x4gWWL18OmUyGpk2bwt/fn1PNQgc+oOenbBJCiDpCdem4u7vj888/x9OnTzl/R6gPgQ/wGPpyuRx79+7F2LFj+dolIYSoECLwGWOKiz1HjBihdF/T7fUh8AEer8iVSqWYMGECX7sjhBAVQvXhf/bZZ0pXvFbWwAc4HumvXLmyxGVSqbTcxRBCSEmECPyUlBR8+eWXyMnJwdGjRzFs2DBONetb4AMcQ3/16tUYNGiQ2qu9ZDIZLwURQkhxQvXhOzg4YMOGDbh48SI++eQTTjXrY+ADHEO/WbNmGDt2rNrLjfPy8rB7926+6iKEEADCBL5UKlUEbZs2bdCmTRtONetr4AMc+/SnTJlS4hG9iYkJVqxYwUtRhBACCBP4x44dw8iRI5GUlKRVzfoc+ADH0J8+fTo+/vhjtcuMjIwo9AkhvBEi8PPy8rBp0ybExcUhIiKCc836HvgAD2fvUNATQvgmVB++ubk5tm7dikmTJnEeLqYyBD7AQ+h//fXXfNRBCCEAhAn8osO01KlTB3PmzKlUQytwUe7Q53k4fkKIARPqPPz+/fvj0aNHWtVcmQIf4CH0uU5JSAgh6ggR+DKZDIcOHUJqaipOnjzJuebKFvgAjb1DCNEDQvXhGxkZ4fvvv0dERATGjBnDqebKGPiAnk+MTgip+oQI/MTERMXPNjY2GDduXJXtwy+O+vQJIYIRqg+/X79+OHPmjFY1V+bAB3gI/Y4dO/JRByHEwAjVpfPnn39CKpXi5s2bnGuu7IEP8NCnf/bsWT7qIIQYECGnOFy+fDn8/PzUDidTVruVPfAB6tMnhFQwIQL/8ePHip+NjIzQv39/g+nDL07rI/2XL19yWr9OnTraNkUIqSKEGktn2bJlmDp1KmbMmMG55qoU+EA5Qr9u3bqcztGnoZcJMWxCdemkpKSAMYbk5ORKPeMVX7QO/Z07d9KFWYQQjQjZhz927Fg0aNAAbdu2NfjAB8oR+uPHj+exDEJIVSVE4N+4cQMtWrRQhG379u051VxVAx/QwRe5f//9N6Kjo/HkyRO+d00IqWSEOg9/6tSpWLRokVbTuFblwAd4DP1Dhw7B3d0d3t7e6NSpExo1agR3d3ccPnyYryYIIZWIUF06dnZ2MDY2hr29PeeuoKoe+ABPY++cOHECI0aMQJMmTTB79my4urri9evX2Lt3L0aMGIHIyEj06dOHj6YIIZWAkH34nTp1wr59++Dp6Wmwp2WWRsR4GEehY8eOsLW1xfHjx5VeZMYY+vTpg8zMTPzxxx/lbabCZWRkwM7ODunp6WongyeEK4lEgtDQUABAUFAQTE1NBa6If0IE/oULF9CiRQvY29trVXNVCHxN84qX7p07d+5g5syZKv+rikQizJw5E3/99RcfzRBC9JwQgX/q1CnMnz8f06ZNU5oMhUu7lT3wueAl9I2MjCCRSNQuk0qlnP7EIoRUTkJ16TRs2BAODg7w8fGBpaUlp5oNLfABnvr0W7dujXXr1qFv376wsLBQPJ6fn4///Oc/aNu2LR/NEEL0lJB9+B4eHti/fz9q1KhBffga4CX0Q0JC0L17d9SrVw9Dhw6Fs7Mz3r59i4iICCQnJ+P8+fN8NEMI0UNCBH5UVBQ8PT3h6ekJAKhZsyanmg018AGeQr9Tp044ffo0Fi1ahE2bNoExBrFYjLZt2yI8PBwdOnTgoxlCiJ4RIvAvXryIoKAg2NvbIzw8nAKfI96mS+zSpQuio6ORk5OD1NRU2Nvbc+5fI4RUHkJ16bRs2RJeXl5o2rQpatSowalmQw98QAdz5FpaWlLYE1LFCdmHb2dnhx07dsDCwoL68LVAp9UQQjgRamiFy5cvK+5bWVlR4GuJtyP9o0ePYt++fXjx4gXy8vKUlolEIjpXn5AqQKjB05YuXQojIyPs27cPXl5enGqmwFfGS+h//fXXWLhwIWrUqAFPT09YWVnxsVtCiB4Rsg+/R48esLOzQ4MGDTjVTIGvipfQ37x5MyZOnIitW7dy7p8jhOg/IfvwjY2NERoaCrFYTF06POClTz85ORmjRo2iwCekChJqisNdu3Yp7hsbG1Pg84SXI/2OHTvi4cOH8Pf352N3hBA9IUTgP3nyBMuWLQNjDA0bNkTHjh051UyBXzpeQn/Dhg0YNGgQ3NzcEBAQUCVHDiTE0AjVpdOgQQPMmDED7969oxmvdICX0Pf09ESPHj0waNAgiEQilfP0RSIR0tPT+WiKEFIBhOzDB4CpU6fSJOY6wkvof/HFF9i4cSNatGgBb29vOtInpBIT6jz86OhohISEKLahwNcNXkJ/9+7dWLhwoWJyCEJI5SRE4CcmJiIkJAQSiQStW7fGgAEDONVMgc8NL6Evk8nQs2dPPnZFCBGIUF06NWvWxJo1a3D9+nX079+fU80U+Nzxcspmr169cO3aNT52RQgRgBCBL5PJFD/7+/sjKCiITsusALwc6S9btgzDhw+HlZUVAgMD4eDgoLKOuscIIcITqg//559/xsaNG7Waf5oCX3u8HOk3b94cjx49wvz58+Hl5YUaNWqo3CrK+fPnMXHiRDRq1AhWVlaoVasWBgwYgFu3blVYDYRUFkIEfnZ2NsLCwhAbG4uIiAjONVPglw8vR/rLly/n9E27Lm3ZsgXJycn417/+hcaNG+P9+/cICwtDu3btcOrUKbqAjJD/EaoP38rKCj/88ANOnDiBsWPHcqqZAr/8RIwxJnQRfHr37h2cnJyUHsvKyoKnpyeaNm2Ks2fParyvjIwM2NnZIT09Xas/QQkpTiKRKM5yCwoKEuz0ZiECPzc3V2kOba4o8EunaV5VufH0iwc+AFhbW6Nx48aIj48XoCJC9ItQY+kMGjQIL1680KpmCnz+VLnQVyc9PR0xMTFo0qSJ0KUQIighAl8qleKnn35CQkICfv31V841U+Dzi/fpEvXRrFmzkJ2djSVLlpS6Xn5+PvLz8xX3MzIydF0aIRVGqD58ExMT/PDDDzhy5AgmTZrEqWYKfP5pHfovX77ktH6dOnU4t3Hx4kV069ZNo3Vv376NFi1aqDy+bNky7Nu3D99//z1atWpV6j5CQ0MREhLCuU5C9J0QgZ+SkqI4VdvBwQFTpkzhVDMFvm5oHfp169bldMZO0QsxNOXl5YVt27ZptK66/1RCQkKwevVqfPnll5g9e3aZ+wgKCsL8+fMV9zMyMuDm5qZ5wYToIaHOw1+9ejXWr1/PeaTMwnYp8HVD69DfuXOnzk/TdHFxweTJk7XaNiQkBMHBwQgODsbixYs12sbMzAxmZmZatUeIPhIi8BljOHv2LHJzc3H58mUaHlnPaB3648eP57EMfq1atQrBwcFYunQpVqxYIXQ5hAhCqD58kUiEdevW4ejRoxgyZAinminwda/KfZEbFhaG5cuXIyAgAIGBgSpjArVr106gygipOEIE/j///IO6desC+PDl7dChQznVTIFfMXgL/SdPnmDr1q14+PAhcnNzlZaJRCKcO3eOr6ZKFRkZCQCIiopCVFSUyvIqdi0aISqE6sNftmwZFixYgFGjRnGumQK/4vAS+vfu3UO7du1Qq1YtxMXFwcfHB0lJSXj9+jXc3NxQv359PprRyMWLFyusLUL0jVBdOs+fP4dcLsezZ89oxis9x8vFWYsXL0bv3r1x//59MMawY8cOxMfHIzIyEnl5eVi9ejUfzRBCSiHkFIezZs3CN998g8WLF1Pg6zleQj8mJgbjxo1TjIUtl8sBAIGBgViwYAGCgoL4aIYQUgIhAv/OnTuK33WRSIRu3brRePiVAC+hn5qaCgcHB4jFYpiYmCA1NVWxzM/PDzExMXw0QwhRQ6g+/AkTJmDVqlWK4OeCAl84vIR+rVq1kJSUBADw9PTE5cuXFctiY2NhbW3NRzOEkGKE6tIRi8UQiUScu4EK26XAFw4vX+R26tQJV69excCBAzF69GisWLECb9++hampKXbv3o1PP/2Uj2YIIUUI2Yffp08f1K5dG02aNKEunUqGl9BfsmQJ3rx5AwBYuHAhEhISsG/fPohEIgwbNgz/+c9/+GiGEPI/QgT+lStX4OvrCysrKwBAs2bNONVMga8feAn9+vXrK07LNDIywnfffYfvvvuOj10TQooRIvBPnDiBJUuWoEWLFti8eTPnyVAo8PUHL336UqkU2dnZapdlZ2dDKpXy0QwhBk+oLh13d3dYWVmhfv36nMenosDXL7wc6U+ZMgX5+fkIDw9XWTZ16lRYWFhg+/btfDRFiMESsg+/SZMmOHDgAFxdXakPv5Lj5Uj/woUL+Pjjj9Uu69+/f4UNwUBIVSVE4J8+fRqvX79W3K9duzYFfhXAS+gnJibCxcVF7TJnZ2ckJCTw0QwhBkmIwD979iwWLlyIyZMnIyUlhXPNFPj6i5fQr1atGuLi4tQui4uLg42NDR/NEGJwhOrS8fHxQZ06ddCxY0dUq1aNU80U+PqNlz79bt26ITQ0FIMHD1ZMjwZ8mC5tzZo18Pf356MZQgyKkH34Tk5O+Omnn2BjY0NdOlUML6EfHByM1q1bo0GDBhg+fDhq1aqFV69e4dChQ5BKpTTvLCEcCTW0grOzs2IuaTs7O041U+BXDryEvpeXF65cuYL58+dj27ZtkMlkMDIyQpcuXbB+/Xp4eXnx0QwhBkGIwL969SqWLl0Kc3NzhIeHKyZD4dIuBX7lwNskKs2bN8e5c+eQm5urGIDN3Nycr90TYhCE6tLx9fVVzIlRp04dTjVT4FcuvIR+UlISHB0dAQAWFhYqV+vFxMTA19eXj6YIqbKE7MM3NzfHt99+C2NjY+rDr+J4OXunf//+yMvLU7vs/v376N27Nx/NEFJlCdWHf+TIEcV9U1NTCnwDwMuRfmJiIkaPHq30AQI+nK7Zs2dPeHt789EMIVWSEIF/7949LF26FIwxeHh4cP5LnAK/8uLlSP/EiRO4ePEi5s+fr3js5cuX6N69O1xdXXH8+HE+miGkyhGqS6dJkyYYNWoUPvnkE7Ro0YJTzRT4lRsvR/qNGjVCREQEevfujbp162L48OHo3r07bGxscPr0abo4ixA1hOzDF4lEWLBgARhj1KVjYHg50geALl26YPv27fj3v/+Ndu3aAfhwKXfRi7UIIf8vKSmpQgP/2LFjWLt2LRhjAD4EPwW+4dH6SF/deBx9+/bFnDlzsG/fPkRFRcHU1FSxHoU/IcpSU1NhZ2dXIYH/6tUrrFixAjKZDC1atOB8cgUFftWhdeg7OjpCJBKpXcYYg5+fn9JjMplM26YIqTKKTiJuaWlZYV06tWvXxrJly3D//n307NmTU80U+FWL1qG/fPnyEkOfEKJKLpcjKSlJcb8iAp8xpvg9HThwIAYOHMipZgr8qkfr0A8ODuaxDEKqtsIvbVNTUzlvW57z8I8dO4b169dznt6wsF0K/KqHty9yCSHqFT1Lx9LSktO22gZ+eno6QkNDER0djV9++YVzzRT4VZfWod+0aVNOH6a3b99i7ty5WLNmjbZNElLpCHVapp2dHb7//nt8+umnGDFiBKeaKfCrNq27d4YNG4axY8fC3t4eo0ePRteuXeHr66v4gjc3NxdPnz7FtWvX8Ouvv+LUqVNo3bo1pk+fzmf9hOgtdYEvlUo12lbbwJdIJDA1NQUAtGzZEi1btuRUMwV+1af1kf7y5cvx999/Y+TIkdi+fTv69OkDZ2dnmJiYwMLCAtbW1mjevDmmTp2KjIwMHDhwAH/88QcaN27MZ/2E6CWhxtIZOnQoEhMTtaqZAt8wlOuKXBcXF6xduxarV6/G9evXER0djTdv3iA3NxeOjo5o1KgRunbtitq1a/NVLyF6T4jAl0gk+OGHHxAfH4+IiAjMmDGDU80U+IaDl2EYTExM0KlTJ3Tq1ImP3RFSaQnVh29qaooff/wRv/zyC6ZNm8apZgp8w0Jn7xDCEyECPyMjQ/Gzi4sLZs6cSUMrkFJR6BPCA6H68Pv164e7d+9qVTMFvmGi0CeknIQIfLlcjqNHjyIjIwOnT5/mXDMFvuHibY5cQgyRUH34YrEY3333HY4cOYJRo0ZxqpkC37BR6BOiJU0CPzY2FlKpFCYmJvDx8VFalpaWhuzsbE6B/+bNG7i6ugL4MB/1p59+yqlmCnxC3TuEaEHTI/x79+4hJiYG9+7dU1mWkZHBuQ//448/1nomOgp8AlDoE8JZebt0Cpmbm3Pq0vnrr79QUFCAv/76i1O9he1S4BOgnN07z58/h4WFBZydnRWPrV+/XmkdW1tbTJ48uTzNEKI3yhv4aWlpivtcpzhctGgRWrZsSROgkHLROvRv3bqFNm3a4ODBgxgyZAiADxOlLFiwQGk9kUgET09PdO3atVyFEiI0roH/OsUYOdbdUWAmhVQWh9TUVKXz6jXx4MEDeHt7K6Y27NOnD6ftKfBJcVp372zbtg0dOnRQBH5RkZGReP78OZ49e4bBgwdjz5495SqSEE0xxnDz90v448JZREdH87ZfroH/z3sT/HrTDhIzbzDrZsi2G4K/X4tgbm6ucZvHjh3D6NGj8c033yh1C2mKAp+oo/WR/vnz5zFv3jy1y1xcXODu7g4AGDJkCFasWKFtM4RojOXlQHLzJJpmJAMAniZKwdq0gYhjN0pxZQV+bGysyhe1GdVGAEYARP87rmJy3Hlph79vRyrWOXPmjOIvYU9PT5V2c3JywBhT/MtlpjoKfFISrUP/1atX8Pb2VnpMJBKhefPmShNFuLi44NWrV9pXSIiGJH9dAMtMUdyvZ2OMgrhbMPFqo/U+NTnCl0qlyM7OVt6umilQNKRFYshFZsjPz1c8VPhzScMtDxs2DB4eHmjVqhUNrUB4U64vcov/ySkWi3H79m2lx+RyuVZ/mhJSmujoaJXum6kNrWAs/v+gFYlEeHX3Fn45/rvK9u3bt0f79u1L3D9jDH9cu4W01BQUSHLg6+tbYniamJjAysoKUqn0/4/IpS8hNbJVOtI3lryAmdn/B7+ZmRlEIpFSsF67dg2+vr6KMfFbt26t2QtSpG4KfFIarfv0XV1dcf/+/TLXu3//vuJiEkL4kp+fj8zMTKVbboHyAYacMWTmS1XWy8zMVDriVtm3lOH63xLkWjaDWa0ukFh4QmxUcnj6+Phg1KhRMDExgVQqhbGxMQZ0sICTdbpiHaP8Z+jfzhQ9e/ZUPNazZ08EBAQounaOHz+OGTNmYP78+RpPtlIUBT7RhNah36VLF/z4448oKCgocZ2CggL8+OOPdOYO4Z2ZmRlsbGyUbtHvPwSlTM4gYwwyBtxJk6usZ2NjAzMzsxL3ffelFJl5//+fR7WannifU/bE4jKRFaSmDZEnro3MzDR0qv8a1u82wfhlGCzTI2FsVPpfvDVq1ICZmRmcnZ05n85JgU80pXX3zr/+9S/4+flh6NCh2Lp1K5ycnJSWJyYmYvr06Xj8+DH27dtX7kK5ysrKwtKlS3Hw4EGkpKSgUaNGWLRoEef5Qol+Kql7Rpb8BjdPRiA3X4JnuSJMnK3+ZINC6rqJmnSdpnRkLxKJ8OJNGs7dOKKyfdOmTeHj44ObcaZ4Zz4asDBCLoAzD1LxsV8KREwCEZMAKPusnTZt2mDfvn3w8PCgPnyiM1qHvo+PD77//nvMmjULJ0+ehJ+fn+KMnRcvXuDmzZsoKCjApk2b0KxZM94K1tTgwYNx48YNrFmzBg0bNsT+/fsxcuRIyOVyzgNUkcrDqLor5PVbAfn58C7laL5QYTdRUVJJLkzNrRVnyzC5HHk5mSpf1gIfvoT946E5rv9tDog+9OczxpAttcP9V2V/l3X+/Hn4+PjA0dERAFC/fn1NnqYCBT7hSsTK+S3rH3/8ga+++goXL15Ebm4ugA8DQfn7+yMoKAgdOnTgpVAuTpw4gcDAQEXQF+rVqxfu37+Ply9favTnc0ZGBuzs7JCeng5bW1tdlkwEUvRIXy6XQy6Xw97FC+7NeoMxOQCAMTme3jiM3MwkSKVSSCQSxfZyo2rIrj5FZb9MLoex5G9YZvz/KZrGxsZo2LAhHjx4AOBDF9XixYvh4eGB3bt3c/6MUeCTojTNq3KPstmxY0ccP34ccrkcSUlJAABHR0dOf57y7ZdffoG1tTWGDh2q9PiECRMwatQoXL9+XZD/jIj+ad++Pdq2batyWma2JAM3Yp9Dkp+HzPdxGDLww5Wwt27dQkxMjGJ7uVj1l6vwOEosS1V6vKCgQOkLWm9vbzg5OcHX1xfW1tac6qbAJ9ribWhlsVis0q8vlHv37sHb21vlF6FwaNt79+5xCn2JRKJ0dEeqjsKDldTUVFhaWoIxBqlUClORFK8fX0ZOTg4sLS0VYS0Wi2FsbKw4gUEsSwGY/P9PzcSH7wAgS4NZzp9KbRkZGSn9hens7Iw9e/bAwcFB8VeGJgov2LK0tISNjY2iZk2fb1ZWFqytrWFvbw/GGH22qwhN38cqOZ5+cnIy6tWrp/K4g4ODYrk6+fn5SqfyFY6TEhYWxunyeVK15OTkYPfu3WqXieVZMM+MQp5NgCL4jfKewDwjEiLIlNaVyWQ4ePAgatSoARcXF0RFRem6dGJA8vLyNFqvSoY+gFIvWS9pWWhoKEJCQnRVEqmiTPLuw0gSD7mxA0SyLBjJktSu9/jxY0RERMDc3BzTpk2Dvb19BVdKSBUN/erVq6s9mk9J+XCJfuERf3FBQUGYP3++4n5GRgbc3Nzw73//m77IrUKKd+kU7wY8ePCgovtk2LBhSssKh0fOyMhQGQ//zJkzyJflw8zMTOkirEJdu3bF3bt3YWZmBjs7OwQEBGjcF1+0S8fe3p5zH35hl46TkxP14VdRGRkZWLNmTZnrVUjov3//HjVq1KiIpgAAzZo1Q3h4OAoKCpR+Oe7evQvgw7nV6piZmam9aMfU1FRxWTyp3ArH0snMzISdnZ3a8Cz8S7D4EAmFc9pmZ2fD2tpa5Qywotup22+1atWwZcsWnDlzRvHdgCbhXfilra2trVZf2ubk5MDe3p6+tK3iNM0onZ1iwxjDiRMnMGTIELi5uemqGbUGDRqErKwsHDmifDHNnj174OrqirZt21ZoPUQ/aDJ4mpwBzNgWMFK+AlfbScyPHz+OM2fOKO5bWFjQhVdEULwf6T99+hQ7d+7Enj178PbtW85DwvKhT58+6NmzJ2bMmIGMjAx4enoiPDwcUVFR2Lt3L+dL3Enlp0ngZ+Qa4fxDezC3ybAAIM+4gw9nX2oW+J6enopJ0AHg9u3bWLp0KcRiMVxdXdGkSRNONVPgE13gJfTz8vJw6NAh7NixA1euXAFjDG3btsXy5cthZmaGiRMn8tEMJxEREViyZAmWL1+uGIYhPDychmEwQJpOgHLpcTVk5xcJdJvmeJyQASez1xod4RcfE9/HxweBgYEwNzdXGYa8LBT4RFfKdUXujRs3sGPHDhw4cAAZGRlwdnbGmDFjMGHCBDRq1AgA8Ouvv2Lw4MGQyWRl7E3/0BW5lV9JgV984hMmMgWrO1tpW8bkEGX/Dfnb35T+Wi1p0hN1ZDKZYqpD4MMFWseOHQMA9OvXT22YU+ATbej8ilwfHx/cv38fJiYm6NevHyZMmIA+ffoIeiUuIUWVdoSvOvFJDszlBRCJi/5KMBTkZ0JabBjm0i6EOn78OF6+fInp06dDJBLRaJlE72gd+vfu3YNYLMa8efMwb948vbkalxCg7C6dwolPimKpV8CqdwNjMgAiQCaBUWYMjIpdmFdSmD5//hzLli2DXC5H48aN0aVLF041U+CTiqB16G/YsAG7du3C2rVrERYWhr59+2LChAkIDAzk9GElhG+a9OH7+PgohuUoKj4lBZf+/AfS/BwY59xDQI+OGrfr4eGBefPm4cWLF+jcuTOnminwSUXROp3nzp2LuXPn4ubNm4p+/cjISDg6OuLTTz/F+PHjBRlSmRg2Tb+0VYcxBiskQP7uLAry82Gs4dAbRc9QGzNmDE1iTvRauTvg/fz8sGXLFrx9+xa7d++Gt7c3NmzYgBYtWsDPzw+HDx/mo05CylTewC88LZNLYB8/fhxffPGFUj8/BT7RZ7x962pubo4xY8bg4sWL+Pvvv7Fw4UIkJCQIMmsWMTx8Bb6FRdnTIhZKSkrCqlWrcObMGfz222+ca6bAJ0LQyak29evXx1dffYWXL1/it99+w4ABA3TRDCEA+A18LmfbODo64j//+Q9GjhyJQYMGca47JyeHAp9UOJ1+4yoWi9GvXz8a9oDojC4Cv/iVtcUVHdOpU6dO6NSpk1a1W1paUuCTClclx94hhkFXR/ienp7w9vZWewHW8ePHMWbMGKSmpqos07TdQtqMlkmBT8qrSo69Q6o+Ibp0cnNzsWHDBrx//x4RERGYNGkSp5oLh0cuRIFPhFBlx94hVZdQffgWFhb48ccfERkZiQkTJnCqufBLW0tLS07bART4hF/lCn11Y+8sWLBAZewdQvgiROAXTl4CfLgAa+7cuZxqLnqWjo2NDadtKfAJ32jsHVJpCBH4x44dw4YNG/DDDz9oPMha8XaLnpbJZXxDCnyiC1on9L179yASiTBv3jxs3rwZgYGBFPhEZ4QI/IKCAoSHhyMpKQnHjx/nXDOdh0/0kdYpvWHDBjRr1gxr165F7dq1MXDgQPz6668oKCjgsz5CBOvDNzY2xubNmzF37lzMmTOHU82aBH7RoZ2LosAnuqR16M+dOxe3b9/Gn3/+iUmTJuHSpUsYPHgwatWqhX//+9+K+WgJ0YZMzvAqqQBP3kgQF5+K5OSKC/z3798rfrazs8PEiRN1MsXhgwcPVB6jwCe6RmPvEL0jlzPcfpaPJ28kiE+S4nWGJXLENWFkpPvAP378OPr164fLly9rVTt16RB9x9t5+oVj74wZMwZPnz7Fjh078NNPPyEmJobO0yelio6ORnR0tOK+g0tD1GniD5FIBBE+fHYypRa4FnkUeVkpSts2bdpUZYhkbQOfMYYrV64gPz8fV69exUcffcTpeVDgk8pAJ8MwFI69s3r1apw4cQI7d+7URTOkisjPz0dmZqbivp2zEcAYUOxgQSYXFZvtSnUWq/L04YtEIqxevRpt27blPF6UpoEvkRmheeehsLCyQ05GEgrkIogho8AnFaZCxt7p16+fLpshlZyZmZnS+evS3BSIivShM8bA5DKwghyV2a6KBqS2gR8XF6c4HdPY2LjUwdP+fvIUUqkUZqbGim00DXypXISEXDtUq2EHsVgMc0tbvM5ksGOvYWtLgU8qRrkmRq/qaGL0ilX0LB2psSOScq0gEokgK5Cijn0+rE1Lnpu2PH34y5Ytw+zZs0u9clwmF+H6Myf8k/Thc2AqeYyBnYxgJJKXGPjFJ1+v6d4Udbw7qXR33o+OQG7Ge6XH2rdvj/bt22v0HAgBKmBidEL4pHpaphRvnkdDJhfDSFQA65pNSty2PF06b9++hVwux5s3b0odJ+r2S0f8k2yr6HKSmDbEnRfpaFTjeYlH+MUnX8+XSAAwAMpt5Ocpd28BH7q8CNEFCn0iuJLOw/dp6l3mtuUJfACYPHkyvLy80LFjR0Xgx8XFIS4uTmm9NNtxgFGRsBaJEfdWjKTHv0MsFiv9Z1H45XLxyddz0t5CLpNBJP7Q9SmXyyHJzQQryFYZnsHMzIzT8yBEUxT6RFBCXHh169YtNG/eXNFW8UnMpVIp8vLylNuyzgfERb5cZgxMnq+yXuH2gPrJ1zNyMvHkTR7MLW2Rm5WMXh0boVebf2lUNyF8oNAnghFqLJ1ly5YhICAAq1evVrudiYkJzItNii7Ov4ksk74Ak394QCSGtTQG5sW+WC7cXh25XA5pbhpiLkQAAKytrfFx18Ya1U0IXyj0iSCEGlrB0tISRkZGsLKyKrH/3tPTU+3gaq9T43H1bg7kcjms5E8wYXhnAJrNCld4Hr61tbXGtRKiC1qHfvF+zLLIZDJtmyJVjFCBDwD+/v7473//Cy8vL85DK9iZvEcLl7cwMTGBmZmdxtsWvfDK3t6eU72E8E3r0F++fLlS6O/atQtZWVno378/nJ2d8fbtWxw7dgxWVlY0iQpRECLwL1++jBYtWihOY/P2LvsL4uLtFp6W2aZNm3JdaUtnSBOhaR36wcHBip/DwsLg7OyMs2fPKv35mpmZiR49emg1WxCpeoQI/KioKAQFBaFx48bYtm0b588i30MrSCQSxfI2bdpwqoUQPvAyAP7mzZvxxRdfqPRX2tjY4IsvvsDmzZv5aIZUYkJ16dSrVw92dnbw9vZW+XIW+HB65sOHD1VO0SxsV5dj6bRtq9n3AYTwiZcvcl+/fl3iL4SxsTESEhL4aIZUUkL24Tds2BDh4eGoWbOm2j78uLg45OXlwdzcXOnLWxo8jVRVvBzpe3t7Y/369SqDX0kkEoSFhSnmyyWGR4jAP3XqFF68eKG47+LiopPx8NWhwCf6jpcj/dWrV2PgwIGoV68eBg8eDGdnZyQkJCAiIgIJCQk4evQoH82QSkaIwD9//jwWLVoER0dH7Nu3D05OTpxqpsAnVR0voR8YGIioqCgsWbIEmzZtglwuh0gkQps2bbBr1y706NGDj2ZIJVIRgR8XFwepVAoTExNF10yLFi1Qv359tGjRAo6Ojpxq1jTwY2NjFe0WXnFLgU8qC94uzurevTu6d++OnJwcpKamwt7ens7aMVAVEfjvkuX47RxDvsQETg4ZqF//w2BpDg4O2LVrF6ysrMrs0smVGkNm3xViZgZ5QQKysrJhbV32Ef69e/cU/zn4+PhQ4JNKhZc+/ULp6em4cuUKLl68SKMEGqiKCPzEJDn+sz0PL9+5ICHNGbHPGmH7/ueK5TY2NmUGfl6BMa489wSz8YXItjHkDj3wPLNBmYGfKzWCS10fONVqAEBEgU8qHd6O9FetWoU1a9YgNzcXIpEIN27cgL29Pbp3746ePXti0aJFfDVF9JSuAr/4qJf3/vGEROIMVuSYJTbOEbt3/wRnZ+U+/MIhFYrvQ27XDnK7hoBIrBjo+GV6dfx8eCtE8hylfRSOmpmaa4a0fDO4e7eDSCRG6rsXyMjIpAlQSKXCS+hv3rwZISEhmDlzJvr06YPAwEDFsn79+iEiIoJCv4rT5RF+8VEv8yUisGJj0ovFxrC0slMZ9bLwjLLi+xDbGEN1L0BOvhyQKE/JGBMTg7hnL9Gy6ygAgEj04T8beyd3XIs5g7R3z5XWpwlQiD7jJfQ3btyI+fPnY926dSpj7DRo0ABPnjzhoxmip3TdpVN81Esn+0y8S3cpWgFsLLJha6M6Bn3h0XfxfcilryEXtStShxwiWTYsTSQQmVhBIpEo/YchF6kexcvlcoiNzWgCFFKp8BL6z549Q+/evdUus7GxQVpaGh/NED1UEX34xUe9PHbsOJLTgLdpH/rVbSxyMH9yDThUCyixraL7KDxLJzH/DR4m1gRERhDJMjGwrRT2ViMAqE51iII8MLlcae5esVgMmYQmQCGVCy+hb2dnh8TERLXL/vnnH87nSpPKQYjz8B89eoRly5aCMYaJk6bBxaUOrK2MSg384u0Wnnnj58bwNGYjcvIKYGkuhr3VKMV6aidAyctFcp4lCqc7fPs8FhPHfMJptFlChMZL6Hfv3h3r1q3DgAEDFH9Ci0QiFBQUYMuWLSX+FUAqL6GGVvDy8sLEiRORnp6OgN7dIZPJNP4CVd15+CLIAVkuRFCdDKUouVwOlp+OWtYFOHfxD6Qmv4OYSSAK7KBx7YToA15Cf+XKlWjdujUaN26MQYMGQSQSYePGjbh9+zZevnyJgwcP8tEM0RNCjqUjEokwe/Zsxc9c2uXnSlsnpCe9Qvb/7hNS2fBynr6npyeuXr0Kb29vbN68GYwx/PTTT3B0dMSVK1dQp04dPpohekCoKQ5DQkIgl3+YqlAkEgkU+HRaJqn8eDnSv3z5Mnx9fREVFYX8/HwkJyfD3t4eFhYWyMrKwuXLl/HRRx/x0RQRkBCB//btWwQHB6OgoAB+fn5KpwNr2i7fgd++fXvk5+fTF7akUuIl9Lt164bo6Gi0adMGZmZmcHV1VSx7/PgxunXrRtMlVnJCdem4uLhg9erViImJQZ8+fTjVrKsjfDoHn1RmvIR+aVPASaVSTsPaEv0jRODL5XLF5yYgIAABAZqdnVO0XU0Cv2nTporB04q2TV06pKrSOvQzMjKUzr9PSEjAy5cvldbJzc3Fnj174OzsrHWB2jh//jz27t2Lq1evIj4+HtWqVYOfnx+WL1+OVq1aVWgtlZ0QgX/8+HFERETgu+++g5VV6WfVlNSupkf4xU/LpMAnVZ3Wof/NN99g5cqVAD58sTZo0CC16zHGsHjxYm2b0cqWLVuQnJyMf/3rX2jcuDHev3+PsLAwtGvXDqdOnYK/v3+F1lNZCRH4GRkZWLduHdLT0xEREYExY8Zwqpm+tCWkdFqHfq9evWBtbQ3GGL744gvMmTNH5SwdMzMzNGvWDF26dCl3oVxs2rRJ5YKwgIAAeHp64quvvqLQ14BQffi2trbYvHkzTp06hdGjR3OqmQKfkLJpHfpFB5XKzs7GlClTlL7AFZK6K4Ctra3RuHFjxMfHC1BR5SJE4Bc9G6ZJkyZo0qQJp5op8AnRDC/fsK5YsUJvAr8k6enpiImJ4RwmhkaoPvzBgwfj9evXWtVMgU+I5gzmtJpZs2YhOzsbS5YsKXGd/Px8ZGRkKN0MiRCBL5VKsWPHDrx+/VqruZQp8AnhhrdJVJ48eYKtW7fi4cOHyM3NVVomEolw7tw5vpribNmyZdi3bx++//77Us/eCQ0NRUhISAVWpj+E6sM3MTHB1q1bERERgSlTpnCqmQKfEO54OdK/d+8eWrZsicjISERFRSE1NRVPnjzBxYsX8fTp01LP49e1kJAQrF69Gl9++aVizJaSBAUFIT09XXEzlP5/IQI/NTVV8XONGjUwbdo0TtdzUOAToh1eQn/x4sXo3bs37t+/D8YYduzYgfj4eERGRiIvLw+rV6/moxnOQkJCEBwcjODgYI1OGzUzM4Otra3SraoTaiydfv364datW1rVTIFPiPZ4Cf2YmBiMGzdOcaRWODBWYGAgFixYgKCgID6a4WTVqlUIDg7G0qVLsWLFigpvvzIQIvAZYzh58iSys7O16vKjwCekfHjp009NTYWDgwPEYjFMTEyU/nT38/NTXMRVUcLCwrB8+XIEBAQgMDAQ165dU1rerl27ErY0HEL14YtEIoSFheHo0aMYNmwYp5op8AkpP15Cv1atWkhKSgLwYZjly5cvo2fPngA+TDtnbW3NRzMai4yMBABERUUhKipKZbmQ3zHoAyECPz4+Hm5ubgAAc3NzjBgxglPNFPiE8IOX7p1OnTrh6tWrAIDRo0djzZo1mDx5MmbOnImgoCD079+fj2Y0dvHiRTDGSrwZMqHOwx84cCCOHDmiVc0U+ITwh5cj/SVLluDNmzcAgIULFyIhIQH79u2DSCTCsGHD8PXXX/PRDCknobp0Hj16BJlMhkePHnGumQKfEH6JmKEf+pYiIyMDdnZ2SE9Pr/Rn8gg5xSFjDGfPnkX37t0N/rRMiUSC0NBQAB9OETY1NRW4IlJVaJpXWh/pFx9GuSw0ZaJwhAj8u3fvomnTpoqpDQu/4+HSblULfEL0gdahX7duXU7zlNLMWcIQqg9/6dKlGDp0KIKCgjh9TgrbpcAnRDe0Dv2dO3dy/mUmFUuoLp2CggJF+4wxmsScED2ideiPHz+exzII34Tswx8wYADc3d3h4+Nj8H34hOgbgxll05AIEfhXr15VGmivRYsWFPiE6CEK/SpGqD78WbNm4bPPPkN+fj7nminwCak4vJynLxaLy+y3pS9ydU+oLh1XV1dYWFjAzc2Nc+hS4BNSsXgJ/eXLl6uE/vv373H69GnIZDKMHTuWj2ZIKYTsw2/ZsiXCw8Ph5uZGXTqE6DleQj84OFjt4xKJBL1791Y7Zy3hjxCBf/bsWTRr1gw1a9YEALi7u3OqmQKfEGHotE/f1NQUc+bMwfr163XZjEETIvDPnDmDzz//HJMnT1YaUZVLuxT4hAhD51/kWlhY4O3bt7puxiAJ1aXTtGlTuLq6om3btrCzs+NUMwU+IcLibY5cdd6/f4+vv/4aXl5eumzGIAnZh+/i4oL//ve/qFatGvXhE1LJ8BL6Hh4eKl/k5ufn4927dxCLxfjtt9/4aIb8j1CnZbq5ucHHxwcA4ODgwKlmCnxC9AMvod+lSxeV0Dc3N0fdunUxfPhw1K1bl49mCIQJ/N9//x1Lly6FlZUV9u/fz3nwPAp8QvQHL6G/e/duPnZDyiBUl06rVq3g6+sLDw8P1K5dm1PNFPiE6BdeQl8qlUIikcDKykplWXZ2NkxNTekXtpyE7MO3sLDApk2bYGpqSn34hFRyvIT+5MmTIZFIEB4errJs6tSpsLCwwPbt2/loyiAJ1YcPAIGBgQA+dNdxQYFPiH7i5ZTNixcv4uOPP1a7rH///jh37hwfzRgkIQI/NjYWS5cuxdKlSxEbG8u5Zgp8QvQXL0f6iYmJcHFxUbvM2dkZCQkJfDRjcIQ8D3/IkCGKn7mgwCdEv/ES+tWqVUNcXBy6du2qsiwuLg42NjZ8NGNQhOzDF4vFWLx4seJnLu1S4BOi33jp3unWrRtCQ0ORkpKi9HhKSgrWrFkDf39/PpoxGEL14W/YsAGMMQAfwp4Cn5Cqh7cB11q3bo0GDRpg+PDhqFWrFl69eoVDhw5BKpUiJCSEj2YMghCB//LlSyxfvhwymQzNmjVD9+7dOdVMgU9I5cFL6Ht5eeHKlSuYP38+tm3bBplMBiMjI3Tp0gXr16+nYRg0JFSXTp06dbBw4UI8efIE3bp141QzBT4hlQtvY+80b94c586dQ25uLlJTU+Hg4MD5ND9DJkTgF520fNiwYZxrpsAnpPLhfZRNCwsLuLq6UuBzIFQf/meffQaJRKJVzRT4hFROWh/pv3z5ktP6XMdrMRRCBH5KSgq+/PJL5OTk4OjRo5yP8inwCam8tA79unXrljkvblE0R64qofrwHRwcsGHDBly8eBGffPIJp5op8Amp3LQO/Z07d3IKfaJMiMCXSqWKoG3Tpg3atGnDqWYKfEIqP61Df/z48TyWYViE6sPftWsXfvjhBzg6OnKumQKfkKpB59MlEmVCBH5eXh42btyIuLg4REREcK6ZAp+QqoO3UzafPHmCrVu34uHDh8jNzVVaJhKJaNA1CNeHb25ujh9//BG//vorJk+ezKlmCnxCqhZeQv/evXto164datWqhbi4OPj4+CApKQmvX7+Gm5sb6tevz0czlZoQgV8YuADg5uaG2bNnc6qZAp+QqoeX7p3Fixejd+/euH//Phhj2LFjB+Lj4xEZGYm8vDysXr2aj2YqLSEC/9ixY/j444/x8OFDrWqmwCekauIl9GNiYjBu3DjFAF1yuRzAhwk4FixYgKCgID6aqZSECHyZTIbDhw8jNTUVJ0+e5FwzBT4hVRcvoV847IJYLIaJiQlSU1MVy/z8/BATE8NHM5WOUH34RkZG2LhxI+bNm4fPPvuMU80U+IRUbbyEfq1atZCUlAQA8PT0xOXLlxXLYmNjYW1tzUczlYoQgZ+YmKj42draWumvL03bpcAnpGrjJfQ7deqEq1evAgBGjx6NNWvWYPLkyZg5cyaCgoLQv39/PpqpNIQ6D79fv344c+aMVjVT4BNiGHg5e2fJkiV48+YNAGDhwoVISEjAvn37IBKJMGzYMHz99dd8NFMpCNWl8+eff0IqleLmzZvo2bMnp5op8AkxHCJWOFUSUZGRkQE7Ozukp6fD1ta2zPWFnOJQJpPhxIkTCAwMpC4dPSaRSBAaGgoACAoKgqmpqcAVkapC07zSunsnNTUVQ4YMwbFjx0pc59ixYxgyZAiSk5O1babSECLwHz9+rJje0MjICP3796fAJ4SUSuvQ3759O/766y8EBASUuE5AQADu3r2LTZs2adtMpSBUH/6IESOwZcsWaPPHGgU+IYZJ69A/cOAApkyZUmpYGBsbY8qUKfjtt9+0bUbvCdWlk5KSAsaYymT0mrZLgU+IYdL6i9y///4bfn5+Za7n6+uLVatWaduMXhOyD3/MmDFo0KAB2rRpw2mIawp8Qgyb1kf6BQUFGv3Sm5iYQCqVatuM3hIi8AvP0CnUrl076sMnhHCidei7uLjgwYMHZa53//59ODs7a9uMXhKqD3/atGlYuHChVv+JUuATQoByhH6XLl2wefPmUgNIKpViy5Yt6Natm7bN8GL79u0QiUS8XBksVJeOnZ0djI2N4eDgwLkriAKfEFJI69CfN28eHj16hEGDBikuzCrqzZs3GDhwIB4/fox58+aVq8jyeP36NRYsWABXV9dy70vIPvxOnTph3759WLx4MXXpEEK0pvUXuT4+Pti0aRNmzpwJDw8PtGrVCh4eHgCA58+f49atW5DL5diyZQuaNWvGW8FcTZ8+HR999BEcHBxw+PBhrfcjROBfuHABLVq0gL29PQCgYcOGnGqmwCeEFFeusXemTJmCy5cvo1evXoiNjUV4eDjCw8MRGxuLgIAAXLlyhfNMTXzau3cvLl26hM2bN5drP0IE/qlTpzB//nxMmzYNWVlZnGumwCeEqFPusXfat2+PyMhIyOVyxUibjo6OnLogdOHdu3f47LPPsGbNGtSuXbtc+0pKSoJUKq3QLp2GDRvCwcEBPj4+sLS05FQvBT4hpCS8zZErFovh5OTE1+7KbebMmfDy8sKMGTM03iY/Px/5+fmK+xkZGQA+DDlRs2bNCu3D9/DwwP79+1GjRg3qwyeE8EbYw3EdOXLkCCIjI7Ft2zZOFy6FhobCzs5OcXNzcwMAWFpaVkjgR0VFIS4uTnG/Zs2aFPiEEF5VudDPysrCrFmzMGfOHLi6uiItLQ1paWmQSCQAgLS0NGRnZ6vdNigoCOnp6YpbfHw8AFRI4F+6dAlBQUGYMmUKEhISNG6vaLsU+ISQsvDWvaMvkpKSkJiYiLCwMISFhakst7e3x4ABA3D06FGVZWZmZjAzM9O67fJ06bRs2RKNGjVCkyZNOHeTUeATQjRV5ULf2dkZFy5cUHl8zZo1uHTpEk6ePAlHR0fe2y1vH76trS22b98OCwsL6tIhhOhMlQt9c3NzdO3aVeXx3bt3w8jISO2y8irP0Ao2Njb46KOPAABWVlac26XAJ4RwUeVCv6JpG/g3btzA0qVLYWRkhH379sHLy4tzuxT4hBCuqtwXuSXZvXu3Vhc5laa8ffg9evTAwIED0aBBA87tUuATQrRBR/paKm8fvrGxMUJDQyEWi6kPnxBSYQzmSJ9P5enD37Vrl+K+sbExBT4hpELRkT5H2gZ+XFwcli1bBrlcjoYNG6Jjx46c26XAJ4SUF4U+B+Xp0vH09MSMGTOQmJiI9u3bc26XAp8QwgcKfQ1pG/iMMcVQEFOmTFG6r+n2FPiEEL5Qn74GtA38Y8eOYenSpSgoKFA8RoFPCBESHelrIC0tDTKZjFPgJyYmYuXKlZBIJGjdujUGDhzIqU0KfEKILlDoayAjIwOOjo6c+vBr1qyJNWvW4Pr16/j44485tUeBTwjRFQp9DZibm2sc+DKZTLGuv78//P39ObVFgU8I0SXq09cAl/PwJ0yYoJh8hSsKfEKIrlHo8yQ7OxthYWGIjY1FREQE5+0p8AkhFYG6d3hiZWWFH374ASdOnMDYsWM5bUuBTwipKBT65ZSbmwsLCwsAHyYzb9iwIaftKfAJIRWJunfK4fjx4xg4cCBevHih1fYU+ISQikahr6WCggLs2bMHiYmJ+PXXXzlvT4FPCBECde9oydjYGD/88AOOHDmCSZMmcdqWAp8QIhQ60ucoJSVF8bODgwOmTJlCwyMTQioNCn0Ojh07hr59++Lq1atabU+BTwgRGoW+hhhjOHfuHPLy8nDlyhWttqfAJ4QIjfr0NSQSibBu3TocPXoUQ4YM4bQtBT4hRF9Q6HNgYmKCoUOHctqGAp8Qok+oe0cDhw4d0mo7CnxCiL6hI/1SMMYAAE+ePEFmZibnCVBycnJgaWkJExMT5ObmarytXC5HVlYWrK2tYWFhgdzcXE7bE/0lkUiQl5cH4MOQ3aampgJXRKqKwoEeC3OrJCJW1hoG7NWrV3BzcxO6DEII0Vh8fDxq165d4nIK/VLI5XK8efMGNjY2nI7yyysjIwNubm6Ij4+Hra1thbUrFHq+VRs934rBGENmZiZcXV1LvXaIundKIRaLS/0fU9dsbW0N4pekED3fqo2er+7Z2dmVuQ59kUsIIQaEQp8QQgwIhb4eMjMzw4oVK2BmZiZ0KRWCnm/VRs9Xv9AXuYQQYkDoSJ8QQgwIhT4hhBgQCn1CCDEgFPp6avv27RCJRLC2tha6FJ04f/48Jk6ciEaNGsHKygq1atXCgAEDcOvWLaFL05msrCx89tlncHV1hbm5OVq0aIEDBw4IXVaFMsT3vSh9+L2mL3L10OvXr9GkSRNYWVkhPT0dWVlZQpfEu6FDhyI5ORlDhw5F48aN8f79e4SFheHmzZs4deoU/P39hS6Rd7169cKNGzewZs0aNGzYEPv378f27duxb98+jBo1SujyKoQhvu+F9OX3mkJfD/Xv3x8ikQgODg44fPhwlQz9d+/ewcnJSemxrKwseHp6omnTpjh79qxAlenGiRMnEBgYiP3792PkyJGKx3v16oX79+/j5cuXMDIyErDCimFo73tR+vJ7Td07embv3r24dOkSNm/eLHQpOlX8Fx8ArK2t0bhxY8THxwtQkW798ssvsLa2VpmPYcKECXjz5g2uX78uUGUVy9De90L69HtNoa9H3r17h88++wxr1qwRdMwfoaSnpyMmJgZNmjQRuhTe3bt3D97e3ipzKvj4+CiWG6qq/L4D+vd7TaGvR2bOnAkvLy/MmDFD6FIEMWvWLGRnZ2PJkiVCl8K75ORkODg4qDxe+FhycnJFl6Q3qvL7Dujf7zWFvp44cuQIIiMjsW3btgodxllfLFu2DPv27cM333yDVq1aCV2OTpT2vlbG9/zixYsQiUQa3e7cuaN2H5Xpfdfm+erj7zUNrawHsrKyMGvWLMyZMweurq5IS0sD8GGWJQBIS0uDiYkJrKysBKxSd0JCQrB69Wp8+eWXmD17ttDl6ET16tXVHs2npKQAgNq/AvSdl5cXtm3bptG6derUUXmssr3vXJ+v3v5eMyK458+fMwCl3gYMGCB0mToRHBzMALDg4GChS9GpKVOmMGtrayaVSpUeDw8PZwDYH3/8IVBlwjCE911ff6/plE09kJeXh2vXrqk8vmbNGly6dAknT56Eo6MjmjZtKkB1urNq1SosX74cS5cuxapVq4QuR6dOnjyJvn374sCBAxg+fLji8T59+iA2NtZgTtkEDOd919ffawp9PTZ+/Pgqe55+WFgYFixYgICAAKxYsUJlebt27QSoSrd69eqFmzdvYu3atfD09ER4eDi2bduGvXv3YvTo0UKXVyEM8X0vTujfa+rTJ4KIjIwEAERFRSEqKkpleVU8FomIiMCSJUuwfPlypKSkoFGjRggPD8eIESOELq3CGOL7rm/oSJ8QQgwInbJJCCEGhEKfEEIMCIU+IYQYEAp9QggxIBT6hBBiQCj0CSHEgFDoE0KIAaHQJ4QQA0KhTwghBoRCnxBCeLBlyxb4+vrCxMQEwcHBQpdTIgp9QgjhgYuLC0JCQjBw4EChSykVDbhGCCE8KAz7X3/9VdhCykBH+gLYvXt3qVOtXbx4UegSS1VY/z///CN0KSW6evUqgoODFbMVaUOb5/ndd99BJBJpNEY6l3XViY2NxaRJk1C/fn1YWFjAwsICDRo0wLRp03Dz5k2N97Ny5Uo0btwYcrlc8VhwcDBEIhGSkpK0qk0b+vK50lUdO3bsQK1atZCdnc3rfrmi0BfQrl27EB0drXLz9fUVurRSBQYGIjo6Gi4uLkKXUqKrV68iJCSkXKGvjZ07d0IkEuH+/fu4fv06b+sWt3XrVrRq1QrXr1/Hv/71Lxw7dgzHjx/HZ599hvv376N169Z4+vRpmft58+YN1q1bh5UrV0IspjjQpXHjxsHKygrr1q0TtA56lwXUtGlTtGvXTuVma2srdGlq5eTkAABq1KiBdu3awczMTOCK9MvNmzfx119/4fPPP4epqSl27NjBy7rF/fHHH5g5cyb69OmDmJgYzJ07F927d4e/vz9mzZqF33//HQcPHoSFhUWZ+/r2229RrVo1DB48WOP2DU337t1hbm6u9rZs2TKN92NsbIxp06bh22+/VfwuCYFCX0/l5eWhZcuW8PT0RHp6uuLxhIQEODs7o2vXrpDJZAD+/0/x27dvY/DgwbC1tYWdnR0+/fRTvH//Xmm/T548wahRo+Dk5AQzMzN4e3tj06ZNKu0X7jMmJgaffPIJ7O3tUb9+fQCqf/4WrhsbG4uhQ4fCzs4ODg4OmD9/PgoKCvD48WMEBATAxsYGdevWVXukw7Wu+/fvY+TIkbCzs0PNmjUxceJExesUHByMzz//HADg4eGh0m0WFxeHCRMmoEGDBrC0tEStWrXQv39/3L17l+O7pGzHjh0wMjLCvHnz0K9fPxw4cKDEX24u6xb31VdfwcjICFu3boWpqanadYYOHQpXV9dS9yORSLBjxw6MGjVKo6P8R48eoV69emjbti3evXuneGzkyJGoWbMmzMzMUKdOHYwdOxb5+fmK7fh4vfn4jP3+++/o3r07bGxsYGlpiQ4dOuD48eNltn3u3Dnk5eWpvXGd7nH06NHIyMjAgQMHOG3HJwp9AclkMhQUFCjdCoPc3NwcBw8exLt37zBx4kQAgFwux+jRo8EYQ3h4uMqcqoMGDYKnpycOHz6M4OBgHD16FL1794ZUKgUAPHjwAK1bt8a9e/cQFhaGY8eOITAwEHPnzkVISIjaGgcPHgxPT08cOnQIP/zwQ6nPZ9iwYWjevDmOHDmCKVOm4JtvvsG8efMwcOBABAYG4pdffoG/vz8WLlyIiIgIxXba1DVkyBA0bNgQR44cwaJFi7B//37MmzcPADB58mTMmTMHwIfZqop3m7158wbVq1fHmjVrEBUVhU2bNsHY2Bht27bF48ePS32OJcnNzUV4eDj69OkDZ2dnTJgwAZmZmTh06FC51i1OJpPhwoUL8PPzK3f32vXr15GcnIxu3bqVue6lS5fQoUMH+Pj44MKFC3BycsJff/2F1q1b49q1a1i5ciVOnjyJ0NBQ5OfnQyKRKLbl8/XW9jN26dIl+Pv7Iz09HTt27EB4eDhsbGzQv39//Pzzz5xqKElBQQHy8vIUv9eFPxfl7OyMRo0aafSfjc5U+FTshO3atYsBUHszMjJSWvfnn39mANiGDRvY8uXLmVgsZqdPn1ZaZ8WKFQwAmzdvntLj+/btYwDY3r17GWOM9e7dm9WuXZulp6crrTd79mxmbm7OUlJSVPa5fPnyEut//vy50rphYWFK67Vo0YIBYBEREYrHpFIpq1GjBhs8eLDiMW3qWrdundK6M2fOZObm5kwulzPGGPv666+VaixNQUEBk0gkrEGDBkqvYfHnWZqffvqJAWBHjhxR7NPZ2Zl17ty5XOsWl5CQwACwESNGqH0eUqlUcSt8LUqydu1aBoAlJCSoLCt8nd+/f8/++9//MlNTUzZ37lwmk8kU6/j7+7Nq1aqxd+/elVl38Tq5vt7l/Yy1a9eOOTk5sczMTKU6mjZtymrXrq30WnF539XVWPS2a9culfVGjx7NatasyWnffKIjfQH99NNPuHHjhtKt+Bd6w4YNw4wZM/D5559j9erVWLx4MXr27Kl2f8Un1x42bBiMjY1x4cIF5OXl4dy5cxg0aBAsLS2V/rro27cv8vLycO3aNZV9DhkyROPn069fP6X73t7eEIlE6NOnj+IxY2NjeHp64sWLFwCgdV0ff/yx0n0fHx/k5eUpuh1KU1BQgK+++gqNGzeGqakpjI2NYWpqiidPnuDhw4caP9+iduzYAUdHR8VrYGRkhDFjxuDKlSt48uSJ1uty0apVK5iYmChuYWFhpa7/5s0biEQiODo6lrjOl19+ifHjx2PNmjX49ttvFd1AOTk5uHTpEoYNG4YaNWqU2g6fr7c2n7Hs7Gxcv34dn3zyCaytrRXrFb7ur1690vovvKKCg4PBGFO6jR8/XmU9JycnvHv3DgUFBeVuUxsU+gLy9vaGn5+f0q1Vq1Yq602cOBFSqRTGxsaYO3duiftzdnZWum9sbIzq1asjOTkZycnJKCgowPfff68UDCYmJujbty8AqD09j0sXgoODg9J9U1NTWFpawtzcXOXxvLw8ANC6rurVqyvdL/xSOTc3t8w658+fj2XLlmHgwIGIjIzE9evXcePGDTRv3lyj7YuLi4vD5cuXMXr0aKU+9gkTJgD4cJaONuuq4+joCAsLC0WgFbV//37cuHEDv/32m0Z15+bmwsTERKWbsKi9e/eiVq1aKpO3p6amQiaToXbt2mW2w+frrc1nLDU1FYwxtZ/lwu89kpOTOdVRHubm5mCMKeqraHRxlp7Lzs7GmDFj0LBhQyQmJmLy5MklXvyRkJCAWrVqKe4XFBQgOTkZ1atXh729veLIZtasWWq39/DwUHlMJBLx80RKoG1d5bF3716MHTsWX331ldLjSUlJqFatGuf97dy5U+1Rnbe3N9q2bYs9e/Zg9erVMDIy4rSuOkZGRvD398fp06fx9u1bpSBr3LgxAGh8frmjoyMkEgmys7NhZWWldp2oqCgMHz4cnTt3xrlz5+Du7g7gQ/gaGRnh1atXZbbD9+vNlb29PcRiMd6+fauy7M2bNwBQ6l87fEtJSYGZmZnSXx0ViY709dz06dPx8uVLREREYMeOHfjtt9/wzTffqF133759SvcPHjyIgoICdO3aFZaWlujWrRtu374NHx8flb8w/Pz8VI6eK4Ku6irtyF8kEqmcbnr8+HG8fv2aczsymQx79uxBy5Yt0aJFC5XlEyZMwNu3b3Hy5ElO65YmKCgIMpkM06dPV3xJr41GjRoBQKnn87u7u+PKlSswMzND586dFd1PFhYW6NKlCw4dOlTmBVx8vt7asLKyQtu2bREREaH0eZDL5di7dy9q166Nhg0bVkgtAPDs2TPFf9BCoCN9Ad27d09tv179+vVRo0YNbN++HXv37sWuXbvQpEkTNGnSBLNnz8bChQvRsWNHtGnTRmm7iIgIGBsbo2fPnrh//z6WLVuG5s2bY9iwYQA+nJPdqVMndO7cGTNmzEDdunWRmZmJuLg4REZG4vz58xXyvIvTRV3NmjVT7HvcuHEwMTGBl5cXbGxs0K9fP+zevRuNGjWCj48Pbt26ha+//lqjroriTp48iTdv3qBr1644evSoyvLCbofC8/A1Xbd433VRHTt2xKZNmzBnzhz4+vpi6tSpaNKkieJo9siRIwBQ5vUeXbt2BQBcu3YNPj4+Ja7n4uKCS5cuoXfv3vjoo49w5swZNG3aFOvXr0enTp3Qtm1bLFq0CJ6enkhMTMRvv/2GrVu3wsbGBgB4fb21FRoaip49e6Jbt25YsGABTE1NsXnzZty7dw/h4eE6/4u2kFwux59//olJkyZVSHtqCfYVsgEr7ewdAGzbtm0sNjaWWVhYsHHjxiltm5eXx1q1asXq1q3LUlNTGWP/f9bArVu3WP/+/Zm1tTWzsbFhI0eOZImJiUrbP3/+nE2cOJHVqlWLmZiYsBo1arAOHTqw1atXK61X9OyNkuovfvZO8XXHjRvHrKysVLbv0qULa9KkCa91qTvjIigoiLm6ujKxWMwAsAsXLjDGGEtNTWWTJk1iTk5OzNLSknXq1IlduXKFdenShXXp0qXUfRY3cODAUt/LwpuxsTHr2rWrxuuqO6OmuDt37rAJEyYwDw8PZmZmxszNzZmnpycbO3YsO3fuXJnbM8ZY586dWd++fVUeV/c6p6WlsY4dOzIHBwd248YNxhhjDx48YEOHDmXVq1dnpqamrE6dOmz8+PEsLy9PsR0frzcfn7ErV64wf39/ZmVlxSwsLFi7du1YZGSkyrbanr2jiXPnzil+V4UiYowxXf6nQnQvODgYISEheP/+fYX2TZLK78iRIxg+fDhevHih9H0Q0Y0xY8bg2bNn+OOPPwSrgfr0CTFggwcPRuvWrREaGip0KVXe06dP8fPPP2Pt2rWC1kGhT4gBE4lE2LZtG1xdXZVG2ST8e/nyJTZu3IhOnToJWgd17xBCiAGhI31CCDEgFPqEEGJAKPQJIcSAUOgTQogBodAnhBADQqFPCCEGhEKfEEIMCIU+IYQYEAp9QggxIBT6hBBiQCj0CSHEgFDoE0KIAfk/D5G1zWshtykAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAHPCAYAAAC/ewovAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpXUlEQVR4nO3dd1xTV/8H8M8NewsCAoqAIkMRUVGpoypu0boqWq171FGtWvtYHIjV1tEfdjlq3a2IrYpaUHGLto66cVQfUas4QNmCjEDO7w8fUmIi5IYbbiDf9+uVV01ybs43JPn05uTeczjGGAMhhBC9IBG7AEIIIVWHQp8QQvQIhT4hhOgRCn1CCNEjFPqEEKJHKPQJIUSPUOgTQogeodAnhBA9QqFPCCF6hEKfEEL0CIU+IYToEQp9QgjRIxT6hBCiRyj0CSFEj1DoE0KIHqHQJ4QQPUKhTwgheoRCnxBC9AiFPiGE6BEKfUII0SMU+oQQokco9AkhRI9Q6BNCiB6h0CeEED1CoU8IIXqEQp8QQvQIhT4hhOgRCn1CiCi2b98Oe3t7vHz5UuF2d3d3cByHH3/8UeH2Pn36wN3dvQorfLulS5eiZ8+esLOzA8dx2LJli1Kb48ePY+jQofDw8ICZmRkaNmyI6dOnIz09XamtVCpFw4YN8c0332i9dgp9QkiVe/XqFebMmYM5c+bAyspKZZs1a9ZUcVXq++GHH/Dq1Sv06tXrrW3Wr1+PrKwshIeHIz4+HnPmzMGvv/6Ktm3b4tWrVwptjYyMsHDhQnzxxRdIS0vTbvGMEEKq2Nq1a5mJiQnLyMhQus/NzY15eXkxjuPYqVOn5LeHhIQwNze3Kqzy7YqLixljjF24cIEBYJs3b1Zq8/z5c6XbfvvtNwaAbd26Vem+wsJCZmdnxxYtWiR4vWXRnj4hpMqtXbsWvXv3hq2trcr7PTw80KNHD53d2zcwMKiwjYODg9JtTZs2BQA8ffpU6T5jY2OEhobip59+gkwmq3yRb0GhTwipUo8fP0ZiYiI6depUbrspU6YgJiYGqampGvfFGENxcXG5F8aYxo/P19mzZwEAzZs3V3l/p06d8OTJE1y7dk1rNVDoE0Kq1JkzZwAALVu2LLddSEgInJ2dsWHDBo37SkhIgJGRUbmXrVu3avz4fKSnp2PBggUICgpC9+7dVbYp/Zv8+eefWqvDUGuPTAghKpQObTg6OpbbTiKRYOLEifjxxx/x+eefa9RXy5YtceHChXLbeHh4aPTYfEilUoSGhqKwsBDR0dHgOE5lu9K/yZMnT7RWC4U+IaRK5efnAwBMTU0rbDt+/HgsWrQIcXFxGvVlaWmJgICActuoMz5fGYwxjB49Gn/99ReOHTtW7mGnpX+T0r+RNtDwDiGkStnb2wMAMjIyKmzr6OiIQYMGYfXq1Rr1pQvDO9OnT0dMTAz27duH1q1bl9u29G9S+jfSBtrTJ4RUKV9fXwDAvXv30KxZswrbT548GR07doSXlxfvvsQe3pk7dy7WrVuHmJgYBAcHV9j+3r17AIDGjRtrrSYKfUJIlWrdujXMzc1x7tw5DBw4sML2HTp0gJ+fH65fvw43NzdefVlZWSEwMFDTUt8qISEBL168wP379wEAFy9ehKWlJQDg/fffBwB8/fXXWLp0KT799FPY29vj3Llz8u0dHBzQsGFDpcc9e/YsJBJJhUc2VYpWzwIghBAVRo0axRo1aqTyPjc3N9ajRw+F29asWcMA6MzJWR07dmQAVF7UaTNq1CiVj9u2bVsWEhKi1do5xqrwIFVCCAFw5coVtGjRAn/88QfatWsndjk64e7du/Dy8kJ8fDx69OihtX4o9Akhohg+fDgyMjJw8OBBsUvRCaNGjcKTJ09w9OhRrfZDR+8QQkTx9ddfIygoSGmWTX1UXFyMRo0aVcm0E7SnTwgheoT29AkhRI/odeiXLtbAcRyMjIzg4eGBDz/8EHfv3pW3OXnypLzNzZs35bdnZmbC2NhYaQGF8+fPo3fv3nBycoKFhQV8fX0xbtw4JCcny9ts2bJF/phvXoKCgqrkuQslJSUFH3zwAWrVqgUrKyv069cP//zzj0aP9ba/i6pD7s6ePYvu3bvD3t4etWrVQtu2bREbG1up51L2teY4DhcvXlRqs2vXLjRv3hympqawt7fHsGHDlE6Z5/M8xCLk6/b7778jODgYTk5OMDExgYeHByZMmIDHjx9r1E4bhHy+gPrvP3X7vXjxosJ75eTJkxrXVhG9P04/KCgI33zzDaRSKS5fvoyIiAjExcXh2rVrCscE29jY4LfffsOiRYsAAHv27IGFhQWysrLkbY4cOYJevXqha9euWLt2LSwtLXHz5k1s3boV9+7dg6urq0LfGzZsQJMmTRRue9uCErqouLgYPXr0QEZGBtavXw8TExPMmTMHwcHBuH79OiwsLDR63JiYGDg7O8uvlx7/XOr27dvo2rUrmjdvjs2bN8PY2Bhr1qxBv379EB8f/9bJrNS1evVqtGjRQn4SUanjx49j8ODBeP/997F06VIkJyfj888/x+XLl3Ht2jWYmJio/TykUilmzpyJbdu2wdraGosWLcKYMWMqVbe6hH7dnj17hqZNm2LixIlwcnLCw4cPERERgQMHDuDGjRvy6ZPVbSc0oZ+vuu8/Pv36+vri7NmzuHz5MqZOnSro81ei1QNCdZyq44E3bdrEAMgXMjhx4gQDwEaMGMF8fHzk7Xr06MFGjRqlsIBCly5dmIeHB5NKpUp9FRYWyv+9efNmBoCdPXtWC8+q6mzfvp0BYPHx8fLbrly5wgCw7777jvfjlf5dHjx4UG67JUuWMADs4cOH8tvy8/OZqanpW49/Vkfpa33ixAmV93fq1Im5ubnJF9BgjLHo6GgGgG3ZsoXX81i+fDnz9PRk+/fvZ5s2bWLm5ubs4sWLGtfOh9CvmypHjhxhANjGjRsFaVcZQj9fdd9/mvRb0XtQCHo9vKNKmzZtALzeKymrW7duSE1NRWJiItLT03Hy5En5mXelnjx5Ant7exgaKn+BMjY2rlRdt2/fxu3btyv1GEI7ePAgrK2t0a1bN/ltAQEB8PT0xIEDB7TWb3FxMQDFb0WmpqZKe9pCu3HjBoKCghQm6Cp97ocPH+b1WKdPn8b06dPRu3dvjBkzBj179kRCQkKF2wnxPqiK183GxgbA6280QrSrDKGfr7rvP7E+HxWh0H9D6fjsm3NfGBkZoV+/fvjtt98QExODoKAgODk5KbRp0aIFLly4gPDwcDx8+LDCvkpKSpQWdHjbijm+vr5Kww1iu337Nry8vCCRSFBUVISCggIAgLe3N/7++2+NH/edd96BgYEB6tSpg4kTJypNzDVixAjY2NjgP//5D1JSUpCeno7w8HAUFxdj+vTplXpO5SkqKoKRkZHCbaX/My/7O5A6z8Pb2xsxMTFISUnB1atX8ccff8DHx0d+/61bt5CSkqL0mEK8D7T1upWUlKCgoABXr17FzJkzUadOHZXTLKjbTihCP19133/a+jtXlt6HPvvfyjoFBQW4cuUK5syZgw4dOmD8+PFKbQcPHozffvsNv/76K0JDQ5XuX758OVq0aIHFixfD3d0d7u7u+OSTT1QGAgC0b99eaca/uXPnCv4ctSUzMxO1atUC8Pp/eA0aNMCrV69Qq1YtZGZm8n48Z2dnLF68GFu2bMHhw4cxadIkbNu2DZ06dUJhYaG8XYMGDXDmzBmcPn0azs7OsLe3x08//YRDhw6hRYsWQj09JZ6enkhMTFS47a+//gIAhd921Hkec+fORWFhIZydndG8eXMMHjwYgYGB+O6779C6dWtMmTJF4cd/IQn9upVq164dzMzM0Lx5cxQUFODChQsqlwxUt51QhH6+6r7/tPV3riy9/yH38OHDCntv3bt3x549e2BmZqbUtlu3bkhLS8ODBw8QFRWl9KGsV68e/vrrLyQkJCAuLg4JCQn4/vvvsWHDBhw4cAAdO3ZUaL9582b4+fkp3Fb2h7+ymI6fTlG7dm3IZDIYGBiAMfbWRSLK06NHD4XTz7t06YKGDRti1KhRiI6OxujRowEA//zzD/r164cGDRpg5cqVMDIywpYtW9C7d28cOHBAa6f1f/TRR/joo4/w5ZdfYtKkSXj06BGmT58Oa2trSCT/7j+p8zzs7Ozw559/4u+//8axY8dw6NAhdO/eHUOGDMGuXbtQv359lTUI/T4Q4nUrtWXLFmRlZeH27dv46quv8N577+Ho0aOoXbu2Ru20QYjnq8n7T8i/c6Vp7deCasDNzY2988477MKFC+z06dNs5syZDAAbN26cvE3pDyvR0dGMMca+/PJLNn36dMYYYxcuXFD4IVeVv/76i1laWrK2bdvKb6spP+QGBgaywMBApdtDQkJY/fr1BekjNzeXcRzHpkyZIr9t2LBhrE6dOiw/P19+m0wmYy1atGCtW7fWuK+KfkQrLi5mH3/8MTM0NGQAmKGhIfv8889Z+/btWbt27Xg9j2fPnrHx48czX19fNmvWLHb58mW2atUq5uzszGxsbNj06dNVHhAghKp43R49eiT/+wjRrjKEfr7qvv806Zd+yK0C1tbWCAwMRPv27bFy5Up8+OGH2LRp01vn4J47dy6+++47tR+/VatW6N69u6hjeNri6+uLu3fvKu193rlzR7DfH0r3iMruGV25cgXe3t4KKy9xHIdmzZrh+vXrgvSrioGBAX744QekpaUhMTERKSkpWLx4MW7evPnWha7L1lf2v5aWlggNDcWNGzcQGRmJ3NxchIWFYfny5YiOjsbhw4excuVKrTyPqnjdXF1dUbduXVy9elWQdpUh9PNV9/1XFX9nTeh96L9p+fLlMDExQXh4OO9tVf3wJpPJcO/evQrXA62ILh6907NnT2RnZytMEJWYmIikpCT07t1b5TZ8n8fevXvBGFM4ac3W1ha3b99WWFKOMYarV69qdWy4lI2NDZo2bYratWtj69atyMzMxAcffFDuNm8+D0tLS3Tr1k0+LHT+/Hl069YNI0aMQK9evTB58mT88ccfSo8jxPtA6NftzVADgEePHuHx48dwcXHh3a6s0hMoK3MildDPV933nyb9VgmtfYeoBlQdp88YY5988gkDwM6dO6c0vFPWm8M7vXr1YiEhIWzz5s0sISGB7dmzh/Xt25cBYKtXr5ZvVzq8s2HDBnb27FmFy4ULF1TWijfm6tYFUqmU+fv7s/r167OdO3eyffv2MV9fX+bh4cFyc3NVblPe8wgODmZLlixhsbGx7MiRI2zRokXMwsKCtWrVihUVFcnblR4b36VLF7Zv3z528OBB9sEHHzAALDIyUuPnU9FX65SUFDZ37lx28OBBdvz4cTZv3jxmbGzMxo4dq9HzKOvUqVPMysqKbdmyhcXFxTEfHx/25ZdfKrUT4n0g9OvWtm1b9vnnn7Ndu3axEydOsJ9++ol5enoyc3NzdvXqVd7tynJ1dWUAWHJyss48X3Xff5r0WxXDO7qVIlXsbaGfkpLCzM3NWc+ePXmF/t69e9mAAQOYm5sbMzExYY6Ojuzdd99le/bsUdiuNPRVXWxsbFTWqouhz9jrsekhQ4Ywa2trZmlpyfr27cvu37//1vblPY9p06axhg0bMgsLC2ZoaMg8PDzY7Nmz2cuXL5Xa7t+/n3Xo0IHZ2dkxGxsb1rp1axYVFVWp51LRBy49PZ117tyZ1apVi5mYmLDGjRuzyMhIhZO1+D6PslatWsXq1q3L7Ozs2JQpUxRO6Csl1PtAyNctIiKCtWnThjk4ODBjY2Pm5ubGhg4dym7duqVRu1Lp6emM4zjWvn17zZ/o/wj5fBlT//3Ht9+qCH2aZZOQ/zl58iQ6d+6Mo0ePomPHjipPsiNVZ8+ePRg4cCAOHjyInj17il2O1hUXFyMhIQFdu3bFiRMntLZkIo3pE/KGrl27wsjISOWEa6TqJCQkoEWLFnoR+BcvXoSRkRG6du2q9b5oT5+Q/3n58iXu3Lkjv964cWOYm5uLWBHRF69evcKtW7fk1729vbU2+SKFPiGE6BEa3iGEED1CoV8BPouodOrUSWHSrFJ9+vSBu7u7/DotoqKeqVOnguM4TJo0SZB2FaFFVP7R6LGOHz+OoUOHwsPDA2ZmZmjYsCGmT5+O9PR0hXY1aRGV4uJi/N///R+aNGkCU1NTODo6omfPngrr/fJ5H9AiKjpInUVU+KJFVN7u/Pnz2Llzp2Dt+KBFVPi9buvXr0dWVhbCw8PRoEED3LlzBwsWLMChQ4dw5coV+e8iNWURFQAYN24coqOjMXv2bHTr1g05OTk4ceKEyimiK1oUCKBFVHQKn0VUOnbsyLy9vZUeIyQkhLm5ucmv15S5d7S1GEfpSS1r165lANhHH31UqXbqokVUNHvdnj9/rnTbb7/9xgCwrVu3lrttdVxE5dSpUwwA++GHH8ptp+6iQGXR3Ds6RJ1FVLRJF6dh0NYiEZGRkTAwMMDEiRMFaScUWkRFNVVTXzRt2hQA8PTp03K3rY6LqOzYsQMWFhaYMGGCkGVWGQp9NamziApftIiKsgcPHuCLL77AqlWrFKYr1rSdkGgRFfWdPXsWAFRORFfdF1G5evUqGjdujB07dsDd3R2Ghobw9vbG1q1bVbavaFGgqkahz0NFi6jwRYuoKJs8eTIGDRqEtm3bCtJOSLSIinrS09OxYMECBAUFqVykvrovopKWlobk5GTMmTMHERERiI+PR/PmzTF69GgcOnRI3k7dRYGqGv2Qy0NFi6jwRYuoKNq+fTvOnDmjcIJUZdoJjRZRqZhUKkVoaCgKCwsRHR2t8vGq+yIqMpkMKSkp2L17t/wbSqdOnXDmzBmsWLFC/tqruyhQVaM9fR6MjIwwe/ZsTJkyBXXq1FG6v7w3kKohCB8fHwQGBipc6tatK2jN2lSrVi35Hm5CQgJu3boFExMTZGdny/es1JWXl4dZs2Zh9uzZsLKyQm5uLnJzcwG8PvoiNzcXMplM7XbaMG7cOHz88ceIiIiAvb09Wrdujffeew/+/v6wt7cvd9tBgwaB4zj5Og0pKSmYOHEi3n//ffzzzz9YvHgxJkyYgB9++AH+/v745JNP5AtwC03I160sxhhGjx6Nv/76C/v371c4TLksHx8fBAUFYfTo0Th27Bhu3LiB//u//9O434oI/XxLf4cIDg6W32ZoaIjAwMAKh4vefB+IgUKfp/IWUTE3N1cZODKZrEaezi/kIhEvXrxAamoqFi5cCCsrK/kFADZu3AgrKytcvnxZ7XbaQIuolG/69OmIiYnBvn370Lp1a7W2qY6LqHh5eam8nTFW4e9LqhYFqmoU+gLy8PBASkqKwngdYwz379+Hh4dHpR5bF4/eEXJxCmdnZ5w+fVrpAgD9+vXD6dOn4ePjo3Y7baJFVJTNnTsX69atw86dOxX2gMtSNTRVHRdRKT0K6Pjx4/LbpFIpLl68qDRc+yZViwJVOa0dDFpD8JlP/8qVK8zY2JgFBwezXbt2sd9//50NGjSIcRzHDhw4IN+OFlFR/3lAzePv1W1XHlpERbPXbcWKFQwA+/TTT5Xez0lJSfJ2NWURlYKCAubl5cUcHBzYhg0bWHx8PBs0aBADwE6fPi1vp8n7gBZR0QF8Qr/0tt69ezMHBwdWq1Yt1rFjR3bkyBGF7WgRleoZ+rSIiup+O3bs+Nb386hRo+TtatIiKsnJyWzIkCHM1taWGRsbs+bNm7Pdu3crtNHkfUCLqBBShWgRFd1Ci6h00ko/NKZPyBtoERXdQIuoaAft6RPyP7SIChELLaJCCCFEK2h4hxBC9AiFPiGE6BEKfUII0SMU+oQQokco9AkhRI9Q6BNCiB6h0CeEED1CoU8IIXqEQp8QQvQIhT4hhOgRCn1CCNEjFPqEEKJHKPQJIUSPUOgTQogeodAnhBA9QqFPCCF6hEKfEEL0CIU+IYToEQp9QgjRIxT6hBCiRyj0CSFEjxiKXYAuk8lkePr0KaysrMBxnNjlEELIWzHG8PLlS7i4uEAiefv+PIV+OZ4+fQpXV1exyyCEELUlJyejXr16b72fQr8cVlZWAF7/Ea2trUWuhtQERUVFiIyMBAB8+umnMDY2FrkiIhSZTIa0tDRkZmbC3NwchobqxytjDFlZWcjJyYGpqSkMDAzU2u7QoUOIjY3FihUrkJubi4EDB8pz620o9MtROqRjbW1NoU8EUVRUBFNTUwCv31cU+jWDTCbDixcvIJVKUadOHd6Bn5mZiZKSEtjb26sd+Dk5Ofj++++RnZ2NQ4cOoXv37gBQ4VA0hT4hhFRCaeBnZGTAwsJCo8DPzs6GmZmZ2oEPvN5pWLNmDQ4dOoThw4fjxYsXam1HoU8IIRoSI/ALCwthYmICAGjSpAmaNGnCq2Y6ZJMQQjQgRuDHxcVh4MCBePLkiaZlU+gTQghfYgS+VCrFxo0b8eTJE+zdu1fDyml4hxBCeBFrDN/IyAjr1q1DTEwMJk6cqEnpAGhPnxBC1CZG4GdlZcn/7ejoiEmTJpV78lVFKPQJIUQNYgT+/v370adPH1y6dEnTspVQ6BNCSAXECHzGGA4cOIDc3FwcP35c09KV0Jg+IYSUQ6wxfI7jEBkZib179yI0NFST0lWiPX1CCHkLMQI/OTlZ/m9TU1MMHTq0UmP4b6LQJ4QQFcQaw+/fvz92796tadkVotAnhJA3iDWkc/v2bZSUlOD27dualK0WGtMnhJAyxAp8AJg1axb8/f3RpUsXXtsxxlBUVKRWW9rTJ4SQ/xEj8K9fvw7GGIDXP95269aN1xg+Ywx5eXkwNzdXqz2FPiGEQLwx/JEjR2L58uXy4OejNPAtLCxQq1Yttbah0CeE6D2xhnSkUikAoLi4mHfolw18Ozs7tfulMX1CiF4Tcwy/f//+cHNzQ7NmzTQa0ikNfD41054+IURviRH4Z86cQX5+vvx68+bNqyzwAQp9QoieEmsMf+rUqZgxYwYKCwt511zZwAco9AkhekisIR0XFxeYmZnB1dUVRkZGvGoWIvABGtMnhOgZMcfwmzdvjujoaLi6ulbpkE5ZNX5Pf8OGDeA4DpaWlmKXQggRmRiBf/ToUaSmpsqvu7m5iRb4QA0P/SdPnmD27NlwcXERuxRCiMjECPzDhw/js88+w/jx45GZmcm7ZqEDH6jhoT9p0iS8++676Natm9ilEEJEJNaQjp+fH1xcXNCmTRvY2NjwqlkbgQ/U4DH9bdu2ISEhAbdu3cL8+fPFLocQIhIxx/BdXFzwyy+/oFatWqIO6ZRVI/f0nz9/jhkzZmDZsmWoV6+e2OUQQkQiRuAfOHAA169fl1+3s7PTmcAHauie/pQpU+Dt7Y3Jkyfz2q6wsFDh2NmcnByhSyOEVBExAv+PP/7AvHnzYGFhIT9Khw9tBz6g43v6J0+eBMdxal2uXr0KANi9ezdiY2Oxfv16cBzHq7+lS5fCxsZGfuH7ghFCdINYQzotW7ZEixYt0LNnT9StW5dXzZUJfJlMpvbUyjq9p+/t7Y3169er1bZ+/frIzc3F1KlTMW3aNLi4uCArKwsA5H+MrKwsGBkZwcLCQuVjhIWFYdasWfLrOTk5FPyEVDNijuGbmZlh9erVMDY2rrIhHZlMhpcvX6p9WDrHNJnPs4ICCgoK1J7bWUj//PMPPDw8ym3Tr18/7N27V63Hy8nJgY2NDbKzs2FtbS1AhUTfFRUVYenSpQBe72QYGxuLXFHNItbUCgAQEhKiUc1CBL6VlRXMzMxgb29fYV5Vek+/oKAAO3bswP79+/Hnn3/i+fPnYIzBxMQEjRs3RnBwMIYPH45mzZpVtqsKOTk54cSJE0q3L1u2DAkJCTh48CDs7e21XgchpOqJEfiJiYnyowNdXV3h7+/Pq2ahAr9OnToKk7iVR+PQz8/Px4oVK/Ddd98hOzsbPj4+6NKlCxwdHWFqaoqMjAzcv38f69evR2RkJNq2bYsVK1bgnXfe0bTLCpmamqJTp05Kt2/ZsgUGBgYq7yOEVH9iHoc/aNAg+b/5EDLwjYyMtB/6jRo1goWFBebPn4/hw4ejTp06KtsxxnDixAls3rwZnTt3xqpVqzB+/HhNuyWEEAVijuFLJBLMnTtX/m8+/QoZ+Lxq5tW6jC+++AK3bt3CrFmz3hr4wOs1H4ODg/HLL7/g1q1b8PT01LRLjW3ZsgW5ublV3i8hRLvEGsP//vvv5StdSSSSahP4QCX29MeOHct7mwYNGqBBgwaadkkIIXJiBP7Dhw8RHh6OkpIS+Pn5ITg4mFfNYgc+oOOHbBJCiCpiDem4ubnhs88+w71793j/RqgLgQ8IGPoymQzbtm3DyJEjhXpIQghRIkbgM8bkJ3sOHTpU4bq62+tC4AMCnpErlUoxZswYoR6OEEKUiDWGP2PGDIUzXqtr4AM89/S/+OKLt94nlUorXQwhhLyNGIGfkZGBL7/8Eq9evcLevXsRGhrKq2ZdC3yAZ+gvWbIEAwYMUHm2V0lJiSAFEULIm8Qaw7ezs8O3336LkydP4v333+dVsy4GPsAz9Js2bYqRI0eqPN24oKAAW7ZsEaouQggBIE7gS6VSedC2bt0arVu35lWzrgY+wHNMf8KECW/dozcyMsLChQsFKYoQQgBxAj8uLg4ffPAB0tLSNKpZlwMf4Bn6kyZNwnvvvafyPgMDAwp9QohgxAj8goICrF69GklJSYiJieFds64HPiDA0TsU9IQQoYk1hm9qaop169Zh3LhxvKeLqQ6BDwgQ+l9//bUQdRBCCABxAr/sNC3169fHtGnTqtXUCnxUOvQFno6fEKLHxDoOv2/fvrh9+7ZGNVenwAcECH2+SxISQogqYgR+SUkJdu7ciczMTBw8eJB3zdUt8AGae4cQogPEGsM3MDDADz/8gJiYGIwYMYJXzdUx8AEdXxidEFLziRH4qamp8n9bWVlh1KhRNXYM/000pk8IEY1YY/h9+vTBkSNHNKq5Ogc+IEDot2vXTog6CCF6Rqwhnb/++gtSqRQXL17kXXN1D3xAgDH9o0ePClEHIUSPiLnEYXh4OAIDA1VOJ1NRv9U98AEa0yeEVDExAv/OnTvyfxsYGKBv3756M4b/Jo339B89esSrff369TXtihBSQ4g1l86CBQswceJETJ48mXfNNSnwgUqEvru7O69j9GnqZUL0m1hDOhkZGWCMIT09vVqveCUUjUN/06ZNdGIWIUQtYo7hjxw5Eo0aNUKbNm30PvCBSoT+6NGjBSyDEFJTiRH4Fy5cQEBAgDxs33nnHV4119TAB7TwQ+5///tfnD17Fnfv3hX6oQkh1YxYx+FPnDgRn3/+uUbLuNbkwAcEDP2dO3fCzc0Nvr6+aN++PXx8fODm5oZdu3YJ1QUhpBoRa0jHxsYGhoaGsLW15T0UVNMDHxBo7p0DBw5g6NChaNKkCT7++GO4uLjgyZMn2LZtG4YOHYrY2Fj06tVLiK4IIdWAmGP47du3R1RUFDw9PfX2sMzycEyAeRTatWsHa2tr7N+/X+GPzBhDr1698PLlS/z555+V7abK5eTkwMbGBtnZ2SoXgyeEr6KiIixduhQAEBYWBmNjY5ErEp4YgX/ixAkEBATA1tZWo5prQuCrm1eCDO9cvXoVU6ZMUfq/KsdxmDJlCq5duyZEN4QQHSdG4B86dAizZs3CRx99pLAYCp9+q3vg8yFI6BsYGKCoqEjlfVKplNdXLEJI9STWkI6Xlxfs7Ozg7+8Pc3NzXjXrW+ADAo3pt2rVCitWrEDv3r1hZmYmv72wsBD/93//hzZt2gjRDSFER4k5hu/h4YHt27fDwcGBxvDVIEjoL1q0CF26dEGDBg0wePBgODk54dmzZ4iJiUF6ejqOHz8uRDeEEB0kRuDHx8fD09MTnp6eAIA6derwqllfAx8QKPTbt2+Pw4cP4/PPP8fq1avBGINEIkGbNm0QHR2Ntm3bCtENIUTHiBH4J0+eRFhYGGxtbREdHU2Bz5NgyyV27NgRZ8+exatXr5CZmQlbW1ve42uEkOpDrCGd5s2bw9vbG35+fnBwcOBVs74HPqCFNXLNzc0p7Amp4cQcw7exscHGjRthZmZGY/gaoMNqCCG8iDW1wqlTp+TXLSwsKPA1JNie/t69exEVFYWHDx+ioKBA4T6O4+hYfUJqALEmT5s/fz4MDAwQFRUFb29vXjVT4CsSJPS//vprzJkzBw4ODvD09ISFhYUQD0sI0SFijuF37doVNjY2aNSoEa+aKfCVCRL6a9aswdixY7Fu3Tre43OEEN0n5hi+oaEhli5dColEQkM6AhBkTD89PR3Dhg2jwCekBhJricPNmzfLrxsaGlLgC0SQPf127drh77//RnBwsBAPRwjREWIE/t27d7FgwQIwxuDl5YV27drxqpkCv3yChP63336LAQMGwNXVFT179qyRMwcSom/EGtJp1KgRJk+ejOfPn9OKV1ogSOh7enqia9euGDBgADiOUzpOn+M4ZGdnC9EVIaQKiDmGDwATJ06kRcy1RJDQ/89//oNVq1YhICAAvr6+tKdPSDUm1nH4Z8+exaJFi+TbUOBrhyChv2XLFsyZM0e+OAQhpHoSI/BTU1OxaNEiFBUVoVWrVujXrx+vminw+REk9EtKStCtWzchHooQIhKxhnTq1KmDZcuW4fz58+jbty+vminw+RPkkM3u3bvj3LlzQjwUIUQEYgR+SUmJ/N/BwcEICwujwzKrgCB7+gsWLMCQIUNgYWGBkJAQ2NnZKbVRdRshRHxijeH/+uuvWLVqlUbrT1Pga06QPf1mzZrh9u3bmDVrFry9veHg4KB0qSrHjx/H2LFj4ePjAwsLC9StWxf9+vXDpUuXqqwGQqoLMQI/Ly8PkZGRSExMRExMDO+aKfArR5A9/fDwcF6/tGvT2rVrkZ6ejk8++QSNGzfGixcvEBkZiaCgIBw6dIhOICPkf8Qaw7ewsMCPP/6IAwcOYOTIkbxqpsCvPI4xxsQuQkjPnz+Ho6Ojwm25ubnw9PSEn58fjh49qvZj5eTkwMbGBtnZ2Rp9BSXkTUVFRfKj3MLCwkQ7vFmMwM/Pz1dYQ5svCvzyqZtXNW4+/TcDHwAsLS3RuHFjJCcni1ARIbpFrLl0BgwYgIcPH2pUMwW+cGpc6KuSnZ2Ny5cvo0mTJmKXQoioxAh8qVSKn3/+GSkpKdi3bx/vminwhSX4com6aOrUqcjLy8O8efPKbVdYWIjCwkL59ZycHG2XRkiVEWsM38jICD/++CN2796NcePG8aqZAl94Gof+o0ePeLWvX78+7z5OnjyJzp07q9X2ypUrCAgIULp9wYIFiIqKwg8//ICWLVuW+xhLly7FokWLeNdJiK4TI/AzMjLkh2rb2dlhwoQJvGqmwNcOjUPf3d2d1xE7ZU/EUJe3tzfWr1+vVltV/1NZtGgRlixZgi+//BIff/xxhY8RFhaGWbNmya/n5OTA1dVV/YIJ0UFiHYe/ZMkSrFy5kvdMmaX9UuBrh8ahv2nTJq0fpuns7Izx48drtO2iRYsQERGBiIgIzJ07V61tTExMYGJiolF/hOgiMQKfMYajR48iPz8fp06doumRdYzGoT969GgByxDW4sWLERERgfnz52PhwoVil0OIKMQaw+c4DitWrMDevXsxaNAgXjVT4GtfjfshNzIyEuHh4ejZsydCQkKU5gQKCgoSqTJCqo4Ygf/PP//A3d0dwOsfbwcPHsyrZgr8qiFY6N+9exfr1q3D33//jfz8fIX7OI7DsWPHhOqqXLGxsQCA+Ph4xMfHK91fw85FI0SJWGP4CxYswOzZszFs2DDeNVPgVx1BQv/GjRsICgpC3bp1kZSUBH9/f6SlpeHJkydwdXVFw4YNhehGLSdPnqyyvgjRNWIN6Tx48AAymQz379+nFa90nCAnZ82dOxc9evTAzZs3wRjDxo0bkZycjNjYWBQUFGDJkiVCdEMIKYeYSxxOnToV33zzDebOnUuBr+MECf3Lly9j1KhR8rmwZTIZACAkJASzZ89GWFiYEN0QQt5CjMC/evWq/LPOcRw6d+5M8+FXA4KEfmZmJuzs7CCRSGBkZITMzEz5fYGBgbh8+bIQ3RBCVBBrDH/MmDFYvHixPPj5oMAXjyChX7duXaSlpQEAPD09cerUKfl9iYmJsLS0FKIbQsgbxBrSkUgk4DiO9zBQab8U+OIR5Ifc9u3b48yZM+jfvz+GDx+OhQsX4tmzZzA2NsaWLVvw4YcfCtENIaQMMcfwe/XqhXr16qFJkyY0pFPNCBL68+bNw9OnTwEAc+bMQUpKCqKiosBxHEJDQ/F///d/QnRDCPkfMQL/9OnTaNGiBSwsLAAATZs25VUzBb5uECT0GzZsKD8s08DAAN9//z2+//57IR6aEPIGMQL/wIEDmDdvHgICArBmzRrei6FQ4OsOQcb0pVIp8vLyVN6Xl5cHqVQqRDeE6D2xhnTc3NxgYWGBhg0b8p6figJftwiypz9hwgQUFhYiOjpa6b6JEyfCzMwMGzZsEKIrQvSWmGP4TZo0wY4dO+Di4kJj+NWcIHv6J06cwHvvvafyvr59+1bZFAyE1FRiBP7hw4fx5MkT+fV69epR4NcAgoR+amoqnJ2dVd7n5OSElJQUIbohRC+JEfhHjx7FnDlzMH78eGRkZPCumQJfdwkS+rVq1UJSUpLK+5KSkmBlZSVEN4ToHbGGdPz9/VG/fn20a9cOtWrV4lUzBb5uE2RMv3Pnzli6dCkGDhwoXx4NeL1c2rJlyxAcHCxEN4ToFTHH8B0dHfHzzz/DysqKhnRqGEFCPyIiAq1atUKjRo0wZMgQ1K1bF48fP8bOnTshlUpp3VlCeBJragUnJyf5WtI2Nja8aqbArx4ECX1vb2+cPn0as2bNwvr161FSUgIDAwN07NgRK1euhLe3txDdEKIXxAj8M2fOYP78+TA1NUV0dLR8MRQ+/VLgVw+CLaLSrFkzHDt2DPn5+fIJ2ExNTYV6eEL0glhDOi1atJCviVG/fn1eNVPgVy+ChH5aWhrs7e0BAGZmZkpn612+fBktWrQQoitCaiwxx/BNTU3x3XffwdDQkMbwazhBjt7p27cvCgoKVN538+ZN9OjRQ4huCKmxxBrD3717t/y6sbExBb4eEGRPPzU1FcOHD1d4AwGvD9fs1q0bfH19heiGkBpJjMC/ceMG5s+fD8YYPDw8eH8Tp8CvvgTZ0z9w4ABOnjyJWbNmyW979OgRunTpAhcXF+zfv1+IbgipccQa0mnSpAmGDRuG999/HwEBAbxqpsCv3gTZ0/fx8UFMTAx69OgBd3d3DBkyBF26dIGVlRUOHz5MJ2cRooKYY/gcx2H27NlgjNGQjp4RZE8fADp27IgNGzbg008/RVBQEIDXp3KXPVmLEPKvtLS0Kg38uLg4LF++HIwxAK+DnwJf/2i8p69qPo7evXtj2rRpiIqKQnx8PIyNjeXtKPwJUZSZmQkbG5sqCfzHjx9j4cKFKCkpQUBAAO+DKyjwaw6NQ9/e3h4cx6m8jzGGwMBAhdtKSko07YqQGqPsIuLm5uZVNqRTr149LFiwADdv3kS3bt141UyBX7NoHPrh4eFvDX1CiDKZTIa0tDT59aoIfMaY/HPav39/9O/fn1fNFPg1j8ahHxERIWAZhNRspT/aZmZm8t62Msfhx8XFYeXKlbyXNyztlwK/5hHsh1xCiGplj9IxNzfnta2mgZ+dnY2lS5fi7Nmz2LNnD++aKfBrLo1D38/Pj9eb6dmzZ5g+fTqWLVumaZeEVDtiHZZpY2ODH374AR9++CGGDh3Kq2YK/JpN4+Gd0NBQjBw5Era2thg+fDg6deqEFi1ayH/gzc/Px71793Du3Dns27cPhw4dQqtWrTBp0iQh6ydEZ6kKfKlUqta2mgZ+UVERjI2NAQDNmzdH8+bNedVMgV/zabynHx4ejv/+97/44IMPsGHDBvTq1QtOTk4wMjKCmZkZLC0t0axZM0ycOBE5OTnYsWMH/vzzTzRu3FjI+gnRSWLNpTN48GCkpqZqVDMFvn6o1Bm5zs7OWL58OZYsWYLz58/j7NmzePr0KfLz82Fvbw8fHx906tQJ9erVE6peQnSeGIFfVFSEH3/8EcnJyYiJicHkyZN51UyBrz8EmYbByMgI7du3R/v27YV4OEKqLbHG8I2NjfHTTz9hz549+Oijj3jVTIGvX+joHUIEIkbg5+TkyP/t7OyMKVOm0NQKpFwU+oQIQKwx/D59+uD69esa1UyBr58o9AmpJDECXyaTYe/evcjJycHhw4d510yBr78EWyOXEH0k1hi+RCLB999/j927d2PYsGG8aqbA12+0p0+IhioT+ACQlZXFO/CfPn0q/7eZmRk+/PBDGsMnvFDoE6KBygY+8PpHWL5j+O+9957GK9FR4BOAQp8Q3io7pFPK1NSU15DOtWvXUFxcjGvXrvGqt7RfCnwCVHJM/8GDBzAzM4OTk5P8tpUrVyq0sba2xvjx4yvTDSE6o7KBn5WVJb/Od4nDzz//HM2bN6cFUEilaBz6ly5dQuvWrfHbb79h0KBBAF4vlDJ79myFdhzHwdPTE506dapUoYSITYgfbcseV6+OW7duwdfXV760Ya9evXhtT4FP3qTx8M769evRtm1beeCXFRsbiwcPHuD+/fsYOHAgtm7dWqkiCRGbUEfpmJqaqr1dXFwchg8fjm+++UZhWIhPvxT45E0ah/7x48ffeqiYs7Mz3Nzc4O7ujkGDBuHMmTMaF0iI2MQ6LPPVq1dgjMn/ywcFPnkbjYd3Hj9+DF9fX4XbOI5Ds2bNFBaKcHZ2xuPHjzWvkBARCR34xcXFam8fGhoKDw8PtGzZkg7LJIKp1NE7b+59SCQSXLlyBT4+PvLbZDKZRl9NCRGbGHv4586dQ1FRkfx6q1atKPCJoDQOfRcXF9y8ebPCdjdv3oSLi4um3RAiCrHm0pk8eTJmzZql9mIrb/ZLgU8qonHod+zYET/99FO5X1eLi4vx008/0ZE7pFoRawzfwcEBJiYmcHJy4n04JwU+UZfGof/JJ5/g9u3bGDx4MJ4/f650f2pqKgYPHow7d+7gk08+qVSRmsjNzcWMGTPg4uICU1NTBAQEYMeOHVVeB6lexAp8AGjdujWioqIwd+5cGtIhWqPxD7n+/v744YcfMHXqVBw8eBCBgYFwc3MDADx8+BAXL15EcXExVq9ejaZNmwpWsLoGDhyICxcuYNmyZfDy8sL27dvxwQcfQCaT8Z6giugHMQL/+PHj8Pf3h729PQCgYcOGvGqmwCd8caySv7L++eef+Oqrr3Dy5Enk5+cDeD0RVHBwMMLCwtC2bVtBCuXjwIEDCAkJkQd9qe7du+PmzZt49OiRWh/KnJwc2NjYIDs7G9bW1tosmQhEViyFNC8HnISDkYUNOIn6UxVrI/CTkpIglUphZGQET09PFBcXIy4uDgBgYmKCuXPnwsPDA1u2bOH9HqPAJ2Wpm1eVnlq5Xbt22L9/P2QyGdLS0gAA9vb2vL6eCm3Pnj2wtLTE4MGDFW4fM2YMhg0bhvPnz4vyPyOiXcX5ucj55xZYyevfmYpKgDpNWkFiWH6gaSvwc3KB05eLIZUWo45NKjw9PRW29fX1haOjI1q0aAFLS0sez5QCn2hOsPn0JRIJHB0dhXq4Srlx4wZ8fX2VPgj+/v7y+/mEflFRkcJhdEQ35SXflQc+ABhyDLlPH8DUyf2t25TurGRmZsLc3ByMMVy5ckW+d+7n5/fWbUvn0snJyYGpqSkYY/IDG1LSOWyONUVh0euhzSc5xWiZWgx7m3/rc3JywtatW2FnZweZTAaZTKbW8yw9Ycvc3BxWVlZgjKl9tI9MJkNubi4sLS1ha2sLxhi9t2sIdV/HGrmISnp6Oho0aKB0u52dnfx+VQoLC1FYWCi/XjpPSmRkJK/T54k4JvUPhmGZPW2JhEPygyTs2hyt1vYSQxPU9uoLc7uukBkVIvOfk7h4cYtGtdxO64TCIhOUHitRwgywLTYTRU+/h4ODA5ydnREfH6/RYxOiSkFBgVrtauzUyhzH8b5v6dKlsLGxkV9cXV21VR7Rgpy8fIW9ZZlMhsyXr9Te3sF3ECwcfCExNIGBsRUcvN+DeW1vjWopLLaE4sdLgrwCE8TExGDr1q3IzMzU6HEJqawauadfu3ZtlXvzGRkZAP7d439TWFgYZs2aJb+ek5MDV1dXfPrpp/RDro45f/48/vrrL4Xbztx6gB6BjVH6c1JufiESHzxVOV5ua2uLFy9egOO41zsBEiOY124kv5/jODAmg7WzP5CfLL+dMYYGDRrA0dFRPh/+/fv3ce/ePYXHtzTJRma+Kf4NfhmszXLh6uoKR0dH2NjYwNjYGBzHoWHDhiq/mZZVdkjH1taW9xh+6ZCOo6MjjeHXUDk5OVi2bFmF7aok9F+8eAEHB4eq6AoA0LRpU0RHR6O4uFjhw3H9+nUAeOs4rYmJCUxMTJRuNzY2hrGxsXaKJRrp0KEDOnTooHR7ibQQf1+9BKm0GEWcGaZMm65wf+mPtqdOnUJy8r9hDs4AjMnAcYpffoulhXj1SvHbwqtXr2BpaSn/0dbLywteXl4KbdrlAhv2csj430zKpoavMHGIAyaFbseRI0cgkUjQvXt3tcK79Edba2trjX60ffXqFWxtbelH2xpO3YzS2vAOYwwHDhzAoEGDqnyYZMCAAcjNzcXu3bsVbt+6dStcXFzQpk2bKq2HVB0DIxP4tWqL5m3fRZt3FH+sf/MoHYWLuSkKXlyXzxPF2OthImnmLVhYWMDc3BxmZmYwMTFR6zh8a0tg2lApTHO3wvjlZjSvdxI2lq8PZ6YTr4iYBN/Tv3fvHjZt2oStW7fi2bNnYIyVO76uDb169UK3bt0wefJk5OTkwNPTE9HR0YiPj8e2bdt4nylJqr83Az8gIAABAQGKbRjwT8ZL3HmUB2nRKxQ+v4jQfp01PvHqxvUr2B29AgDgUnsq75op8Ik2CBL6BQUF2LlzJzZu3IjTp0+DMYY2bdogPDwcJiYmGDt2rBDd8BITE4N58+YhPDwcGRkZ8PHxQXR0NIYOHVrltRBxqXscvoQDGtTOxblD2+Vhq07gl8gYmAwwNFTcufH398e7774LQ0NDvPvuu7xqpsAn2lKp0L9w4QI2btyIHTt2ICcnB05OTpg9ezbGjBkjn1553759ghTKl6WlJb777jt89913ovRPdIMmJ175+fnJj9MvL/BlMoa4BIY/L7/+luDjwTAshIOZ6evwNzAwwMqVK+VLHaqLAp9oU6Xm3rl58yaMjIzQp08fjBkzBr169RL1TFxCytL0TFt/f3+19vATLgCnL/17/c4/wPdbnsGa7cOkSZPAcRzNlkl0jsahf+PGDUgkEsycORMzZ87UmbNxCQG0M7VCUlISkpKS5O0u3m8FwLbMdkBqVi1E71iH/Px8NG7cWH6fp6en0jQMqvqlwCfapvFu+bfffoumTZti+fLlqFevHvr37499+/bxWg6OEG0QIvCzsrIhZZYokP4bnlKpFAUFBfKLBIUAFOcrNJCUoGXLlnB3d1doW9E0CRT4pKpovKc/ffp0TJ8+HRcvXpSP68fGxsLe3h4ffvghRo8eLcqUykS/CRH4z57n4uh1d6TlvD7uuaFzPnq0yISRkZHCdBwedZKR+aAOABkADgAHr7rJqNf0faUj1soLYgp8UpUqPbVyqTeP4AGA5s2bw9fXF9u3b0dJSYkQ3VQpmlq5ehFqSOfwtfp4kmECxkqDmyGwUS7a+r5U2m77zj9x5bYJ/PwD0MzbAAE+5R+eXHZq5caNG6NRo0YU+EQQVTa1cilTU1OMGDECI0aMwL1797Bx40b8/PPPuHz5cpUfp0/0j6aBn5iYiOvXX5+UJZPJwHEcnhSNBEPZ9yyHG0mvkPNQcYK0ly9f4tuvv0ZRURGCGi9AgM8g9YqVGAMGFki6/w9cXFwo8EmV0so0DA0bNsRXX32FJUuW4MCBA9i0aZM2uiEEQOX28IuKipSmWZBwhSiBAVC6s8Jk4Fie0iyGRkZGmDlzJh49eoQBAwao1V9ydm0YeX0KjjMASgqQj6dwtTOhwCdVRqtz70gkEvTp04emPSBaU9khneLiYpiYmCh8G3UouYCUko4ASgBw4DgZHAwTYSp5PZ5fUlIiP6LHz89PYXW28mTmm+HvNFf5/0sgMcaVZ+5oUC8NhlBvlJUCn1SW1kKfMYaDBw9i48aN2L9/v9pzPROiLiHG8OvUqQN3d3el4+kfp6XjfoopDCQMvq75sLNqjYJChh9/ScJ/77+Cr1cdtG+eD09Pj9e1MODqfUs8fG4CYyOGlg1fIjf9b4VDPJl1IGDnAZRO6sZJUCwDdv1+CpLCZIX+/fz85Iv+lH2+FPiksmrk3Duk5tP2Iub17ItQz/7flYhKSmT4v03FyMxxh5kN8E+KDE8OW6JRIwZLcw5/3LTBtX8sALw+juefVFME1n2gsLMjMXkJA3B489NQkJcBVpincNubh3hS4BOh1Ni5d0jNpe3AB5RPxLrztBGyXrr9OzTDGUBawuHnX6/C2TYZjw0+kv8GwPB6ls5bj23KnLoFyHJuwsCuNZiJw/9aSSB5dRtmhnngDC0U+i8b6hT4REg1du4dUjNVVeDfvn1bfqJhYWEhUrNUrAfBcZAxCRgk/w7ZyDsDZOzN24rhZXEBfz8zB2doDSOWieHv+UPCDSv3+VLgEyHR3Duk2qiKwAdeD62UBv61a9dw5MgRdOjfVakdB8DW4gUkKIaJ7DEKOReF8Xprg8cwlZjKhzglEgnMTA0hSz8DADAxN4eE81d63LLPlwKfCI3m3iHVQlUFPgD5mbclJSW4cOECcnNzUZB5GgY2fco+KhytH6O2TTEAU9RlJ5FS8i5eoR4MJSV4xycPzTy8kJdXV+E4fKlUiosXLwKAwtw8qp4vBT7RBo1D/9tvv8XmzZuxfPlyREZGonfv3hgzZgxCQkJ4fSAJqUhVBj6gODla+/btsXv3bowc1RcJf3H441IhiqRSOFk/gqfLY/Ts2fON/p6B49SbWuFty3ZS4BNt0ngsZvr06bhy5Qr++usvjBs3DgkJCRg4cCDq1q2LTz/9VL4eLSGVUdWBD7xe07mUjY0Nxo4dC0MDA3R5R4KFH5thTN/n6NrWAI0aKc+aqW7gvw0FPtG2Sg/ABwYGYu3atXj27Bm2bNkCX19ffPvttwgICEBgYCB27dolRJ1ED4kR+Pv370efPn1w6tSpt7bx9PSEr6+vyqmSKfCJrhPsV9fSuXdOnjyJ//73v5gzZw5SUlIQFRUlVBdEj4gR+IwxnD59GoWFhThz5gzvminwSXVAc+8QnSNG4AMAx3FYsmQJ2rRpg379+vGqmQKfVBdaPb6ydO6dmJgYbXZDahAxAr/sSViGhoYYMGAArWlLaiw6qJ7ojDcD/9atW7h06RISExMr3LYyY/ihoaEafxulwCfVDR1bSXSCqj38W/9NRpHMEEbIV5p8rKzKDOk8e/YMMpkMT58+5T1PVGUCHwByc3Nha2tLgU+qFIU+EZ2qwE9Ks4Kd/wQAAJOVIOVlNpyslGdqrUzgA8D48ePh7e2Ndu3aVWngA4ClpSUFPqlyNLxDRKUq8NPzjHE/w+rfRpwE15/ZoqBY8e2qaeBfunRJPs0CAHTo0KFKx/BLOTo6UuCTKkd7+kQ0pYF/9uxZ3L17V76nbebUCuZ1O4D73zw2HMeBAYg9eArSl48AvA5exhjq1asHHx8ftQM/Li4OCxYsQM+ePbFkyRLe3wwqG/i5ubny6xT4RAwU+kQUZffwOY5TWLKQvUyDxZuzVgLIzX6O4nzFeec5juMV3Obm5jAwMICFhQXvdR6E+NHW0tKSV5+ECE3j0JdIJLw+NCUlJZp2RWqYN4d0TExMYGFRZj75Vw9RlPMIRlaur9enlRggP+UiTCQFMDY3V1jE3NjYmFffwcHB+OWXX+Dt7S3KYZm2trYVb0CIFmkc+uHh4Qqhv3nzZuTm5qJv375wcnLCs2fPEBcXBwsLC1pEhcipGsP39/dXXhqQAXsOH0QJTMEVZ+H93kEAPtBoDP/UqVMICAiAtbU1AMDX15dXzUIelsmYemvhEqItGod+RESE/N+RkZFwcnLC0aNHFb6+vnz5El27doW5uXmliiQ1A58TryQcUJh+Sx62QBuNAj8+Ph5hYWFo3Lgx1q9fz/u9KPRx+EVFRRVvSIgWCXL0zpo1a/Cf//xHabzSysoK//nPf7BmzRohuiHVmCZn2vr5+aFFixbw8/PT+LDMBg0awMbGBr6+vjA1NeVVM514RWoiQX7IffLkyVs/EIaGhkhJSRGiG1JNaTq1gr+/f6WPw/fy8kJ0dDTq1KlDUysQAoH29H19fbFy5UpIpVKF24uKihAZGSlfL5foHzHm0jl06BAePnwov+7s7EyBT8j/CLKnv2TJEvTv3x8NGjTAwIED4eTkhJSUFMTExCAlJQV79+4VohtSzYgR+MePH8fnn38Oe3t7REVF8V7GkwKf1HSChH5ISAji4+Mxb948rF69Wn44XevWrbF582Z07aq8qDSp2cSaHjkgIAANGzZEQEAA7O3tedVMgU/0gWAnZ3Xp0gVdunTBq1evkJmZCVtbWzpqR0+JFfgAYGdnh82bN8PCwoKGdAhRQdC5d7Kzs3H69GmcPHkShYWFQj40qSbEWuLw7Nmz8utWVlYU+IS8hWChv3jxYri4uKBXr14YOXIkHjx4AOD1N4Bly5YJ1Q3RYWIE/vnz5zF//nzMmDFDYTEUPv1S4BN9Ithx+osWLcK4ceOwf/9+hbMO+/Tpg/379wvRDdFhYgS+TMbQ1L8F3n33XfTt2xcNGjTgVTMFPtFHgozpr1q1CrNmzcKKFSuU5thp1KgR7t69K0Q3REdVdeAzxnDsHMORMzKUlHDwbPV/+PA9CQ3pEKIGQfb079+/jx49eqi8z8rKCllZWUJ0Q3SQGHv4m7ZfQfxpGUr3Lx49A37Zp/6cNhT4RJ8JsqdvY2OD1NRUlff9888/vI+VJtVDVQV+UlKSfLz+yZMnOHGpDurUbwJOYvC/x+Lw6BkQt/8IDA0Uv2l6enrC09NToV8KfKLPBNnT79KlC1asWIG8vH/nOuc4DsXFxVi7du1bvwWQ6qsq9/ClUikKCgpQUFAAOzs7ONhbA0qzejMUFb2Styu9lD1LnAKfEIH29L/44gu0atUKjRs3xoABA8BxHFatWoUrV67g0aNH+O2334TohuiIqh7SMTIyUpgsrW1z4EISIGMyvE5/Du4O/8DczETltqX9UuATIlDoe3p64syZM5g5cybWrFkDxhh+/vlndO7cGVFRUahfv74Q3RAdIMYY/u3bt3Hp0iUsWLBA/mNt+xcMccezUFgE1HcqRN+unuC4Rm/tV1XgMwa8LDJCsUwCc6NimBoqL/RDgU9qGkFC/9SpU2jRogXi4+NRWFiI9PR02NrawszMDLm5uTh16hTeffddIboiIhIj8J89e4aIiAgUFxcjMDAQISEhAABnBw4ThlS8ClV5gZ+UYYPswv99g2AyNLDLgZ3ZvycVUuCTmkiQMf3OnTvj1q1bAAATExO4uLjAzMwMAHDnzh107txZiG6IiMSaWsHZ2RlLlixBaGgoevXqxavm8oZ00l6ZIbvw3+EgBg4PMm1QInv9YwEFPqmpBNnTL28JOKlUyuv4aaJ7xDnxSiZ/3/Ts2RM9e/bkVfObgX/r1i3cuHFDfr+DZ0fUcmkmPwKI4zgwAHt+j0dhXhoYY/JF19955x288847vPonRFdpHPo5OTkKx9+npKTg0aNHCm3y8/OxdetWODk5aVygJo4fP45t27bhzJkzSE5ORq1atRAYGIjw8HC0bNmySmup7sSaSycmJgbff/+94oLpPPp9cw9fKpUqHF1mlpWKWnUlCtswJkN2ZgpkxYpLGtI8UqQm0Tj0v/nmG3zxxRcAXu8lDRgwQGU7xhjmzp2raTcaWbt2LdLT0/HJJ5+gcePGePHiBSIjIxEUFIRDhw4hODi4SuuprsQI/JycHKxYsQLZ2dmIiYnBiBEjeNX8tiEdIyMjhf+B5Kf/F/lZTWBuW3qQAUPqnSMwMTIAZ2yuUK+JifJRQYRUVxqHfvfu3WFpaQnGGP7zn/9g2rRpSkfpmJiYoGnTpujYsWOlC+Vj9erVSieE9ezZE56envjqq68o9NUg1hi+tbU11qxZg0OHDmH48OG8ai5vDN/f3x/+/v5vtAd+P7QXxcwAsoIMdA9+B1ZWzWgMn9RoGod+2XHOvLw8TJgwAS4uLoIVVhmqzgC2tLRE48aNkZycLEJF1YsYgV9YWCjfo27SpAmaNGnCq2ZNjsPnOMDDxQJFRUWQyezoR1uiFwT5hXXhwoU6E/hvk52djcuXL/MOE30j1hj+wIED8eTJE41qrsyJV35+fmjUqBECAwMp8Ile0JvDaqZOnYq8vDzMmzfvrW0KCwuRk5OjcNEnYgS+VCrFxo0b8eTJE43WUqYzbQnhR7DlEu/evYt169bh77//Rn5+vsJ9HMfh2LFjQnXF24IFCxAVFYUffvih3KN3li5dikWLFlVhZbpDrDF8IyMjrFu3DjExMZgwYQKvminwCeFPkD39GzduoHnz5oiNjUV8fDwyMzNx9+5dnDx5Evfu3Sv3OH5tW7RoEZYsWYIvv/wSH3/8cbltw8LCkJ2dLb/oy/i/GIGfmZkp/7eDgwM++ugjmg+fkCogSOjPnTsXPXr0wM2bN8EYw8aNG5GcnIzY2FgUFBRgyZIlQnTD26JFixAREYGIiAi1Dhs1MTGBtbW1wqWmEyPw4+Li0KdPH1y6dEmjminwCdGcIKF/+fJljBo1Sr6nJpPJAAAhISGYPXs2wsLChOiGl8WLFyMiIgLz58/HwoULq7z/6kCMwGeM4eDBg8jLy9NoyI8Cn5DKEWRMPzMzE3Z2dpBIJDAyMlL46h4YGCg/iauqREZGIjw8HD179kRISAjOnTuncH9QUFCV1qOLxBrD5zgOkZGR2Lt3L0JDQ3nVTIFPSOUJEvp169ZFWloagNfTLJ86dQrdunUDACQmJsLS0lKIbtQWGxsLAIiPj0d8fLzS/WL+xqALxAj85ORkuLq6AgBMTU0xdOhQXjVT4BMiDEGGd9q3b48zZ84AAIYPH45ly5Zh/PjxmDJlCsLCwtC3b18hulHbyZMn/zeXiuqLPhPrOPz+/ftj9+7dGtVMgU+IcATZ0583bx6ePn0KAJgzZw5SUlIQFRUFjuMQGhqKr7/+WohuSCWJNaRz+/ZtlJSU4Pbt27xrpsAnRFgc0/dd33Lk5OTAxsYG2dnZ1f5IHrECv3T7o0ePokuXLnp/WGZRURGWLl0K4PUhwsbGxiJXRGoKdfNK4z39N6dRrggtmSgeMQL/+vXr8PPzA8dx4DhO/hsPn35rWuATogs0Dn13d3dwHKd2+5IS5fVHifaJNYY/f/58DB48GGFhYbzeJ6X9UuAToh0ah/6mTZt4f5hJ1RJrSKe4uFjef+kKVHz6pcAnRHs0Dv3Ro0cLWAYRmphj+P369YObmxv8/f31fgyfEF2jN7Ns6hMxAv/MmTMKE+0FBARQ4BOigyj0axixxvCnTp2KGTNmaLSeLAU+IVVHkOP0JRJJheO29EOu9ok1pOPi4gIzMzO4urryDl0KfEKqliChHx4erhT6L168wOHDh1FSUoKRI0cK0Q0ph5hj+M2bN0d0dDRcXV1pSIcQHSdI6EdERKi8vaioCD169FC5Zi0RjhiBf/ToUTRt2hR16tQBALi5ufGqmQKfEHFodUzf2NgY06ZNw8qVK7XZjV4TI/CPHDmCzz77DOPHj1eYUZVPvxT4hIhD6z/kmpmZ4dmzZ9ruRi+JNaTj5+cHFxcXtGnTBjY2NrxqpsAnRFyCrZGryosXL/D111/D29tbm93oJTHH8J2dnfHLL7+gVq1aNIZPSDUjSOh7eHgo/ZBbWFiI58+fQyKR4PfffxeiG/I/Yh2W6erqCn9/fwCAnZ0dr5op8AnRDYKEfseOHZVC39TUFO7u7hgyZAjc3d2F6IZAnMD/448/MH/+fFhYWGD79u28J8+jwCdEdwgS+lu2bBHiYUgFxBrSadmyJVq0aAEPDw/Uq1ePV80U+IToFkFCXyqVoqioCBYWFkr35eXlwdjYmD6wlSTmGL6ZmRlWr14NY2NjGsMnpJoTJPTHjx+PoqIiREdHK903ceJEmJmZYcOGDUJ0pZfEGsMHgJCQEACvh+v4oMAnRDcJcsjmyZMn8d5776m8r2/fvjh27JgQ3eglMQI/MTER8+fPx/z585GYmMi7Zgp8QnSXIHv6qampcHZ2Vnmfk5MTUlJShOhG74h5HP6gQYPk/+aDAp8Q3SZI6NeqVQtJSUno1KmT0n1JSUmwsrISohu9IuYYvkQiwdy5c+X/5tMvBT4huk2Q4Z3OnTtj6dKlyMjIULg9IyMDy5YtQ3BwsBDd6A2xxvC//fZbMMYAvA57CnxCah7BJlxr1aoVGjVqhCFDhqBu3bp4/Pgxdu7cCalUikWLFgnRjV4QI/AfPXqE8PBwlJSUoGnTpujSpQuvminwCak+BAl9b29vnD59GrNmzcL69etRUlICAwMDdOzYEStXrqRpGNQk1pBO/fr1MWfOHNy9exedO3fmVTMFPiHVi2Bz7zRr1gzHjh1Dfn4+MjMzYWdnx/swP30mRuCXXbQ8NDSUd80U+IRUP4LPsmlmZgYXFxcKfB7EGsOfMWMGioqKNKqZAp+Q6knjPf1Hjx7xas93vhZ9IUbgZ2Rk4Msvv8SrV6+wd+9e3nv5FPiEVF8ah767u3uF6+KWRWvkKhNrDN/Ozg7ffvstTp48iffff59XzRT4hFRvGof+pk2beIU+USRG4EulUnnQtm7dGq1bt+ZVMwU+IdWfxqE/evRoAcvQL2KN4W/evBk//vgj7O3teddMgU9IzaD15RKJIjECv6CgAKtWrUJSUhJiYmJ410yBT0jNIdghm3fv3sW6devw999/Iz8/X+E+juNo0jWIN4ZvamqKn376Cfv27cP48eN51UyBT0jNIkjo37hxA0FBQahbty6SkpLg7++PtLQ0PHnyBK6urmjYsKEQ3VRrYgR+aeACgKurKz7++GNeNVPgE1LzCDK8M3fuXPTo0QM3b94EYwwbN25EcnIyYmNjUVBQgCVLlgjRTbUlRuDHxcXhvffew99//61RzRT4hNRMgoT+5cuXMWrUKPkEXTKZDMDrBThmz56NsLAwIbqplsQI/JKSEuzatQuZmZk4ePAg75op8AmpuQQJ/dJpFyQSCYyMjJCZmSm/LzAwEJcvXxaim2pHrDF8AwMDrFq1CjNnzsSMGTN41UyBT0jNJkjo161bF2lpaQAAT09PnDp1Sn5fYmIiLC0theimWhEj8FNTU+X/trS0VPj2pW6/FPiE1GyChH779u1x5swZAMDw4cOxbNkyjB8/HlOmTEFYWBj69u0rRDfVhljH4ffp0wdHjhzRqGYKfEL0gyBH78ybNw9Pnz4FAMyZMwcpKSmIiooCx3EIDQ3F119/LUQ31YJYQzp//fUXpFIpLl68iG7duvGqmQKfEP3BsdKlkoiSnJwc2NjYIDs7G9bW1hW2F3OJw5KSEhw4cAAhISE0pKPDioqKsHTpUgBAWFgYjI2NRa6I1BTq5pXGwzuZmZkYNGgQ4uLi3tomLi4OgwYNQnp6uqbdVBtiBP6dO3fkyxsaGBigb9++FPiEkHJpHPobNmzAtWvX0LNnz7e26dmzJ65fv47Vq1dr2k21INYY/tChQ7F27Vpo8mWNAp8Q/aRx6O/YsQMTJkwoNywMDQ0xYcIE/P7775p2o/PEGtLJyMgAY0xpMXp1+6XAJ0Q/afxD7n//+18EBgZW2K5FixZYvHixpt3oNDHH8EeMGIFGjRqhdevWvKa4psAnRL9pvKdfXFys1ofeyMgIUqlU0250lhiBX3qETqmgoCAawyeE8KJx6Ds7O+PWrVsVtrt58yacnJw07UYniTWG/9FHH2HOnDka/U+UAp8QAlQi9Dt27Ig1a9aUG0BSqRRr165F586dNe1GEBs2bADHcYKcGSzWkI6NjQ0MDQ1hZ2fHeyiIAp8QUkrj0J85cyZu376NAQMGyE/MKuvp06fo378/7ty5g5kzZ1aqyMp48uQJZs+eDRcXl0o/lphj+O3bt0dUVBTmzp1LQzqEEI1p/EOuv78/Vq9ejSlTpsDDwwMtW7aEh4cHAODBgwe4dOkSZDIZ1q5di6ZNmwpWMF+TJk3Cu+++Czs7O+zatUvjxxEj8E+cOIGAgADY2toCALy8vHjVTIFPCHlTpebemTBhAk6dOoXu3bsjMTER0dHRiI6ORmJiInr27InTp0/zXqlJSNu2bUNCQgLWrFlTqccRI/APHTqEWbNm4aOPPkJubi7vminwCSGqVHrunXfeeQexsbGQyWTymTbt7e15DUFow/PnzzFjxgwsW7YM9erVq9RjpaWlQSqVVumQjpeXF+zs7ODv7w9zc3Ne9VLgE0LeRrA1ciUSCRwdHYV6uEqbMmUKvL29MXnyZLW3KSwsRGFhofx6Tk4OgNdTTtSpU6dKx/A9PDywfft2ODg40Bg+IUQw4u6Oa8nu3bsRGxuL9evX8zpxaenSpbCxsZFfXF1dAQDm5uZVEvjx8fFISkqSX69Tpw4FPiFEUDUu9HNzczF16lRMmzYNLi4uyMrKQlZWFoqKigAAWVlZyMvLU7ltWFgYsrOz5Zfk5GQAqJLAT0hIQFhYGCZMmICUlBS1+yvbLwU+IaQigg3v6Iq0tDSkpqYiMjISkZGRSvfb2tqiX79+2Lt3r9J9JiYmMDEx0bjvygzpNG/eHD4+PmjSpAnvYTIKfEKIumpc6Ds5OeHEiRNKty9btgwJCQk4ePAg7O3tBe+3smP41tbW2LBhA8zMzGhIhxCiNTUu9E1NTdGpUyel27ds2QIDAwOV91VWZaZWsLKywrvvvgsAsLCw4N0vBT4hhI8aF/pVTdPAv3DhAubPnw8DAwNERUXB29ubd78U+IQQvmrcD7lvs2XLFo1OcipPZcfwu3btiv79+6NRo0a8+6XAJ4Rogvb0NVTZMXxDQ0MsXboUEomExvAJIVVGb/b0hVSZMfzNmzfLrxsaGlLgE0KqFO3p86Rp4CclJWHBggWQyWTw8vJCu3btePdLgU8IqSwKfR4qM6Tj6emJyZMnIzU1Fe+88w7vfinwCSFCoNBXk6aBzxiTTwUxYcIEhevqbk+BTwgRCo3pq0HTwI+Li8P8+fNRXFwsv40CnxAiJtrTV0NWVhZKSkp4BX5qaiq++OILFBUVoVWrVujfvz+vPinwCSHaQKGvhpycHNjb2/Maw69Tpw6WLVuG8+fP47333uPVHwU+IURbKPTVYGpqqnbgl5SUyNsGBwcjODiYV18U+IQQbaIxfTXwOQ5/zJgx8sVX+KLAJ4RoG4W+QPLy8hAZGYnExETExMTw3p4CnxBSFWh4RyAWFhb48ccfceDAAYwcOZLXthT4hJCqQqFfSfn5+TAzMwPwejFzLy8vXttT4BNCqhIN71TC/v370b9/fzx8+FCj7SnwCSFVjUJfQ8XFxdi6dStSU1Oxb98+3ttT4BNCxEDDOxoyNDTEjz/+iN27d2PcuHG8tqXAJ4SIhfb0ecrIyJD/287ODhMmTKDpkQkh1QaFPg9xcXHo3bs3zpw5o9H2FPiEELFR6KuJMYZjx46hoKAAp0+f1mh7CnxCiNhoTF9NHMdhxYoV2Lt3LwYNGsRrWwp8QoiuoNDnwcjICIMHD+a1DQU+IUSX0PCOGnbu3KnRdhT4hBBdQ3v65WCMAQDu3r2Lly9f8l4A5dWrVzA3N4eRkRHy8/PV3lYmkyE3NxeWlpYwMzNDfn4+r+2J7ioqKkJBQQGA11N2Gxsbi1wRqSlKJ3osza234VhFLfTY48eP4erqKnYZhBCituTkZNSrV++t91Pol0Mmk+Hp06ewsrLitZdfWTk5OXB1dUVycjKsra2rrF+x0POt2ej5Vg3GGF6+fAkXF5dyzx2i4Z1ySCSScv+PqW3W1tZ68SEpRc+3ZqPnq302NjYVtqEfcgkhRI9Q6BNCiB6h0NdBJiYmWLhwIUxMTMQupUrQ863Z6PnqFvohlxBC9Ajt6RNCiB6h0CeEED1CoU8IIXqEQl9HbdiwARzHwdLSUuxStOL48eMYO3YsfHx8YGFhgbp166Jfv364dOmS2KVpTW5uLmbMmAEXFxeYmpoiICAAO3bsELusKqWPr3tZuvC5ph9yddCTJ0/QpEkTWFhYIDs7G7m5uWKXJLjBgwcjPT0dgwcPRuPGjfHixQtERkbi4sWLOHToEIKDg8UuUXDdu3fHhQsXsGzZMnh5eWH79u3YsGEDoqKiMGzYMLHLqxL6+LqX0pXPNYW+Durbty84joOdnR127dpVI0P/+fPncHR0VLgtNzcXnp6e8PPzw9GjR0WqTDsOHDiAkJAQbN++HR988IH89u7du+PmzZt49OgRDAwMRKywaujb616WrnyuaXhHx2zbtg0JCQlYs2aN2KVo1ZsffACwtLRE48aNkZycLEJF2rVnzx5YWloqrccwZswYPH36FOfPnxepsqqlb697KV36XFPo65Dnz59jxowZWLZsmahz/oglOzsbly9fRpMmTcQuRXA3btyAr6+v0poK/v7+8vv1VU1+3QHd+1xT6OuQKVOmwNvbG5MnTxa7FFFMnToVeXl5mDdvntilCC49PR12dnZKt5felp6eXtUl6Yya/LoDuve5ptDXEbt370ZsbCzWr19fpdM464oFCxYgKioK33zzDVq2bCl2OVpR3utaHV/zkydPguM4tS5Xr15V+RjV6XXX5Pnq4ueaplbWAbm5uZg6dSqmTZsGFxcXZGVlAXi9yhIAZGVlwcjICBYWFiJWqT2LFi3CkiVL8OWXX+Ljjz8WuxytqF27tsq9+YyMDABQ+S1A13l7e2P9+vVqta1fv77SbdXtdef7fHX2c82I6B48eMAAlHvp16+f2GVqRUREBAPAIiIixC5FqyZMmMAsLS2ZVCpVuD06OpoBYH/++adIlYlDH153Xf1c0yGbOqCgoADnzp1Tun3ZsmVISEjAwYMHYW9vDz8/PxGq057FixcjPDwc8+fPx+LFi8UuR6sOHjyI3r17Y8eOHRgyZIj89l69eiExMVFvDtkE9Od119XPNYW+Dhs9enSNPU4/MjISs2fPRs+ePbFw4UKl+4OCgkSoSru6d++OixcvYvny5fD09ER0dDTWr1+Pbdu2Yfjw4WKXVyX08XV/k9ifaxrTJ6KIjY0FAMTHxyM+Pl7p/pq4LxITE4N58+YhPDwcGRkZ8PHxQXR0NIYOHSp2aVVGH193XUN7+oQQokfokE1CCNEjFPqEEKJHKPQJIUSPUOgTQogeodAnhBA9QqFPCCF6hEKfEEL0CIU+IYToEQp9QgjRIxT6hBAigLVr16JFixYwMjJCRESE2OW8FYU+IYQIwNnZGYsWLUL//v3FLqVcNOEaIYQIoDTs9+3bJ24hFaA9fRFs2bKl3KXWTp48KXaJ5Sqt/59//hG7lLc6c+YMIiIi5KsVaUKT5/n999+D4zi15kjn01aVxMREjBs3Dg0bNoSZmRnMzMzQqFEjfPTRR7h48aLaj/PFF1+gcePGkMlk8tsiIiLAcRzS0tI0qk0TuvK+0lYdGzduRN26dZGXlyfo4/JFoS+izZs34+zZs0qXFi1aiF1auUJCQnD27Fk4OzuLXcpbnTlzBosWLapU6Gti06ZN4DgON2/exPnz5wVr+6Z169ahZcuWOH/+PD755BPExcVh//79mDFjBm7evIlWrVrh3r17FT7O06dPsWLFCnzxxReQSCgOtGnUqFGwsLDAihUrRK2DXmUR+fn5ISgoSOlibW0tdmkqvXr1CgDg4OCAoKAgmJiYiFyRbrl48SKuXbuGzz77DMbGxti4caMgbd/0559/YsqUKejVqxcuX76M6dOno0uXLggODsbUqVPxxx9/4LfffoOZmVmFj/Xdd9+hVq1aGDhwoNr965suXbrA1NRU5WXBggVqP46hoSE++ugjfPfdd/LPkhgo9HVUQUEBmjdvDk9PT2RnZ8tvT0lJgZOTEzp16oSSkhIA/34Vv3LlCgYOHAhra2vY2Njgww8/xIsXLxQe9+7duxg2bBgcHR1hYmICX19frF69Wqn/0se8fPky3n//fdja2qJhw4YAlL/+lrZNTEzE4MGDYWNjAzs7O8yaNQvFxcW4c+cOevbsCSsrK7i7u6vc0+Fb182bN/HBBx/AxsYGderUwdixY+V/p4iICHz22WcAAA8PD6Vhs6SkJIwZMwaNGjWCubk56tati759++L69es8XyVFGzduhIGBAWbOnIk+ffpgx44db/1w82n7pq+++goGBgZYt24djI2NVbYZPHgwXFxcyn2coqIibNy4EcOGDVNrL//27dto0KAB2rRpg+fPn8tv++CDD1CnTh2YmJigfv36GDlyJAoLC+XbCfH3FuI99scff6BLly6wsrKCubk52rZti/3791fY97Fjx1BQUKDywne5x+HDhyMnJwc7duzgtZ2QKPRFVFJSguLiYoVLaZCbmprit99+w/PnzzF27FgAgEwmw/Dhw8EYQ3R0tNKaqgMGDICnpyd27dqFiIgI7N27Fz169IBUKgUA3Lp1C61atcKNGzcQGRmJuLg4hISEYPr06Vi0aJHKGgcOHAhPT0/s3LkTP/74Y7nPJzQ0FM2aNcPu3bsxYcIEfPPNN5g5cyb69++PkJAQ7NmzB8HBwZgzZw5iYmLk22lS16BBg+Dl5YXdu3fj888/x/bt2zFz5kwAwPjx4zFt2jQAr1erenPY7OnTp6hduzaWLVuG+Ph4rF69GoaGhmjTpg3u3LlT7nN8m/z8fERHR6NXr15wcnLCmDFj8PLlS+zcubNSbd9UUlKCEydOIDAwsNLDa+fPn0d6ejo6d+5cYduEhAS0bdsW/v7+OHHiBBwdHXHt2jW0atUK586dwxdffIGDBw9i6dKlKCwsRFFRkXxbIf/emr7HEhISEBwcjOzsbGzcuBHR0dGwsrJC37598euvv/Kq4W2Ki4tRUFAg/1yX/rssJycn+Pj4qPU/G62p8qXYCdu8eTMDoPJiYGCg0PbXX39lANi3337LwsPDmUQiYYcPH1Zos3DhQgaAzZw5U+H2qKgoBoBt27aNMcZYjx49WL169Vh2drZCu48//piZmpqyjIwMpccMDw9/a/0PHjxQaBsZGanQLiAggAFgMTEx8tukUilzcHBgAwcOlN+mSV0rVqxQaDtlyhRmamrKZDIZY4yxr7/+WqHG8hQXF7OioiLWqFEjhb/hm8+zPD///DMDwHbv3i1/TCcnJ9ahQ4dKtX1TSkoKA8CGDh2q8nlIpVL5pfRv8TbLly9nAFhKSorSfaV/5xcvXrBffvmFGRsbs+nTp7OSkhJ5m+DgYFarVi32/PnzCut+s06+f+/KvseCgoKYo6Mje/nypUIdfn5+rF69egp/Kz6vu6oay142b96s1G748OGsTp06vB5bSLSnL6Kff/4ZFy5cULi8+YNeaGgoJk+ejM8++wxLlizB3Llz0a1bN5WP9+bi2qGhoTA0NMSJEydQUFCAY8eOYcCAATA3N1f4dtG7d28UFBTg3LlzSo85aNAgtZ9Pnz59FK77+vqC4zj06tVLfpuhoSE8PT3x8OFDANC4rvfee0/hur+/PwoKCuTDDuUpLi7GV199hcaNG8PY2BiGhoYwNjbG3bt38ffff6v9fMvauHEj7O3t5X8DAwMDjBgxAqdPn8bdu3c1bstHy5YtYWRkJL9ERkaW2/7p06fgOA729vZvbfPll19i9OjRWLZsGb777jv5MNCrV6+QkJCA0NBQODg4lNuPkH9vTd5jeXl5OH/+PN5//31YWlrK25X+3R8/fqzxN7yyIiIiwBhTuIwePVqpnaOjI54/f47i4uJK96kJCn0R+fr6IjAwUOHSsmVLpXZjx46FVCqFoaEhpk+f/tbHc3JyUrhuaGiI2rVrIz09Henp6SguLsYPP/ygEAxGRkbo3bs3AKg8PI/PEIKdnZ3CdWNjY5ibm8PU1FTp9oKCAgDQuK7atWsrXC/9UTk/P7/COmfNmoUFCxagf//+iI2Nxfnz53HhwgU0a9ZMre3flJSUhFOnTmH48OEKY+xjxowB8PooHU3aqmJvbw8zMzN5oJW1fft2XLhwAb///rtadefn58PIyEhpmLCsbdu2oW7dukqLt2dmZqKkpAT16tWrsB8h/96avMcyMzPBGFP5Xi793SM9PZ1XHZVhamoKxpi8vqpGJ2fpuLy8PIwYMQJeXl5ITU3F+PHj33ryR0pKCurWrSu/XlxcjPT0dNSuXRu2trbyPZupU6eq3N7Dw0PpNo7jhHkib6FpXZWxbds2jBw5El999ZXC7WlpaahVqxbvx9u0aZPKvTpfX1+0adMGW7duxZIlS2BgYMCrrSoGBgYIDg7G4cOH8ezZM4Uga9y4MQCofXy5vb09ioqKkJeXBwsLC5Vt4uPjMWTIEHTo0AHHjh2Dm5sbgNfha2BggMePH1fYj9B/b75sbW0hkUjw7NkzpfuePn0KAOV+2xFaRkYGTExMFL51VCXa09dxkyZNwqNHjxATE4ONGzfi999/xzfffKOybVRUlML13377DcXFxejUqRPMzc3RuXNnXLlyBf7+/krfMAIDA5X2nquCtuoqb8+f4zilw03379+PJ0+e8O6npKQEW7duRfPmzREQEKB0/5gxY/Ds2TMcPHiQV9vyhIWFoaSkBJMmTZL/SK8JHx8fACj3eH43NzecPn0aJiYm6NChg3z4yczMDB07dsTOnTsrPIFLyL+3JiwsLNCmTRvExMQovB9kMhm2bduGevXqwcvLq0pqAYD79+/L/wctBtrTF9GNGzdUjus1bNgQDg4O2LBhA7Zt24bNmzejSZMmaNKkCT7++GPMmTMH7dq1Q+vWrRW2i4mJgaGhIbp164abN29iwYIFaNasGUJDQwG8Pia7ffv26NChAyZPngx3d3e8fPkSSUlJiI2NxfHjx6vkeb9JG3U1bdpU/tijRo2CkZERvL29YWVlhT59+mDLli3w8fGBv78/Ll26hK+//lqtoYo3HTx4EE+fPkWnTp2wd+9epftLhx1Kj8NXt+2bY9dltWvXDqtXr8a0adPQokULTJw4EU2aNJHvze7evRsAKjzfo1OnTgCAc+fOwd/f/63tnJ2dkZCQgB49euDdd9/FkSNH4Ofnh5UrV6J9+/Zo06YNPv/8c3h6eiI1NRW///471q1bBysrKwAQ9O+tqaVLl6Jbt27o3LkzZs+eDWNjY6xZswY3btxAdHS01r/RlpLJZPjrr78wbty4KulPJdF+QtZj5R29A4CtX7+eJSYmMjMzMzZq1CiFbQsKCljLli2Zu7s7y8zMZIz9e9TApUuXWN++fZmlpSWzsrJiH3zwAUtNTVXY/sGDB2zs2LGsbt26zMjIiDk4OLC2bduyJUuWKLQre/TG2+p/8+idN9uOGjWKWVhYKG3fsWNH1qRJE0HrUnXERVhYGHNxcWESiYQBYCdOnGCMMZaZmcnGjRvHHB0dmbm5OWvfvj07ffo069ixI+vYsWO5j/mm/v37l/tall4MDQ1Zp06d1G6r6oiaN129epWNGTOGeXh4MBMTE2Zqaso8PT3ZyJEj2bFjxyrcnjHGOnTowHr37q10u6q/c1ZWFmvXrh2zs7NjFy5cYIwxduvWLTZ48GBWu3ZtZmxszOrXr89Gjx7NCgoK5NsJ8fcW4j12+vRpFhwczCwsLJiZmRkLCgpisbGxSttqevSOOo4dOyb/rIqFY4wxbf5PhWhfREQEFi1ahBcvXlTp2CSp/nbv3o0hQ4bg4cOHCr8HEe0YMWIE7t+/jz///FO0GmhMnxA9NnDgQLRq1QpLly4Vu5Qa7969e/j111+xfPlyUeug0CdEj3Ech/Xr18PFxUVhlk0ivEePHmHVqlVo3769qHXQ8A4hhOgR2tMnhBA9QqFPCCF6hEKfEEL0CIU+IYToEQp9QgjRIxT6hBCiRyj0CSFEj1DoE0KIHqHQJ4QQPUKhTwgheoRCnxBC9AiFPiGE6JH/B/Mha6XSDZGfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2672,7 +4506,7 @@ ], "source": [ "# note you can pass the filename argument to write things out to file\n", - "cinnabar_plotting.plot_DDGs(fe.graph, figsize=5, xy_lim=[5, -5])" + "cinnabar_plotting.plot_DDGs(fe.to_legacy_graph(), figsize=5, xy_lim=[5, -5])" ] }, { @@ -2693,13 +4527,13 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 121, "id": "f9e652a4-3657-43c9-a2ed-7b074a03578e", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAHxCAYAAACBC2zyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3XklEQVR4nO3dd1xTV/8H8E+AQFiCiCxFRJHhQEXcG9y4rbvOOuqoVn+2boRq6yp2uGrdfURsrThRtG5bd9WiVq3UPVAZskdCzu8PH/IQEyA3uckN5Pt+vXi13Nzccy4JHy/fnHuOiDHGQAghxCSYCd0BQgghhkOhTwghJoRCnxBCTAiFPiGEmBAKfUIIMSEU+oQQYkIo9AkhxIRQ6BNCiAmh0CeEEBNCoU8IISaEQp8QQkwIhT4hhJgQCn1CCDEhFPqEEGJCKPQJIcSEUOgTQogJodAnhBATQqFPCCEmhEKfEEJMCIU+IYSYEAp9QggxIRT6hBBiQij0CSHEhFDoE0KICaHQJ4QQE0KhTwghJoRCnxBCTAiFPiFEEDt37oSzszMyMzOVttesWRMikQg//PCD0vaePXuiZs2aBuxhyZYuXYpu3brByckJIpEI27ZtU9nnwIEDCAkJgZubG6ysrODt7Y3x48fj2bNnKvtKpVLUrl0b33zzjd77TqFPCDG4nJwczJ49G7Nnz4a9vb3afdatW2fgXmlu9erVyMnJQffu3Uvc5+XLl2jQoAG+/fZbHD16FBERETh+/DiaN2+OtLQ0pX3FYjEWLVqEL774AsnJyfrtPCOEEANbv349s7KyYqmpqSqPeXl5MV9fXyYSidjZs2cV28PCwpiXl5cBe1kymUzGGGPsypUrDADbunWrRs/77bffGAC2efNmlcfy8/OZk5MTi4yM5LOrKuhKnxBicOvXr0ePHj1QuXJltY97e3uja9euRnu1b25urtXzHBwcALwr57zP0tISgwYNwo8//gi5XK5T/0pDoU8IMahnz54hISEBHTp0KHW/yZMnIzY2Fq9evdK6LcYYZDJZqV+MMa2Pr4nCwkLk5eXhxo0bmDFjBlxdXdG/f3+1+3bo0AHPnz/HX3/9pbf+UOgTQgzq/PnzAIAmTZqUul9YWBjc3d2xadMmrds6c+YMxGJxqV/bt2/X+viaaN26NaytrdG4cWPk5eXhypUrqFq1qtp9i34mf/zxh976Y6G3IxNCiBovXrwAALi4uJS6n5mZGSZMmIAffvgBc+bM0aqtJk2a4MqVK6Xu4+3trdWxNbVt2za8ffsWd+/exVdffYXevXvj+PHjqFKlisq+RT+T58+f660/FPqEEIPKzc0FAEgkkjL3HTduHCIjI3Ho0CGt2rKzs0OjRo1K3Ufb+rym/P39AQAtWrRAaGgoatWqha+//hpLly5V2bfoZ1L0M9IHKu8QQgzK2dkZAJCamlrmvi4uLhgwYADWrl2rVVvGUN4pztPTE9WqVcONGzfUPl70Myn6GekDXekTQgwqICAAAPDvv/+iYcOGZe4/adIktG/fHr6+vpzbErK8wxiDSCRS2vbkyRM8e/YMoaGhap/z77//AgDq1q2rlz4BFPqEEANr1qwZbGxscPHixRJHsRTXtm1b1K9fHzdv3oSXlxentuzt7REcHKxtV0t05swZvHnzBg8ePAAAXL16FXZ2dgCADz74AADQpk0btGvXDsHBwahSpQru37+PFStWwMrKCtOmTVN73AsXLsDMzKzMkU26EDF9j1cihJD3jB49GufPn8c///yj8ljNmjXh7++P+Ph4xbb169dj8uTJ8PLywqNHjwzYU/U6dOiAM2fOqH2sKFIjIyNx5MgRPHjwAOnp6XB3d0fLli0RHh6u+Gvnfa1bt0blypW1/gxDExT6hBCDu379OoKCgvD777+jdevWQnfHKNy/fx++vr6Ij49H165d9dYOhT4hRBDDhw9Hamoqjhw5InRXjMKoUaPw/PlzHD9+XK/t0OgdQoggVq5ciRYtWqjMsmmKZDIZ6tSpY5BpJ+hKnxBCTAhd6RNCiAkx6dAvWqxBJBJBLBbD29sbH374Ie7fv6/Y5/Tp04p9bt++rdielpYGS0tLlQUULl26hB49esDNzQ22trYICAjARx99hKdPnyr22bZtm+KY73+1aNHCIOfOl6SkJAwdOhSOjo6wt7dHnz59eBtdMWXKFIhEInz88ccqj/36669o3LgxJBIJnJ2dMWzYMJ1vXS/+WotEIly9elWrdkt6ffUxdFBbfL5uJ0+exJAhQ+Dt7Q1ra2vUrl0b06ZNQ0pKisq+MpkMX3/9NerVqweJRAIXFxd069ZN7yUevt+nmp7HhQsX0KVLFzg7O8PR0RGtWrXCwYMHVY539epVpffK6dOnte5bmfQ6cbOR8/LyYi1atGAXLlxgZ8+eZd9++y1zdHRkDg4O7NGjR4wxxk6dOsUAMAcHBxYeHq547ubNm5mjo6PSXNrHjh1j5ubmrGvXriw2NpYdO3aMffPNN6xRo0bs1KlTiudu3bqVAWCbNm1iFy5cUPq6deuWIX8EOpFKpSwwMJBVr16d/fLLL2z//v3M39+feXt7s6ysLJ2OffHiRVa1alUGgE2cOFHpsRMnTjAA7IMPPmBHjhxhP/74I3NycmJ+fn4sLy9P6zaLXuu1a9eyCxcuqJyDpu0Wvb6xsbFKr+3NmzcV+xQUFLApU6YwBwcH5unpybZs2aJ1v7ni+3UbMmQI69q1K9uyZQs7ffo027BhA3NxcWG+vr4sOztbad+RI0cysVjM5s6dy06ePMn27dvHpk+fzlJSUvg6PRX6eJ9qch537txhNjY2rHXr1uzAgQMsPj6e9e7dm4lEInb06FGl42VlZbELFy6wtWvXMgBKecE3kw/9rl27Km3bsmULA6BYyKAoCEaMGMH8/f0V+3Xt2pWNGjVKKfRDQ0OZt7c3k0qlKm3l5+cr/r8oFC5cuKCHszKcnTt3MgAsPj5ese369esMAPvuu++0Pm7RL+n69evVhn6HDh2Yl5eXYiELxhiLiYlhANi2bdu0brfotS7pF07Tdote34cPH5bY1vLly5mPjw+Li4tjW7ZsYTY2Nuzq1ata950Lvl+3169fq2z75ZdfGAC2fft2xbazZ88yAGz16tXadVxLfJ+vpuexZMkSBoA9fvxYsS03N5dJJBI2atQotc8p6z3IB5Mu76jTvHlzAO+WOiuuc+fOePXqFRISEpCSkoLTp08r7rwr8vz5czg7O8PCQvVGZ0tLS536dffuXdy9e1enY/DtyJEjqFSpEjp37qzY1qhRI/j4+ODw4cNaHzcqKgrm5uaYMGGC2sdv3bqFFi1aKE2UVdSHY8eOad1uWfhs99y5c5g2bRp69OiBMWPGoFu3biXe7FMcH+8Dvl83ddMEN2jQAMD/ZtQEgF27dsHW1hbjx4/Xotfa4/t8NT0PmUwGAErLQUokElhZWXFuk08U+u8pqs++P/eFWCxGnz598MsvvyA2NhYtWrSAm5ub0j5BQUG4cuUKwsPD8fjx4zLbKiwsVFnQoaQVcwICAkq8i08od+/eha+vL8zMzFBQUIC8vDwAgJ+fH+7cuaPVMR8+fIgvvvgCa9asgZmZ+rdnQUEBxGKx0raif1SLfx7DN67ttmzZEubm5nB1dcWECROUJhjz8/NDbGwskpKScOPGDfz++++K2RgB4O+//0ZSUpLKMfl4H+jjdXvfhQsXAACNGzdWbLtx4wbq1q2LXbt2oWbNmrCwsICfn5/eJzzj+3w1PY8RI0bAwcEBn3/+OZKSkpCSkoLw8HDIZLISp2EwBJMPffbflXXy8vJw/fp1zJ49G23btsW4ceNU9h04cCB++eUX/Pzzzxg0aJDK48uXL0dQUBAWL16MmjVrombNmpg+fXqJQdSmTRuVGf/mzZvH+znqS1paGhwdHQG8+wevVq1ayMnJgaOjo8rCz5qaNGkSBgwYgFatWpW4j4+PDxISEpS2Xb58GQDw9u1brdrVhKbturu7Y/Hixdi2bRuOHTuGjz/+GDt27ECHDh2Qn58PAJg3bx7y8/Ph7u6Oxo0bY+DAgQgODsZ3332HZs2aYfLkyUof/vNJH69bcSkpKVi4cCFatGiBLl26KLYnJyfj6dOnmD17NiIiIhAfH4/GjRtj9OjROHr0qM7tloTv89X0PGrVqoXz58/j3LlzcHd3h7OzM3788UccPXoUQUFBfJ0ed3orHJUDXl5eDIDSV5cuXZQ+fCqqscXExLCCggJWuXJlZmFhwZKSktQuiiyTydiJEyfYjBkzWFBQEAPAbGxs2OnTpxX7FNV8t27dyq5cuaL09ezZM0P+CHTi4+PDOnXqxBhjrF27diwgIIDl5eWxYcOGsUqVKnE+XnR0NLO3t2cvXrxQbIOamv6GDRsYALZkyRKWnJzMrl27xurWrcsqVarE/Pz8tD6fsuqpurS7fft2lfeKXC5nt2/fZt9//z0LCwtjDRs2ZF999ZVSDVgf+H7diisoKGAhISHM2dlZ5TMNHx8fBoDt2bNHsU0qlTJPT08WEhKiU7ul4ft8NT2Phw8fMh8fH9alSxcWFxfHjh07pmjz999/V3tsQ9T0TT70W7Zsya5cucLOnTvHZsyYwQCwjz76SLFP8dBnjLEvv/ySTZs2jTHG1Ib++y5fvszs7OxYq1atFNsqyge5wcHBLDg4WGV7WFgYq1GjBqdjZWVlMVdXVxYZGckyMzMVX0WvR2ZmJissLGSMvfuHderUqczCwoIBYBYWFmzOnDmsTZs2rHXr1lqfT1m/cLq0m5WVxUQiEZs8eTJjjLGXL1+ycePGsYCAADZz5kx27do1tmbNGubu7s4cHBzYtGnT1A4I4AOfr1txcrmcDRs2jNnZ2bFLly6pPN6kSRMGgKWlpSlt79evH3N3d9e63bLwfb6ansewYcOYq6sry83NVWyTy+UsKCiINWvWTO2x6YNcA6hUqRKCg4PRpk0brFq1Ch9++CG2bNlS4hzc8+bNw3fffafx8Zs2bYouXbrwVis1JgEBAbh//77KwtL37t3jXHd+8+YNXr16hUWLFsHe3l7xBQCbN2+Gvb09rl27BuDdSkerV69GcnIyEhISkJSUhMWLF+P27dtKNWS+6dJu0bzqRf+1s7PDoEGDcOvWLURFRSErKwtz587F8uXLERMTg2PHjmHVqlV6OQ8+X7fipk2bhtjYWOzfvx/NmjVTebyk+fAZYyV+fsMHvs9X0/O4fv06/Pz8lFYIE4lEaNiwIW7evMm5Xb6YfOi/b/ny5bCyskJ4eDjn56r74E0ul+Pff/8tcz3Qshjj6J1u3bohPT1daYKohIQEJCYmokePHmqfU9J5uLu749y5cypfANCnTx+cO3dO6YNOAHBwcECDBg1QpUoVbN++HWlpaRg6dCiPZ6ieNu3u27cPjDHFzXd2dnbo3LmzIiQuXbqEzp07Y8SIEejevTsmTZqE33//XeU4fLwP+HzdisybNw8bNmzA7t27ERISonafotEzJ0+eVGyTSqW4evUq6tevr/Y5RTdQ6nIjFd/nq+l5VK5cGXfv3lVa+pAxhhs3bpS4MLpB6O1viHJA3Th9xhibPn06A8AuXryoUt4p7v3yTvfu3VlYWBjbunUrO3PmDNu7dy/r1auX4oafIqXdnHXlyhW1fcV/P3MwJkXj6WvUqMF2797N9u/fzwICAkq96YXreUBNTT8pKYnNmzePHTlyhJ08eZLNnz+fWVpasrFjx+p0PmX9aa1puyEhIWzJkiXs4MGD7LfffmORkZHM1taWNW3alBUUFKg99tmzZ5m9vT3btm0bO3ToEPP392dffvmlyn58vA/4ft1WrFjBALD/+7//U3k/JyYmKvbLy8tjvr6+rGrVqmzTpk0sPj6eDRgwgAFg586dU3tsT09PBoA9ffrUaM5X0/MouocjNDSU7d+/nx05coQNHTqUAWBRUVFqj001fT0rKfSTkpKYjY0N69atG6fQ37dvH+vXrx/z8vJiVlZWzMXFhbVr147t3btX6XlFoa/uy8HBQW1fjTH0GXtXmx48eDCrVKkSs7OzY7169WIPHjwocX8+Qj8lJYV17NiROTo6MisrK1a3bl0WFRWldNOUNsr6hdO03U8++YTVrl2b2draMgsLC+bt7c1mzZrFMjMzS21/zZo1rFq1aszJyYlNnjxZ6Ya+Iny9D/h83dq3b1/i+/n9m5CePn3KBg8ezCpXrswsLS1Z48aNlT4QLS4lJYWJRCLWpk0brc+zCN/vU03PIy4ujrVt25Y5OTkxBwcH1qxZMxYdHV3icQ0R+jTLJiH/dfr0aXTs2BHHjx9H+/bt1d5kRwxn79696N+/P44cOYJu3boJ3R29k8lkOHPmDDp16oRTp07pbclEqukT8p5OnTpBLBarnXCNGM6ZM2cQFBRkEoF/9epViMVidOrUSe9t0ZU+If+VmZmJe/fuKb6vW7cubGxsBOwRMRU5OTn4+++/Fd/7+fkpTd/AJwp9QggxIVTeIYQQE0KhXwYui6h06NBBZSw5APTs2RM1a9ZUfE+LqKh34MABhISEwM3NDVZWVvD29sb48ePx7Nkzpf2KL37z/pcu9V9aROWRVsfisojK0qVL0a1bNzg5OaksQKRPfJ6vpq8vl/eBIRdRoeEJGnJwcMAvv/yCyMhIAO9GFtja2uo0wdemTZtQr149pW36quPpg0wmQ9euXZGamoqNGzfCysoKs2fPRkhICG7evAlbW1tOx3v58iUaNGiACRMmwM3NDY8fP0ZERAQOHz6MW7duoXLlygDe/eyLJi4rkpCQgIkTJ6JPnz46n9fatWsRFBSkcrfmyZMnMXDgQHzwwQdYunQpnj59ijlz5uDatWv466+/VKbMjY2Nhbu7u+J7Ozs7xf9LpVLMmDEDO3bsQKVKlRAZGYkxY8bo3HdN8P26bdy4EW/fvkV4eDhq1aqFe/fuYeHChTh69CiuX7+u9LnI6tWr4ePjg+7du2Pnzp18n5pafJ9vkdJeX677BQQE4MKFC7h27RqmTJmiVX80prfBoBUEl0VU2rdvr3birbCwMObl5aX4vqLMvaOvRVSK++233xgAtnnz5lL3mzx5MpNIJCrzoXBBi6jodxEVxpjiZ6fJvFV84ft8NXl9uexXHM29Y0Q0WURFn4xxGgZ9LaJSnIODA4B3V8Ylyc3Nxc6dO9GvXz/FFLr6QIuoqKfpIioAlH52hmKI92l5QqGvIU0WUeGKFlFRr7CwEHl5ebhx4wZmzJgBV1dX9O/fv8T9f/31V7x9+1bv5RFaREVz6hZREYq+zre011eb/QyFQp+DshZR4YoWUVGvdevWsLa2RuPGjZGXl4crV66UOkHVpk2bUKNGDYSGhmrdpiZoERXNlLSIilD4Pl9NXl8u+xkafZDLQefOnZGcnIyHDx8iOjpa51/KrVu3qswuWPwDn+KYkd9OUaVKFcjlcpibm4MxpphCWBvbtm3D27dvcffuXXz11Vfo3bs3jh8/jipVqqjs+88//+Ds2bNYuHChXqfnBYCJEydi4sSJ+PLLL/Hxxx/jyZMnmDZtGipVqqTUdteuXdG1a1fF96GhoahduzZGjRqFmJgYjB49Gk5OTvjjjz9w584dnDhxAkePHkWXLl0wePBg/Prrr6hRo4baPvD9PuDzdQPeleEGDRqE/Px8xMTE6Hw8vvFxvpq8vlz2MzS60udALBZj1qxZmDx5MlxdXVUeL+0NpC6Q/P39ERwcrPRVrVo1XvusT46Ojoor3DNnzuDvv/+GlZUV0tPTdaqt+/v7o0WLFhg9ejROnDiBW7du4euvv1a776ZNmyASiQzyC/TRRx9h6tSpiIiIgLOzM5o1a4bevXsjMDAQzs7OpT53wIABEIlEinUakpKSMGHCBHzwwQd49OgRFi9ejPHjx2P16tUIDAzE9OnTFQtr801frxtjDKNHj8bly5cRFxenNExZSPo63+Lef3113U+fKPQ5Km0RFRsbG7U1eblcXiFv59fXYhzFeXp6olq1arhx44bKY1KpFD/99BPatWuHWrVq8dJeaWgRldKVtYiKUAzxPn3/9dV1P32i0OeRt7c3kpKSlOp1jDE8ePAA3t7eOh3bGEfv8L04hbrSxZMnT/Ds2TN4eHioPHbw4EG8evUKY8eO1fIMtEOLqKjSZBEVbRjjIirqvP/66rqfPlFNn0fjxo3Dxo0b0aNHD0yePBmWlpbYvn07/vnnH3zzzTcq+xe/w7eIhYWF2jv2iq5IjKm2P2jQICxfvhzjxo1DVFQULC0tMWfOHHh7e+Ojjz5S+5zSzqNNmzZo164dgoODUaVKFdy/fx8rVqyAlZUVpk2bprL/pk2bYG9vjwEDBvB7YiV49eoVvv/+e7Rt2xZWVlY4ceIEVq5cibFjx6JVq1aK/UJDQxESEoKGDRtCIpHg/PnzWLFiBZo2bYrBgwerPXbz5s3xxRdfYPv27XB2dsb69esxYsQIlf34eB/w/bqtXLkSS5cuxf/93//B2dkZFy9eVDxWtWpV1K5dW/H9mTNn8ObNGzx48ADAuztRi25WUjcEuugvZ12mueb7fDV9fbV5HxiE3u4AqCC4LKJStK1Hjx6satWqzNHRkbVv35799ttvSs+jRVTUn0dERARr3rw5q1q1KrO0tGReXl5syJAh7O+//1bZ9+nTp8zMzExpEXtd0SIq+l9EpbR932esi6ho+vpq8z6gRVQIMSBaRMW40CIqHfTSDtX0CXkPLaJiHGgRFf2gK31C/osWUSFCoUVUCCGE6AWVdwghxIRQ6BNCiAmh0OdR8RWdxGIxvL298eGHH6rMwMhlpSFjx+eKRFxWxLpw4QK6dOkCZ2dnODo6olWrVjh48KBO50IrZz3i5dhTpkyBSCTCxx9/bNB2S8N3u3y/Dwy5cpbxDfwux7y8vFiLFi3YhQsX2NmzZ9m3337LHB0dmYODA3v06JFivyFDhrCuXbuyLVu2sNOnT7MNGzYwFxcX5uvry7KzswU8A26kUikLDAxk1atXZ7/88gvbv38/8/f3Z97e3iwrK4vz8a5du8YuXLig9LVhwwYGgK1bt06x3507d5iNjQ1r3bo1O3DgAIuPj2e9e/dmIpGIHT16VOvzKRojvXbtWnbhwgWVczhx4gQDwD744AN25MgR9uOPPzInJyfm5+fH8vLyFPsV3YcRGxurdC43b95U7FNQUMCmTJnCHBwcmKenJ9uyZYvW/eaK79etuIsXL7KqVasyAGzixIkGa7c0fLfL5/ugSFZWFrtw4QJbu3at3sfpU+jzyMvLi3Xt2lVp25YtWxgAFhkZqdjGZaUhY2aIlbPUrYi1ZMkSBoA9fvxYsS03N5dJJBKVm4G4oJWzdHvdisJ1/fr1akPfEO8Xdfhul8/3wfto5awKoHnz5gDerf9ahMtKQ0WMce4dfa9IVNKKWEWzTxYf0iaRSFTWqOUbrZxVuqioKJibm2PChAkGbbcsfLfL5/tACBT6elZU56tbt26p+5W10pAprZxVpKQVsUaMGAEHBwd8/vnnSEpKQkpKCsLDwyGTydTO0cMXWjmrZA8fPsQXX3yBNWvWlLiugSFW7DJEu3y+D4RA95nzjDGmWPrwzp07mD17Ntq2bYtx48aV+BxjW2lIU2lpaYo504OCgpCamorExETeVmAqaUWsWrVq4fz58+jfv79i0RlXV1ccPXoUQUFBOrdbEq4rZzVt2hQWFhY4e/YsVq5ciYsXL+LKlSuwsrLCvHnz0LNnT0X/p0yZolg5Kzo6GjY2Nli5cqXOS3Kqo4/XbdKkSRgwYIDSxHOGaFcTfLfL5/tACBT6PDt27JjSVUCXLl2wd+9eWFtbq91f05WGmJHfQ8f3CkylrYj16NEj9OnTB7Vq1cKqVasgFouxbds29OjRA4cPH0br1q11arsktHKWejt37sT58+eV7mY2RLva4KNdPt8HgtDbpwUmyMvLi7Vs2ZJduXKFnTt3js2YMYMBKHEmSLlczoYNG8bs7OzYpUuXDNxb3QUHB7Pg4GCV7WFhYaxGjRo6Hfuzzz5jIpGI/fvvvyqPDRs2jLm6urLc3FzFNrlczoKCglizZs20brOsD9FkMhmbOnUqs7CwYACYhYUFmzNnDmvTpg1r3bp1qcfOyspiIpGITZ48mTH2btbHcePGsYCAADZz5kx27do1tmbNGubu7s4cHBzYtGnTmFQq1fpcSsPn65aVlcVcXV1ZZGQky8zMVHwVve8zMzNZYWEh7+1ywXe7fL4P3meID3Ip9HmkbvTOhx9+yEQiEbt8+bLK/lOnTmUSiYSdOHHCUF3k1YgRI5iDgwOTy+VK2318fFR+DlwUFBQwV1dX1r59e7WPBwQEsHbt2qlsHzNmDLO2tta6XU1/4d6+fcsSEhJYcnIyk0qlrHLlymzq1KmlPic7O5uJRCI2ZcoUxhhjmZmZ7NixY4pAPHv2LLO3t2c//fQTO3z4MPP392fLly/X+lxKw+fr9vDhwxKnSi76unLlCu/tcqGvdvl4H7yPRu9UAMuXL4eVlRXCw8OVtnNdacgYR+/oa0WislbEqly5Mu7evYvc3FzFNsYYbty4oXZkFN9o5az/cXd3x7lz51S+AKBPnz44d+6c4gNqbdo15pWz+HgfCEJv/5yYIHVX+owxNn36dAaAXbx4kTHG2IoVKxgA9n//938qNyMlJiaqPTaMcBGVonHZNWrUYLt372b79+9nAQEBpd70osl5dO/endnb25d4jKIx0aGhoWz//v3syJEjbOjQoQwAi4qK0vp8yrrKSkpKYvPmzWNHjhxhJ0+eZPPnz2eWlpZs7NixSvuFhISwJUuWsIMHD7LffvuNRUZGMltbW9a0aVNWUFCg9thFV/rbtm1jhw4dYv7+/uzLL79U2Y+P94G+Xrf39y/p5iwu7Xp6ejIA7OnTp5qf4Hv4Pl99vg+ovFPOlBT6SUlJzMbGhnXr1o0xxm2loSLGGPqM8bsiEWOar4gVFxfH2rZty5ycnJiDgwNr1qwZi46O1vo8GKOVs3R53dTt/37oc23XWFfO0uf7gFbOIsSAaOUs40IrZ3XQSztU0yfkPbRylnGglbP0g670CfkvWjmLCIVWziKEEKIXVN4hhBATQqHPo6JFEwyxKISx4HtxCk0XR6FFVHTD9+smk8nw9ddfo169epBIJHBxcUG3bt2QmZmp1X58E2IRFS6LAtEiKuWUNvNnl2d8L06h6eIotIiKbvSxmMnIkSOZWCxmc+fOZSdPnmT79u1j06dPZykpKVrtxyehFlHRdFEgxmgRlXLL1EKf78UpNF0chRZR0Q3fr9vZs2cZALZ69Wpe9uObUIuoqKNuUaDiaBoGIyMSiRAREYGtW7fC398fVlZWqFGjBg4cOKC03+PHjxEWFgY7Ozt4eXnhm2++UTnWn3/+iS5dusDe3h42NjZo164dzp49W2LbxjgNA9+LU2i6OAotomJci6js2rULtra2GD9+PC/78c1YFlEpaVEgQ6PQ5yguLg7Lli3DnDlzcPjwYUybNg1ZWVlK+4wfPx7du3fH3r170bx5c8ycORMXL15UPJ6YmIj27dsjKSkJW7duRUxMDGQyGTp16oQ///xTbbumsIiKpouj0CIqxrWIyo0bN1C3bl3s2rULNWvWhIWFBfz8/LB9+3at9uOb0IuoFClpUSCD09vfEBUQAObg4MCSk5PVPl70Z/3333+v2JaZmcnEYjFbuHChYtuUKVOYubm5UnkiNTWV2djYsIEDB5bYtrG9XD4+PqxTp06MMcbq1avH3N3dWXZ2Nhs+fDizt7fX6pi3b99mfn5+ivN1dXVlv//+u9b7cVHWn9ZBQUEsMDBQadvx48cZAFanTh3Ftvj4eLZ48WIWHx/Pjh8/zsLDw5m1tTVr0KCBouabkpLCWrZsqej/lClT2KtXr9i3337LmjZtytq3b692ZlY+3gd8v26+vr7Mzc2Nubq6sq1bt7LffvuNDR48WKWkoul+fOP7fDV9H7yvXbt2rEaNGoqZVdWh8o4R6tWrF6pUqVLqPu3atVP8v52dHVxdXZXWyL148SLq1auntFBG5cqV0apVK6W/CIpj7z5/0bH3+lOlShU4OjrqtDhF0eIoXl5eiIuLw7FjxxAaGooePXrgjz/+4Lwf3yZOnIiEhAR8+eWXSElJwfXr10tcPGPBggXo2rUrQkNDERkZiR9++AE3b95ETEwMACgWUbl9+za+//57PHr0CF26dEFOTg5+/fVXnD59Gk2bNlXpA9/vAz5eN7lcjqSkJKxbtw6jR49Gp06dsGPHDnh6emLFihWc99MnPs5X0/dBcUWLAo0aNarEfQxGb/+cVEAA2Pz580t8vKQP8Ly8vJQ+YKxduzbr2LGjyvOHDBnC7Ozs+Oqu3vG9OIWmi6PQIiq64ft1a9KkCQOg8uFkv379mLu7O+f9+GYMi6iUtihQcXSlb4T4mITL0dERycnJKtuTk5MF/YCHq4CAANy/f1/lyvPevXta1Z2vX78OPz8/SCQSxTaRSISGDRvi5s2bnPfjm7m5OVavXo3k5GQkJCQgKSkJixcvxu3bt0tc0L54/4r/187ODoMGDcKtW7cQFRWFrKwszJ07F8uXL0dMTAyOHTuGVatW6eU8+H7dfH191W5njCld1Wq6H9/4Pl+u7wOpVIqffvoJ7dq1Q61atbQ+D75Q6AugefPm+Pvvv/HkyRPFtrS0NJw/f77ExRWMcfQO34tTaLo4Ci2iYjyLqAD/G7ly8uRJxTapVIqrV6+ifv36nPcrriIsolLWokAGp7e/ISogAGzRokUlPq5peefevXvMxsaGNWjQgO3evZvt27ePtWzZkllYWKj98K6obWN7ufhenELTxVFoERXjWkQlLy+P+fr6sqpVq7JNmzax+Ph4NmDAAAaAnTt3jvN+xZXnRVSKlLUoUHG0iIqR4Sv0GWPs0qVLLDQ0lNna2jJra2vWunVrdvLkyVLbNrbQZ4z/xTg0XRyFFlHRjT4Wvxk8eDCrXLkys7S0ZI0bN2Z79uzRej/Gyv8iKoxpvihQEVpEhRADokVUjAstotJBL+1QTZ+Q99AiKsaBFlHRD7rSJ+S/aBEVIhRaRIUQQoheUHmHEEJMCIU+IYSYEAp9QggxIRT6hBBiQij0CSHEhFDoE0KICaHQJ4QQE0KhTwghJoRCnxBCTAiFPiGEmBAKfUIIMSEU+oQQYkIo9AkhxIRQ6BNCiAmh0CeEEBNCoU8IISaEQp8QQkwIhT4hhJgQCn1CCDEhFPqEEGJCLITugDGTy+V48eIF7O3tIRKJhO4OIYSUiDGGzMxMeHh4wMys5Ot5Cv1SvHjxAp6enkJ3gxBCNPb06VNUr169xMcp9Ethb28P4N0PsVKlSgL3hhBizORyOZKTk5GWlgYbGxtYWGger4wxvH37FhkZGZBIJDA3N9foeUePHsXBgwexYsUKZGVloX///orcKgmFfimKSjqVKlWi0CeElEgul+PNmzeQSqVwdXXlHPhpaWkoLCyEs7OzxoGfkZGB77//Hunp6Th69Ci6dOkCAGWWoin0CSFEB0WBn5qaCltbW60CPz09HdbW1hoHPvDuYnTdunU4evQohg8fjjdv3mj0PAp9QgjRkhCBn5+fDysrKwBAvXr1UK9ePU59piGbhBCiBSEC/9ChQ+jfvz+eP3+ubbcp9AkhhCshAl8qlWLz5s14/vw59u3bp2XPqbxDCCGcCFXDF4vF2LBhA2JjYzFhwgRtug6ArvQJIURjQgT+27dvFf/v4uKCjz/+uNSbr8pCoU8IIRoQIvDj4uLQs2dP/Pnnn9p2WwWFPiGElEGIwGeM4fDhw8jKysLJkye17boKqukTQkgphKrhi0QiREVFYd++fRg0aJA2XVeLrvQJIaQEQgT+06dPFf8vkUgwZMgQnWr476PQJ4QQNYSq4fft2xd79uzRtttlotAnhJD3CFXSuXv3LgoLC3H37l1tuq0RqukTQkgxQgU+AMycOROBgYEIDQ3l9DzGGAoKCjTal670CSHkv4QI/Js3b4IxBuDdh7edO3fmVMNnjCE7Oxs2NjYa7U+hTwghEK6GP3LkSCxfvlwR/FwUBb6trS0cHR01eg6FPiHE5AlV0pFKpQAAmUzGOfSLB76Tk5PG7VJNnxBi0oSs4fft2xdeXl5o2LChViWdosDn0me60ieEmCwhAv/8+fPIzc1VfN+4cWODBT5AoU8IMVFC1fCnTJmCTz/9FPn5+Zz7rGvgAxT6hBATJFRJx8PDA9bW1vD09IRYLObUZz4CH6CaPiHExAhZw2/cuDFiYmLg6elp0JJOcXSlTwgxGUIE/vHjx/Hq1SvF915eXoIFPmACob9p0yaIRCLY2dkJ3RVCiICECPxjx47hs88+w7hx45CWlsa5z3wHPlDBQ//58+eYNWsWPDw8hO4KIURAQpV06tevDw8PDzRv3hwODg6c+qyPwAcAEdPmNrByolevXhCJRHBycsKvv/6KrKwsTs/PyMiAg4MD0tPTUalSJT31khCiT0LW8AEgNTUVjo6Oei/pvHnzBo0aNSozryrslf6OHTtw5swZrFu3TuiuEEIEIkTgHz58GDdv3lR87+TkJGgN/30VcvTO69ev8emnn2LZsmWoXr26xs/Lz89XGjubkZGhj+4RQgxAiMD//fffMX/+fNja2ipG6XCh78AHKuiV/uTJk+Hn54dJkyZxet7SpUvh4OCg+OL6ghFCjINQJZ0mTZogKCgI3bp1Q7Vq1Tj1WZfAl8vlFWNq5dOnT0MkEmn0dePGDQDAnj17cPDgQWzcuBEikYhTe3PnzkV6erriq/iyZYSQ8kHIGr61tTXWrl2LefPmGaykI5fLkZmZqfEIRaMu7/j5+WHjxo0a7VujRg1kZWVhypQp+OSTT+Dh4YG3b98CgOJfwLdv30IsFsPW1lbtMaysrGBlZcVL3wkhhifU1AoAEBYWBuDdurZc8BH49vb2sLa21ug5FWr0zqNHj+Dt7V3qPn369MG+ffs0Oh6N3iGk/BAi8BMSEjBq1CgAwPbt2xEYGMipz3wFvqurK3JzczXKK6O+0ufKzc0Np06dUtm+bNkynDlzBkeOHIGzs7MAPSOE6JOQ4/AHDBig+H8u+Ax8sVisNHNnaSrUlX5JRo8eTeP0CamghB6HL5fLAcDgNfzigQ9onldG/UEuIYSURqga/vfff69Y6crMzEzwwOfCJK70tUVX+oQYLyEC//Hjx+jfvz8KCwuxatUqhISEcOqzPgNf07zivaYvl8uRl5en8crshBDClVAlHS8vL3z22Wf4999/0aFDB059FvoKv4jOoZ+Xl4ddu3YhLi4Of/zxB16/fg3GGKysrFC3bl2EhIRg+PDhaNiwoa5NEUKIIIHPGFPc9zNkyBCl7zV9vjEEPqBDeSc3NxcrVqzAd999h/T0dPj7+yMoKAguLi6QSCRITU3FgwcPcPnyZWRkZKBVq1ZYsWIFWrZsqVOHDYnKO4QYF6Fq+MeOHcPKlSthaWnJuc+GCny9l3fq1KkDW1tbLFiwAMOHD4erq6va/RhjOHXqFLZu3YqOHTtizZo1GDdunLbNEkJMlBCBn5qaii+//BI5OTnYt28fBg0axKnPxnSFX0TrK/0tW7Zg1KhRnOphDx48wJMnTzjXwoRCV/qEGAchh2VevnwZp0+fxqxZs4x6lI6meUWjd0pBoU+I8IQIfKlUqtOVtRBX+DROnxBS7gkR+IcOHcLQoUORnJysVZ+NsaRTHG+hL5fL8dNPP/F1OEKIiRMi8PPy8rB27VokJiYiNjaWc5+NPfABHss7+fn5sLGxQWFhIR+HMwpU3iFEGELW8J88eYL9+/djypQpRl3Df59eRu988cUXJT4mlUq5HIoQQtQSIvCzsrIU89HXqFEDn3zyCac+Cx34XHAq7yxZsgS3b9/G06dPVb6eP3+urz4SQkyEUOPwe/Xqhbt372rV5/IU+ADHK/0GDRpg5MiRisUCisvLy8O2bdv46hchxMQIEfiFhYXYvXs30tLScOTIEfj7+3Pqc3kLfIBj6I8fP77Emr1YLMaiRYt46RQhxLQIVcM3NzfH6tWrERsbixEjRnDqc3kMfIDG6ZeKPsglRP+ECPxXr16VOIuApu0aW+DTOH1CiNETqobfs2dP/Pbbb1r12RgDnwudQ59KOoQQbQhV0rl8+TKkUimuXr3Kuc/lPfABHso7NjY2yMnJ4as/RoXKO4Toh5Dj8AsLC3H48GGEhYWVq3H4ZTFYeYc+EiCEcCFE4N+7d0/x/+bm5ujVq1eFCnwudA59LgsJEEJMm1Bz6QwZMgTr16/Xqs8VKfAB+iCXEGIgQpV0UlNTwRhDSkoK58pERQt8QA9r5BJCyPuErOGPHDkSderUQfPmzcvtEod8opo+IUSvhAj8K1euKM0H1rJlS5Ot4b9P59Bv3bo1H/0ghFRAQo3DnzBhAubMmaPVRJAVOfABHkL/+PHjfPSDEFLBCFXScXBwgIWFBSpXrsy5FFTRAx+gmj4hRA+ErOG3adMG0dHR8PHxoZKOGlqH/pMnTzjtX6NGDW2bIoSUI0IE/qlTp9CoUSNUrlwZAODr68upz6YS+IAOoV+zZk1On4RXpBW1CCHqCRH4R48exZw5c1CnTh1s2bJFsRgKl3ZNJfABHUJ/y5YtdGMWIURBqJKOr68vnJycEBgYCBsbG059NrXAB2hq5VLR3DuEaEbIGj7wbqrkqlWrmnQNX7Cplf/55x9cuHAB9+/f5/vQhBAjJETgx8fHIzExUfG9q6urSQc+F7yF/u7du+Hl5YWAgAC0adMG/v7+8PLywq+//spXE4QQIyNE4J8+fRpz587FhAkT8OrVK859NuXAB3gasnn48GEMGTIE9erVw9SpU+Hh4YHnz59jx44dGDJkCA4ePIju3bvz0RQhxEgIVdJp3Lgx/Pz8UL9+fVStWpVTn0098AGeavqtW7dGpUqVEBcXp/QnFmMM3bt3R2ZmJv744w9dmzE4qukTop7QNfzs7GxYW1tTSacYg9b0b9y4gcmTJ6u8ACKRCJMnT8Zff/3FRzOEECMg1NQKZ8+eVXxva2tLga8lXso75ubmKCgoUPuYVCrl9OIQQoyXUJOnLViwAObm5oiOjoafnx+nPlPgK+MljZs2bYoVK1YgNzdXaXt+fj6+/vprNG/enI9mCCECErKG36lTJ/Tt2xd16tTh1GcKfFW81PR///13hIaGwsnJCQMHDoSbmxtevnyJ2NhYpKSk4OTJk2jVqhUf/TUoqukT8o7QNXyZTAYzMzMq6ZRC07zipbzTpk0bHDt2DHPmzMHatWvBGIOZmRmaN2+OmJiYchn4hJB3hFri8M2bNxgzZgwAcGqzqF1TCnwueJtls3379rhw4QJycnKQlpaGypUrc74lmhBiXIQI/Pv372PhwoVgjMHX15fzmh0U+KXjfWplGxsbCntCKgChSjp16tTBpEmT8Pr1a7Rs2ZJTnynwy8Zb6O/btw/R0dF4/Pgx8vLylB4TiUQ0bJOQckToGv6ECRPAGKM1bfWAl9E7K1euRP/+/XH27FmIxWJUqVJF6cvJyYmPZgghBiDUOPwFCxYoTcFOga8fvFzpr1u3DmPHjsWGDRu0+ledEGIchAj8V69eITIyEgUFBWjatCn69OnDqc8U+NzwEvopKSkYNmwYBT4h5ZhQJR1XV1csW7YMly5dQq9evTj1mQKfO17KO61bt8adO3f4OBQhRABCBH7xUk5ISAjmzp1L4/ANgJfQ//bbb7F27VocOHCgxOkYCCHGSaga/pgxY5CRkaFVnynwtcdL6Pv4+KBTp07o168fbGxsUKlSJaUvBwcHPpohhPBMiMDPzs5GVFQUEhISEBsby7nPFPi64aWm//nnn2PNmjVo1KgRAgICYGlpycdhtXLy5Ens2LED58+fx9OnT+Ho6Ijg4GCEh4ejSZMmgvWLEGMjVA3f1tYWP/zwAw4fPoyRI0dy6jMFvu54mXunSpUqmDBhApYuXcpHn3QycOBApKSkYODAgahbty7evHmDqKgoXL16FUePHkVISIjGx6K5d0hFJUTg5+bmwtraWtsuU+CXQdO84iX0HR0dERsbyylQ9eX169dwcXFR2paVlQUfHx/Ur18fx48f1/hYFPqkIhJqLp01a9Zgw4YN8PLy4txnCvyyGXQRlS5duuDixYt8HEpn7wc+ANjZ2aFu3bp4+vSpAD0ixHgIEfhSqRQ//fQTkpKSsH//fs59psDnFy81/YULF2Lw4MGwtbVFWFiY2jtwhbwrNz09HdeuXSvzL5H8/Hzk5+crvtd2ZAEhxkioGr5YLMYPP/yAPXv24KOPPuLUZwp8/vFS3ikaW1vabdPFx+Qa2ocffoiff/4ZFy9eLPXD3IiICERGRqpsp/IOKe+ECPzU1FSdLvYo8Lkx6Hz64eHhnObJ0NTp06fRsWNHjfa9fv06GjVqpLJ94cKFiI6OxurVq8scvTN37lzMnDlT8X1GRgY8PT059ZkQYyPUOPwlS5Zg1apVnGfKLGqXAl8/eAn9iIgIPg6jws/PDxs3btRo3xo1aqhsi4yMxJIlS/Dll19i6tSpZR7DysoKVlZWnPtJiLESIvAZYzh+/Dhyc3Nx9uxZmh7ZyPBS3jFGkZGRiIiIQEREBBYtWqTVMWj0DinPhJweWSqVYt++fRgwYABNrWAgBh29Y2wWL16MiIgILFiwQOvAJ6Q8EyLwHz16pPh/sViMgQMHUuAboQoX+lFRUQgPD0e3bt0QFhaGixcvKn0RUtEJVcPv378/du7cqVWfKfANR+ua/pMnTzjtr67mrg8HDx4EAMTHxyM+Pl7l8QpazSIEgHAlnYcPH0Iul+PBgwe04pWR07qmb2ZmxumFFXLIpraopk/KEyFr+IwxnD59Gu3bt6eSjkD0PmRzy5YtehmmSQjhTojAv3HjBgIDAxUXgJoOry7eLgW+4Wkd+qNHj+axG4QQbQm5pm3fvn2xcOFCTlf3Re1S4Aujwn2QS4gpEaqkU3R1r80SqRT4wuLl5ixCiOEJWcPv3r07qlevjnr16lENv5zhLfTv37+PDRs24M6dO8jNzVV6TCQS4cSJE3w1RYjJEyLwz507h6CgINja2gIAGjRowKnPFPjGgZfQv3XrFlq0aIFq1aohMTERgYGBSE5OxvPnz+Hp6YnatWvz0QwhBNoHfkJCAgoKCiCTyeDq6sop8A8fPoz58+ejUaNGWLduHefFUCjwjQcvNf158+aha9euuH37Nhhj2Lx5M54+fYqDBw8iLy8PS5Ys4aMZQkyeLlf4N2/exPXr1/HPP/9wLul4eXnB1tYWtWvX5jw/FQW+ceHlSv/atWtYt26dorYnl8sBAGFhYZg1axbmzp2LM2fO8NEUISZL15JO0S052nwAW69ePezatQseHh5Uwy/neLnST0tLg5OTE8zMzCAWi5GWlqZ4LDg4GNeuXeOjGUJMlq6Bn5qaBpncAmXdiZmYmIg7d+4gMTERx44dw/PnzxWPVa9enQK/AuDlSr9atWpITk4GAPj4+ODs2bPo3LkzgHd1RDs7Oz6aIcQk6Rr4NxNzcPS6G/LMx0JknYeq7GSJ+ycmJiIvLw/379/Hzp074ebmhujo6BIXQ0lMTIRUKoVYLIaPj49SuxT4xomX0G/Tpg3Onz+Pvn37Yvjw4Vi0aBFevnwJS0tLbNu2DR9++CEfzRBicnQN/Kcv03HoqhsK5e/unmewxGtRV6TnJMHBRlbicz08PODu7o5WrVrB0dGxxP2K/pGQSCSK0KfAN268hP78+fPx4sULAMDs2bORlJSE6OhoiEQiDBo0CF9//TUfzRBiUnQJ/ISEBCQkJCBTXhOF5h7/e0D0rjxz7Ow/sMc/AN79de7j4wM5Y3iWUg0pGZVgYV6AD0c5YcjArlTSqWB4Cf3atWsrhmWam5vj+++/x/fff8/HoQkxSbpe4WdkZCA3NxeFZtmAms9sC6XZyCvMA/BuwZOsHIYVP75FTkEAAAaA4U1mdXTPEqGyhnMNUuCXD7yEvlQqRUFBgeKmjeKys7NhaWlJLyIhGuLjxiuZTAaJRAIrJCOHvUI+qir2sWApqCROgplYAgBITc3AtgNvUCgqqtuLAIggKwSiYxPh4/YvgP/9RVASCvzygZfQHz9+PPLz8xETE6Py2IQJE2BtbY1Nmzbx0RQhFRpfd9r6+/ujXr16AACpLB83HmXgzr8pEMlSUcX8Fnp064zExEQkJibi/mM5ZKwy1E2am58vQl7e//4iKC41xxbw/AhWFvZgBSlg4nQ4OXHrMwW+4fEyZPPUqVPo3bu32sd69epFUzAQogF9Ta0gtmBo6pMOF3Yc9tLzMEMBgHchnpeXB1mhSHEM5eU1zOBo+wYAYGFhoRTIOQWWuPqiJiB2hMhMDJGVC/586QM5NA9tCnxh8HKl/+rVK7i7u6t9zM3NDUlJSXw0Q0iFJcRcOhcuXMCzZ8/QKMge95OkkBWaKz7oBWOoXuU+qjmnA5AoSjtFfx2gUmPA2ReKPw9EZsiTArsPnIMo792qevXr10dgYGCJ50uBLwxeQt/R0RGJiYno0KGDymOJiYmwt7fnoxlCKiQhAv/WrVtYvXo1GGPo2bMnPgm2RswhGV6lyGFllgNfj7/g6pSHbt26KT2v6K8Dc0kuLPCu+l9cbm42WE62Yt+SzpcCXzi8hH7Hjh2xdOlS9O/fX+kmjtTUVCxbtgwhISF8NENIhWPIwPfx8VHcSFW7dm0MGzYM+fn5aNSoEczMRPhsnBjx8fHvQt3cHD4+ASrHEIvFkEgkYPmPICrMBjO3gUhkBsbkEBUkw1qUBtF/B3SoC3MKfOFpvUZucffu3UPTpk0hFosxePBgVKtWDc+ePcPu3bshlUpx+fJl+Pn58dFfg6I1cok+CTkfftExGGNK4/CLQl8ikahc5Rc9p2iUjpVtVRz44y3kZpVgLkvGwE5usLIoOU4o8PVL72vkFufn54dz585h5syZ2LhxIwoLC2Fubo727dtj1apV5TLwCdEnIQL/0KFDuH37Nj7//HOIRCLFF5d2lYdlimCefAR5Rf8IWAwr8bkU+MaDl9BPTk5Gw4YNceLECeTm5iomYJNI3o0DvnbtGoKCgvhoipByT4jAf/bsGRYtWoTCwkI0atQIXbt25dRnuvGq4uAl9Hv16oVTp05BIpHA2tpaaYGF27dvo2vXrnjz5g0fTRFSrglV0qlevToWLlyI27dvKyZDVKd43b94uxT4FQdvQzaHDx+OPXv2KG1PTExE586dERCg+oEQIaZGiMBnjClKOH379kXfvn1L3f/9O24p8CseXm7OOnz4ME6fPo2ZM2cqtj158gShoaHw8PBAXFwcH80QUm4JEfhxcXGYPHmyyprVXNotK/Dr16+PoKAg1K9fX2k7Bb7x4uVK39/fH7GxsejatStq1qyJwYMHIzQ0FPb29jh27BiN0ycmTYjAT09Px9KlS5GVlYW9e/di2LCSP2QtqV1NrvDV3XxFgW/ceBmyWWTHjh0YM2YMqlevDgsLC5w7dw5ubm58Hd7gaMgm0ZWQwzKvX7+OEydOYObMmTQ9sgnQNK+0Dv3U1FS125csWYLo6GjEx8fDy8tLsb2klXeMGYU+0YUQgV9QUABLS0ttu0yBX47pfZy+s7NziWN8GWMIDg5W2lZYWKhtU4SUO0LV8H/88Uf8+OOPcHV15dxnCnzToHXoh4eHc7qxgxBTIdQV/g8//ICnT58iNjYWkyZN4tRnCnzTwWtNv6Kh8g7hSsga/suXL7F37158/PHHVMM3QXqv6ZsCCn3ChRCBn5GRodN7kwK/4tA0r3gZp0+IqROqht+zZ0/cvHlTqz5T4JsmrUO/fv362Lt3r8b7v3z5EtOmTcOyZcu0bZIQoyRE4Mvlcuzbtw8ZGRk4duwY5z5T4JsurT/IHTRoEEaOHInKlStj+PDh6NChA4KCghSjenJzc/Hvv//i4sWL2L9/P44ePYqmTZvi448/5rP/hAhKqBq+mZkZvv/+e+zZs0dvN16pQ4Ff/ulU03/58iW+/fZbbNmyBSkpKYqpWsViMQoK3q3DyRhD27ZtMX36dPTv35+3jhsC1fRJaYQI/BcvXsDDw0PbLlPgV2AG/SBXKpXi0qVLuHDhAl68eIHc3Fw4OzvD398fHTp0QPXq1XVtQhAU+qQkcrkcv504jczsfFhbitC4kfq1YNXRpYa/aNEiREZGIiwsjHOfKfArNoMuoiIWi9GmTRu0adOGj8MRYtTkcjlu/JuFAqe2kFQRQVqQi6yCXNhZysp8ri4lnb/++gsymQx//fUX59CnwCdFeAl9QkyFXC7H/Sdv8SKzEoruTTQXW+HfNCs0cEmGWSn3K+o6Dn/OnDlo3LgxLYBCdEKhT4iGzp8/j/Pnz8O5VitUqdEEIrN3oS0SmaGQAXsPHkN+VjKAd6Pbis9AqW3g//333wgICIBIJIKZmRm6d+/Oqc8U+OR9NE6fEA3I5XKkpqYiOzsbudkZgJopSDLT3z2enZ0NqVSq2K7LmrbDhw/HN998A20+eqPAJ+pQ6BNShqJROjKZDDY2NshN/gfS3AwwuRxy+buJBFOf/AlLczksLS0hFouRnPzuil+Xkk5OTg4YY4r/ckGBT0pC0zCUgkbvkJKGZcrkIpy48A/kIjFkuSnoGdIEIhGwc+dORdgOHTpUpxo+AFy5cgVNmjShuXRImWgaBkJ0VNo4fAszBnf7XLhYpcCrqlil2qPtFf7FixcV97gAQNOmTSnwCa90+iD34cOHsLa2Vloda9WqVUr7VKpUCePGjdOlGUIMTpMbr9QtFViEMabVOPwFCxagdevW+OabbziHLgU+0YTWof/nn3+iWbNm+OWXXzBgwAAA7xZKmTVrltJ+IpEIPj4+6NChg04dJcRQdL3TtugYXEs6VatWhZWVFdzc3DiXgijwiaa0Dv2NGzeiVatWisAv7uDBg6hfvz4YY/jss8+wfft2Cn1SLugS+GlZwFuzJpBKAJHoGefgbtasGaKjo+Ht7U0lHaI3Wtf0T548WeJET+7u7vDy8kLNmjUxYMAAnD9/XusOaisrKwuffvopPDw8IJFI0KhRI+zatcvg/SDlhy6B/yZdhM1HbZBhFoRcy8Z4I+6DxFe2ZT7v5MmTipE+AFC7dm0KfKJXWl/pP3v2DAEBAUrbRCIRGjZsCBsbG8U2d3d3PHv2TPseaql///64cuUKli1bBl9fX+zcuRNDhw6FXC7nPCshqfi0DfyEhATcvHkTyWYhkJrVBkT/DWzGcPa2HRKv71Hs6+PjAx8fH8X3R48exZw5c+Dt7Y1t27ZxHiFGgU+0odMHue+P9jQzM8P169eVtsnlcq1uLNHF4cOH8dtvvymCHgA6duyIx48f47PPPsPgwYO1Gj5HKiZdrvALCgqQk5MDqa3V/wIfAEQiyJkEuXl5KBrYU/yGLQCoW7cuXFxcEBQUBDs7O059psAn2tK6vOPh4YHbt2+Xud/t27d1mgpWG3v37oWdnR0GDhyotH3MmDF48eIFLl26ZND+EOOl64e2MpkMVlZWkOA1UPzihslhyV7DWiKB5L9f74erp6cnoqOjMW/ePCrpEIPR+kq/ffv2+PHHH/Hxxx+X+KaTyWT48ccfDf4h7q1btxAQEKDSr6Ihdrdu3UKrVq1Unpefn4/8/HzF9xkZGfrtKBEUH/Phu7q6ombNmoDIHKdu5+BR8rs6vgVLR7/WUthLuik97/Dhw6hVqxb8/f0BAM7Ozpz6TIFPdKX1lf706dNx9+5dDBw4EK9fv1Z5/NWrVxg4cCDu3buH6dOn69RJrlJSUuDk5KSyvWhbSkqK2uctXboUDg4Oii9PT0+99pMIh+8FUMzNgE4NXsMt/yc4Zm6Dq/Rn2EuUp1o+e/Ys5s+fjwkTJuD58+ec+0yBT/ig9ZV+YGAgVq9ejSlTpuDIkSMIDg6Gl5cXAODx48e4evUqZDIZ1q5diwYNGvDWYU2J1EyIVdZjc+fOxcyZMxXfZ2RkUPBXQGUFfkJCAqRSKcRiscoNWGXdaWuBbFjI8yCCRKXdxo0bo0GDBvD19YW7uzunPlPgE77o9EHuxIkTUb9+fXz11Vc4ffq0YmimtbU1OnfujLlz56oto+hblSpV1F7Np6amAoDavwIAwMrKClZWVnrtGxGWJlf4t27dUgQsH9MjF7G3t8eGDRtgZWVFNXwiGJ3n02/dujXi4uIgl8sV442dnZ05van51qBBA8TExEAmkyn9gty8eRPAu7nOiekRYk3buLg4WFpaonPnzgDeXRBxQYFP+MZbMpuZmcHFxQUuLi6CBj4A9OvXD1lZWdizZ4/S9u3bt8PDwwPNmzcXqGdEKEIE/vXr17FgwQLMmTNHo5Fu6tqlwCd8q5ArZ3Xv3h2dO3fGpEmTkJGRAR8fH8TExCA+Ph47duygMfomxpCB7+Pjo/g8oLCwEG3atIFEIlG5kVGTdinwiT5UyNAHgNjYWMyfPx/h4eFITU2Fv78/YmJiMGTIEKG7RgzI0Ff4xe+4jY+PR8eOHSGRSKiGT4xGhQ19Ozs7fPfdd/juu++E7goRiLaBzwAwkSXkWk6P/OTJE0yc+DFkcguIRGYU+MSoVNjQJ6ZN28C//8ICr6zHgtlYIVuehSxZCuzMpWU/Ee/Wl1i4cCEquzVFsoUZpIU9YS7Kh2/VPzV6PgU+MQSDhP6bN29QtWpVQzRFiNaBn5xhhoNXbFA0mYJcZINTd63Rr8ljSMRytc9JTExU1PB9fHzwyfT5eJgzELLCd6FbyCxx93VzpKbL4ORQ8hxUXAL//fsIKPAJF3oLfcYYjhw5gs2bNyMuLg55eXn6aooQBW0CPyEhAbdu3UKWeX0wyzZQrH0oMoO0EDh6+iasCp8CUJ0pMzExEbm5uRCLxUhMTITYrg6Qa4n/xbsIDOY4dOwvuNg/UXsMrlf4xe8jqF+/PgU+4YT30P/333+xZcsWbN++HS9fvgRjrNS7Ywnhi7ZX+FKpFNnZ2ZBaZQGWah7PzwKT5Sn2Le769eu4efMmBg8eDJlMBrksR20bhYU5iguf4sfQpaTDGKPAJ5zxEvp5eXnYvXs3Nm/ejHPnzoExhubNmyM8PBxWVlYYO3YsH80QUiJdRumIxWJYW1tDLH8MKUtHIf43r7248AVsLd5CZCFR7FskOTkZsbGxkEqluHbtGlq2bAlLq3Qk5aQiK78y8N/rfYlFBlwqpcLcTPkYugR+0fMp8AlXOoX+lStXsHnzZuzatQsZGRlwc3PDrFmzMGbMGMUsgvv37+elo4SURNdhmdWrV4e9vT2sra0hk6fi4O8PUMBsYYU09O1QFeZmXVWeJ5UBZ647o9Ow8ygslMLN5Tm6dK0DMxHQSQqcu1GIW3dewUKUDq8qDxDWo4tKu7pc4QPv5pCiwCdc6TTh2u3btyEWi9GzZ0+MGTMG3bt3F/xuXGJatA38Ahnw5437KMhJBpPnw9/f/91smeZy2OWfR15eHiQSCczNuqk8VyaT4eBpC1y9DTBYwszcEo9TfHH+OkObIMBSDIQ2lUGacgV5eXmwMFOefE3XUTpFoW9ubk6BTzjTOvRv3boFMzMzzJgxAzNmzICLiwuf/SKkTNoG/j/PLXD4TxsUyoMBVgj7vJOoV0+zcfhbtmzBnj170KjzPjCm/AHAmUtvkfX6IgDlm7SK42NYJn1GRnSh9WX5t99+iwYNGmD58uWoXr06+vbti/3790Mmk5X9ZEJ0pG3gv80WIe6qDQoVIzDNkCkJxdscNZ/gvic3Nxf/+c9/8Pz5c8hk+e89ygAmQ15eHvLy8lQ+8AX4CXxbGxt079YNQ4cMQZvWren3jXCm9ZX+tGnTMG3aNFy9elVR1z948CCcnZ3x4YcfYvTo0YLMo08qPl2GZeaa1YJcUqxGLxIBEOHU+fuwlt0BgBKD1NraGhEREdi7dy9quT7Dw+Si+XQYABFqOD+FRPK/D2uLz8PDS+Db2kImlcLa2hoikQhOTk54+eIFqnt60tU/0ZiI8bRq+fsjeIB3i0YEBARg586dKCws5KMZg8rIyICDgwPS09NRqVKlsp9A9E7bK/w///wT165dg0zsiRzHwSqPW6fHQlzwAABgYWEBmUwGiUSCbt26IScnBzY2Nkr7MwZcSgBOXUgDYzJ4Oj/FiIFBatvWNfCvXr2K+/fvo369eqhTp47K52YnTp5EZmYmAKBly5Zo2bKlxscnFYemecXbp64SiQQjRozA6dOn8c8//2D27NlISkpCdHQ0X00QE8fHsEwbs9ewlD16l9qsEGAM5gVPYWf2UrGAeXGHDh1C7969kZiYqLRdJAJaNAQa17yEuu5/oKq96pKhAD8lHTMzM+Tk5CC3hBscMzMykJmZiczMTKU1nglRRy935NauXRtfffUVlixZgsOHD2PLli36aIaYED6HZYpEMvzz6g1u3n0JeUEyKrF76N7tfyWf+Ph4yGQyFBYWIiYmBsnJyYiLi+O81jNfc+k4OTnB3t4er1+/hlz+7sMIMzOzdz+T5GRAJIK9vT0A0MpvpEy8lXcqIirvGAd9TY8cHx+vGJrZrdv/hmYWn0+natWq2LNnD0aPHq12OHJJx9DX5GkFBQW4fOkSxGIx3qano3PnzjRMmgDQPK9olk1i1PQ5H37xD1qLc3BwUJogkOsd5fqcLdPS0hKXr1xR7NO1q+qNY4SUhi4RiNHS9wIoPj4+CAgIUBpTHxcXh549e+Ls2bMatePj4wM/Pz/FMWh6ZGLs6EqfGCUh1rRljOHcuXPIz8/H+fPn0a5duzKfo8tsmcVR4BNDodAnRkeIwAfezWWzZMkSNG/eHH369OHUZwp8Ul5QeYcYFSECv/hwTAsLC/Tr14+WOCQVFoU+MRqGDvzExET8+OOPGDRokNbDiinwSXmjdXnHzMyM063f5fGOXGI4Ql3h3717F3K5HC9evOC84A8FPimPtA798PBwpV+QrVu3IisrC7169YKbmxtevnyJQ4cOwdbWlhZRIaUSqoYPAO3atUONGjUwbdq0chP4LVu2RH5+Pt2IRbSidehHREQo/j8qKgpubm44fvw47OzsFNszMzPRqVMnlXlLCCkiROD/+eefqOHdEI9S6qBAyuDu5V6uavg0tw7RBS81/XXr1uHzzz9XCnwAsLe3x+eff45169bx0QypYIQI/EOHDmH6/32JVf9heJLqg6TMOvjrWUvcuKfZVb7QgU+IrngZsvn8+fMS3/wWFhZISkrioxlSgQhZw/dpNBEQifG/ax6GvSekSHp4XLGvj4+PykIoFPikIuDlSj8gIACrVq1SWTiioKAAUVFRivVyCQGEq+FLpVL4+PjAu3YDiETFnyeCtNASubl5JS6CQoFPKgpervSXLFmCvn37olatWujfvz/c3NyQlJSE2NhYJCUlYd++fXw0QyoAIQL/7NmzaNSoEcRiMSQSCVyd8vAk9d3CJ//tFSpJ3sLa+n/TKhcPZgp8UpHwNsvmiRMnMH/+fFy9ehVyuRwikQjNmjXD4sWL0alTJz6aMDiaZZNfQgR+fHw85s6di7p162Ljxo2wsbGBrBDYFW+Gvx+8C31rcRamDrNGZTUvMQU+KS8MPstmaGgoQkNDkZOTg7S0NFSuXJlG7RAFoUo6tWrVgoODAwICAhQLpFiYAx+GybHv4Gnk5sngaFeIypVUZ6ukwCcVEa9z76Snp+PixYtITk5Gjx49KPQJAGHH4fv6+iImJgaurq4qwzIl4jygMA8ikUTleRT4pKLibRqGxYsXw8PDA927d8fIkSPx8OFDAO/+Ali2bBlfzZByRojAP3r0KB4/fqz43t29fI3DJ0SfeBunHxkZiY8++ghxcXEo/jFBz549ERcXx0czpJwRIvBPnjyJOXPmYNy4cXj9Wv26tUXenwu/qF0KfFKR8VLeWbNmDWbOnIkVK1aozLFTp04d3L9/n49mSDkiVEmnUaNGqF27Nho1agRnZ+dS96Vx+MQU8RL6Dx48KHHZNnt7e7x9+5aPZkg5IWQN38nJCVu3boWtrS2VdAhRg5fyjoODA169eqX2sUePHsHFxYWPZkg5IETgx8XF4cKFC4rv7e3tKfAJKQEvoR8aGooVK1YgOztbsU0kEkEmk2H9+vW0eLOJECLwL126hAULFuDTTz9VWgyFS7sU+MSU8FLe+eKLL9C0aVPUrVsX/fr1g0gkwpo1a3D9+nU8efIEv/zyCx/NECMmVEknKCgI7dq1Q9WqVVGrVi1OfabAJ6aItzty79y5gxkzZuDkyZOQyWQwNzdHx44d8d133yEgIICPJgyO7sjVjJA1fODdnDrm5uZU0iEmTdO84qW8c/bsWXh6eiI+Ph6ZmZl49uwZMjIycOzYMXh6euLs2bN8NEOMkFA1/J07dyq+F4vFFPiEaIiX8k7Hjh1x4cIFNGvWDFZWVvDw8FA8du/ePXTs2JGWS6yAhAj8u3fvYsGCBWCMwcfHB82aNePUZwp8Yup4Cf3SKkRSqZTTVRgpH4Qq6fj5+WHs2LFIT09HcHAwpz5T4BOiQ+hnZGQojb9PSkrCkydPlPbJzc3F9u3b4ebmpnUHifExdOAnJiZCKpVCLBbDx8cHU6dOBYBys6YtIcZE69D/5ptv8MUXXwB498vXr18/tfsxxjBv3jxtmyFGRogr/F9++QWJiYn44IMP4OPjwynsi9qlwCfkHa1Dv0uXLrCzswNjDJ9//jk++eQT1KhRQ2kfKysrNGjQAO3bt9e5o0R4QgT+y5cvsWfPHhQWFqJOnTro0aMHpz5T4BOiTOvQb9myJVq2bAkAyM7Oxvjx45U+wCUVi1A1/Le57ggb/hMyM97C25eu8AnRFW/j9CsiGqf/jhCBL5fLce2OGfYcNwMgV2wfPwCoVV2zdinwiSkx+MpZpGISIvC3bNmCgwcPIjB0FwAJ/nc7CcOvR5IR6HkFwLtZMt+fKbOoXQp8QtTjLfTv37+PDRs24M6dO8jNzVV6TCQS4cSJE3w1VaaTJ09ix44dOH/+PJ4+fQpHR0cEBwcjPDwcTZo0MVg/yjshAj8jIwNbtmxBVlYW/KSAyKx4SUeEApkF8vLyALwbDqyuXQp8QkrGS+jfunULLVq0QLVq1ZCYmIjAwEAkJyfj+fPn8PT0RO3atfloRmPr169HSkoKpk+fjrp16+LNmzeIiopCixYtcPToUYSEhBi0P+WRUDX8SpUqYcGCBYiLi0PVSmlIzrJC8Sv9KvbJirVu3w9lCnxCysZLTb93794Qi8X4+eefYWlpiatXryIoKAhxcXEYO3Ys9u7di1atWvHRX428fv1aZTrnrKws+Pj4oH79+jh+/LhGxzHVmr4QgZ+fnw8rKyulbbn5QMxhEe4/EQFgcKv0DFNHVoO6Q1LgE1Nn0Ll3rl27hlGjRinuvJXL333wFhYWhlmzZmHu3Ll8NKMxdfP329nZoW7dunj69KlB+1LeCDWXTv/+/fH8+XOl7dZWwNh+DG3qHEVTz/3wc79JgU+IjngJ/bS0NDg5OcHMzAxisRhpaWmKx4KDg3Ht2jU+mtFJeno6rl27hnr16pW4T35+PjIyMpS+TIkQgS+VSrF582Y8f/4c+/btU7uPuVkhzMzkah+jwCeEG15Cv1q1akhOTgbwbkRF8Vk1ExISYGdnx0czOpkyZQqys7Mxf/78EvdZunQpHBwcFF+enp4G7KGwhKrhi8VibNiwAZMmTcKkSZM49ZkCnxDuePkgt02bNjh//jz69u2L4cOHY9GiRXj58iUsLS2xbds2fPjhh3w0o7WFCxciOjoaq1evLnX0zty5czFz5kzF9xkZGSYR/EIEflpaGipXrgwAqFq1KiZOnMipzxT4hGiHl9CfP38+Xrx4AQCYPXs2kpKSEB0dDZFIhEGDBmHlypV8NKOVyMhILFmyBF9++aVioq6SWFlZqXyYWNEJEfiHDh3C0qVL8f3332s0hNbHx0cx4VpRuxT4hGinQt+RGxkZiYiICERERGDRokWcn1/RR+8IEfiMMUydOhV//PEHhg0bhs8//5xTnynwCVFP73fkvj+Nclnen4xN3xYvXoyIiAgsWLBAq8Cv6ISq4YtEIkRFRWHfvn0YNGgQpz5T4BOiO62v9M3MzDhNcWvIlbOioqIwa9YsdOvWTW3gt2jRQqPjVNQrfSEC/+nTpzp9PkKBT0jp9H6lv2XLFs7zmhvKwYMHAQDx8fGIj49XebwCV7TKJNQ4/PDwcMybNw8DBgzg3GcKfEL4o3Xojx49msdu8Ov06dNCd8EoCVXSuXv3LgoLC3H37l3OfabAJ4RfNMumiRAq8AFg5syZCAwMRGhoKKfnUeATwj9asdwECBH4N2/eVJTRRCIROnfurJimQ9N2KfAJ4R8voW9mZgZzc/NSv4gwhKrhjxw5EkuXLtXq8xMKfEL0h5fyTnh4uMqHum/evMGxY8dQWFiIkSNH8tEM4Uioko5MJlO0zxjj9IE/BT4h+sVL6EdERKjdXlBQgK5du6qd9ZLol5A1/D59+sDLywuBgYFU0iHEyOi1pm9paYlPPvkEq1at0mcz5D1CBP758+eVVkxr1KgRBT4hRkjvH+RaW1vj5cuX+m6G/JdQNfwpU6bg008/RX5+Puc+U+ATYjh6Df03b95g5cqV8PPz02cz5L+EKul4eHjA2toanp6enEOXAp8Qw+Klpu/t7a3yYV1+fj5ev34NMzMzHDhwgI9mSCmErOE3btwYMTEx8PT0pJIOIUaOl9Bv3769SuhLJBLUrFkTgwcPRs2aNflohpRAiMA/fvw4GjRoAFdXVwCAl5cXpz5T4BMiDF5Cf9u2bXwchmhBiMD/7bff8Pnnn6N69er46aefFIuhcGmXAp8QYfBS05dKpcjOzlb7WHZ2NqRSKR/NkPcIVdKpX78+PDw80Lx5czg4OHDqMwU+IcLi5Up/3LhxKCgoQExMjMpjEyZMgLW1NTZt2sRHU+S/hKzhu7u74z//+Q8cHR2phk9IOcPLlf7p06fRu3dvtY/16tULJ06c4KMZ8l9CDctMSEhQfO/k5ESBT0g5xMuV/qtXr+Du7q72MTc3NyQlJfHRDIEwgf/7779jwYIFsLW1xc6dOzmvgkaBT4jx4OVK39HREYmJiWofS0xMhL29PR/NmDyhSjpNmjRBUFAQunXrhurVq3PqMwU+IcaFl4XRhw4disuXL+PKlStwcnJSbE9NTUWzZs0QHByMXbt26dqMwRnTcolC1vABIC8vD5aWllTSIcRIaZpXvIT+vXv30LRpU4jFYgwePBjVqlXDs2fPsHv3bkilUly+fLlc3pVrLKEvVA0fAMLCwrTqMwU+IYal9zVyi/Pz88O5c+cwc+ZMbNy4EYWFhTA3N0f79u2xatWqchn4xkKIwE9ISMCCBQsAAJ6enggMDOTUZwp8QowXb8slNmzYECdOnEBubi7S0tLg5OQEiUTC1+FNkpDj8IsWMK9fvz6nPlPgE2LceCnvVFRClneEruHL5XIAoBo+IeWE3ss7T5484bQ/12F+pkyoGv79+/cxffp0iEQiTmFf1C4FPiHGT+vQr1mzJqdl8AoLC7VtyqQIEfhPnjxBeHg4CgsL0aBBA4SGhnLqMwU+IeWH1qG/ZcsWTqFPyiZUSadGjRqYPXs27t+/j44dO3LqMwU+IeUL1fRLYciavhCBz3XRcnXPp8AnxDhomld6Xy6RlE2oGv6nn36KgoICrfpMgU9I+cTbkM379+9jw4YNuHPnjtIC2QAgEolo0rUSCBH4qamp+PLLL5GTk4N9+/Zh0KBBnPpMgU9I+cVL6N+6dQstWrRAtWrVkJiYiMDAQCQnJ+P58+fw9PRE7dq1+WimwhGqhu/k5IRvv/0Wp0+fxgcffMCpzxT4hJRvvNT0e/fuDbFYjJ9//hmWlpa4evUqgoKCEBcXh7Fjx2Lv3r1o1aoVH/01KH3W9IUIfKlUqlPQUuATYrwMWtO/du0aRo0apRjbXXRjT1hYGGbNmoW5c+fy0UyFIVQNf+jQoUhOTtaqzxT4hFQMvIR+0bQLZmZmEIvFSEtLUzwWHByMa9eu8dFMhSBE4Ofl5WHNmjVITExEbGws5z5T4BNScfAS+tWqVVNcQfr4+ODs2bOKxxISEmBnZ8dHM+WeUDV8iUSCH3/8EePGjcO4ceM49ZkCn5CKhZcPctu0aYPz58+jb9++GD58OBYtWoSXL1/C0tIS27Ztw4cffshHM+WaEIFfFLjAu9kyp06dyqnPFPiEVDy8hP78+fPx4sULAMDs2bORlJSE6OhoiEQiDBo0CCtXruSjmXJLiMA/dOgQoqKisG7dOgQEBHDuMwU+IRUT3ZFbCj5G7wgR+IWFhfjoo49w48YNjBw5EjNnzuTUZwp8QsofvY/eSUtLw4ABA3Do0KES9zl06BAGDBiAlJQUbZsp14Sq4Zubm2PNmjWYMWMGPv30U059psAnpGLTOvQ3bdqEv/76C926dStxn27duuHmzZtYu3atts2UW0IE/qtXrxT/b2dnpzSMVtN2KfAJqdi0Dv1du3Zh/PjxpQaDhYUFxo8fjwMHDmjbTLkk1Dj8nj174rffftOqzxT4hJgGrUP/n3/+QXBwcJn7BQUF4Z9//tG2mXJHqJLO5cuXIZVKcfXqVc59psAnxHRoPXpHJpNp9AsuFoshlUq1baZcEXKJw/DwcAQHByMsLIzT8yjwCTEtWl/pu7u74++//y5zv9u3b8PNzU3bZsoNIQL/3r17KBp8ZW5ujl69elENnxBSKq1Dv3379li3bl2pV/FSqRTr16/nvBpTeSNUDX/IkCFYv349tBl1S4FPiGnSOvRnzJiBu3fvol+/foobs4p78eIF+vbti3v37mHGjBk6ddKYCVXSSU1NBWMMqampnPtMgU+I6dK6ph8YGIi1a9di8uTJ8Pb2RpMmTeDt7Q0AePjwIf7880/I5XKsX78eDRo04K3DxkTIGv6IESNQp04dNGvWjNOShxT4hJg2ne/IvXDhAr766iucOnUKOTk5AAAbGxuEhoZi7ty5aNGiBS8dFUJpd7gJEfiXL19G48aNtQ5bCnxCKi5N78jlbRoGuVyumGnT2dmZ0weKxqqkH6JQNfwFCxagY8eOWL58OefQpcAnpGLTNPR5WyPXzMwMLi4ufB3OaAlV0nFwcICFhQWcnJw4l4Io8AkhRcr/5bgGNm3aBJFIpPO8/kLW8Nu0aYPo6GjMmzePhmUSQrRW4UP/+fPnmDVrFjw8PHQ6jhCBf+rUKaVVyHx9fSnwCSE6qfCh//HHH6Ndu3bo3Lmz1scQIvCPHj2KmTNnYuLEicjKyuLcZwp8Qog6FTr0d+zYgTNnzmDdunU6HSc5OdngJR1fX184OTkhMDAQNjY2nPpLgU8IKQlvH+Qam9evX+PTTz/FsmXLUL16dY2ek5+fj/z8fMX3GRkZAN6tHeDq6mrQGr63tzd27tyJqlWrUkmHEMKbCnulP3nyZPj5+WHSpEkaP2fp0qVwcHBQfHl6egJ4d9+BIQI/Pj4eiYmJiu9dXV0p8AkhvKqQob9nzx4cPHgQGzdu5HS36ty5c5Genq74evr0KQAYJPDPnDmDuXPnYvz48UhKStK4veLtUuATQspS4co7WVlZmDJlCj755BN4eHjg7du3AICCggIAwNu3byEWi2Fra6vyXCsrK1hZWWndti4lncaNG8Pf3x/16tXjfL8DBT4hRFMVbmH0R48eKeYAKkmfPn2wb9++Mo9VdIfb3bt3YW9vX+q+utbwASA7OxvW1tZU0iGEcGbwO3KNhZubG06dOqWyfdmyZThz5gyOHDkCZ2dnXtvUZWoFe3t7tGvXDgDU/vVRVrsU+IQQLipc6EskEnTo0EFl+7Zt22Bubq72MV1oG/hXrlzBggULYG5ujujoaPj5+XFulwKfEMJVhQt9Q9K1ht+pUyc4ODigTp06nNulwCeEaKPC1fT5VFpNn48avkwmg5mZGdXwCSE607SmXyGHbOqbLjX8rVu3Kr63sLCgwCeEGBSVdzjSNvATExOxcOFCyOVy+Pr6onXr1pzbpcAnhOiKQp8DXUo6Pj4+mDRpEl69eoWWLVtybpcCnxDCBwp9DWkb+IwxxV3B48ePV/pe0+dT4BNC+EI1fQ1oG/iHDh3CggULIJPJFNso8AkhQqIrfQ28ffsWhYWFnAL/1atX+OKLL1BQUICmTZuib9++nNqkwCeE6AOFvgYyMjLg7OzMqYbv6uqKZcuW4dKlS+jduzen9ijwCSH6QqGvAYlEonHgFxYWKvYNCQlBSEgIp7Yo8Akh+kQ1fQ1wGYc/ZswYxeIrXFHgE0L0jUKfJ9nZ2YiKikJCQgJiY2M5P58CnxBiCFTe4YmtrS1++OEHHD58GCNHjuT0XAp8QoihUOjrKDc3F9bW1gDeLWbu6+vL6fkU+IQQQ6Lyjg7i4uLQt29fPH78WKvnU+ATQgyNQl9LMpkM27dvx6tXr7B//37Oz6fAJ4QIgco7WrKwsMAPP/yAPXv24KOPPuL0XAp8QohQ6Eqfo9TUVMX/Ozk5Yfz48TQ9MiGk3KDQ5+DQoUPo0aMHzp8/r9XzKfAJIUKj0NcQYwwnTpxAXl4ezp07p9XzKfAJIUKjmr6GRCIRVqxYgX379mHAgAGcnkuBTwgxFhT6HIjFYgwcOJDTcyjwCSHGhMo7Gti9e7dWz6PAJ4QYG7rSLwVjDABw//59ZGZmcl4AJScnBzY2NhCLxcjNzdX4uXK5HFlZWbCzs4O1tTVyc3M5PZ8QYnqKJnosyq2SiFhZe5iwZ8+ewdPTU+huEEKIxp4+fYrq1auX+DiFfinkcjlevHgBe3t7Tlf5usrIyICnpyeePn2KSpUqGaxdodD5Vmx0vobBGENmZiY8PDxKvXeIyjulMDMzK/VfTH2rVKmSSfySFKHzrdjofPXPwcGhzH3og1xCCDEhFPqEEGJCKPSNkJWVFRYtWgQrKyuhu2IQdL4VG52vcaEPcgkhxITQlT4hhJgQCn1CCDEhFPqEEGJCKPSN1KZNmyASiWBnZyd0V/Ti5MmTGDt2LPz9/WFra4tq1aqhT58++PPPP4Xumt5kZWXh008/hYeHByQSCRo1aoRdu3YJ3S2DMsXXvThj+L2mD3KN0PPnz1GvXj3Y2toiPT0dWVlZQneJdwMHDkRKSgoGDhyIunXr4s2bN4iKisLVq1dx9OhRhISECN1F3nXp0gVXrlzBsmXL4Ovri507d2LTpk2Ijo7GsGHDhO6eQZji617EWH6vKfSNUK9evSASieDk5IRff/21Qob+69ev4eLiorQtKysLPj4+qF+/Po4fPy5Qz/Tj8OHDCAsLw86dOzF06FDF9i5duuD27dt48uQJzM3NBeyhYZja616csfxeU3nHyOzYsQNnzpzBunXrhO6KXr3/iw8AdnZ2qFu3Lp4+fSpAj/Rr7969sLOzU1mPYcyYMXjx4gUuXbokUM8My9Re9yLG9HtNoW9EXr9+jU8//RTLli0TdM4foaSnp+PatWuoV6+e0F3h3a1btxAQEKCypkJgYKDicVNVkV93wPh+ryn0jcjkyZPh5+eHSZMmCd0VQUyZMgXZ2dmYP3++0F3hXUpKCpycnFS2F21LSUkxdJeMRkV+3QHj+72m0DcSe/bswcGDB7Fx40aDTuNsLBYuXIjo6Gh88803aNKkidDd0YvSXtfy+JqfPn0aIpFIo68bN26oPUZ5et21OV9j/L2mqZWNQFZWFqZMmYJPPvkEHh4eePv2LQCgoKAAAPD27VuIxWLY2toK2Ev9iYyMxJIlS/Dll19i6tSpQndHL6pUqaL2aj41NRUA1P4VYOz8/PywceNGjfatUaOGyrby9rpzPV+j/b1mRHAPHz5kAEr96tOnj9Dd1IuIiAgGgEVERAjdFb0aP348s7OzY1KpVGl7TEwMA8D++OMPgXomDFN43Y3195qGbBqBvLw8XLx4UWX7smXLcObMGRw5cgTOzs6oX7++AL3Tn8WLFyM8PBwLFizA4sWLhe6OXh05cgQ9evTArl27MHjwYMX27t27IyEhwWSGbAKm87ob6+81hb4RGz16dIUdpx8VFYVZs2ahW7duWLRokcrjLVq0EKBX+tWlSxdcvXoVy5cvh4+PD2JiYrBx40bs2LEDw4cPF7p7BmGKr/v7hP69ppo+EcTBgwcBAPHx8YiPj1d5vCJei8TGxmL+/PkIDw9Hamoq/P39ERMTgyFDhgjdNYMxxdfd2NCVPiGEmBAaskkIISaEQp8QQkwIhT4hhJgQCn1CCDEhFPqEEGJCKPQJIcSEUOgTQogJodAnhBATQqFPCCEmhEKfEEJMCIU+IYRwtH79egQFBUEsFiMiIkLo7nBCoU8IIRy5u7sjMjISffv2FbornNEsm4QQwlFR2O/fv1/YjmiBrvSNyLZt20pdd/P06dNCd7FURf1/9OiR0F0p0fnz5xEREaFYuk4b2pzn999/D5FIpPWCGQkJCfjoo49Qu3ZtWFtbw9raGnXq1MHEiRNx9epVjY/zxRdfoG7dupDL5QCAiIgIiEQiJCcna9UvbRjL+0Sf/di8eTOqVauG7Oxs3o+tKwp9I7R161ZcuHBB5SsoKEjorpUqLCwMFy5cgLu7u9BdKdH58+cRGRmpU+hrY8uWLRCJRLh9+zYuXbrE6bkbNmxAkyZNcOnSJUyfPh2HDh1CXFwcPv30U9y+fRtNmzbFv//+W+ZxXrx4gRUrVuCLL76AmRn96uvTqFGjYGtrixUrVgjdFRVU3jFC9evXR3BwsNDd0FhOTg5sbGxQtWpVVK1aVejuGJ2rV6/ir7/+wueff45vv/0WmzdvRvPmzTV67h9//IHJkycjLCwMv/76KywtLRWPhYSEYMqUKdi9ezesra3LPNZ3330HR0dH9O/fX+tzqehCQ0Pxxx9/qH3ss88+03h5RwsLC0ycOBGLFy/G7NmzYWNjw2c3dUL/3JczeXl5aNy4MXx8fJCenq7YnpSUBDc3N3To0AGFhYUA/ven+/Xr19G/f39UqlQJDg4O+PDDD/HmzRul496/fx/Dhg2Di4sLrKysEBAQgLVr16q0X3TMa9eu4YMPPkDlypVRu3ZtAKp/Lhftm5CQgIEDB8LBwQFOTk6YOXMmZDIZ7t27h27dusHe3h41a9ZUe1XEtV+3b9/G0KFD4eDgAFdXV4wdO1bxc4qIiMBnn30GAPD29lYpmyUmJmLMmDGoU6cObGxsUK1aNfTq1Qs3b97k+Cop27x5M8zNzTFjxgz07NkTu3btQk5OjkbP/eqrr2Bubo4NGzYoBX5xAwcOhIeHR6nHKSgowObNmzFs2LAyr/Lv3r2LWrVqoXnz5nj9+rXS9qFDh8LV1RVWVlaoUaMGRo4cifz8fAD8/fz4eN/8/vvvCA0Nhb29PWxsbNCqVSvExcWV2faJEyeQl5en9ovrer7Dhw9HRkYGdu3axel5+kahb4QKCwshk8mUvoqCXCKR4JdffsHr168xduxYAIBcLsfw4cPBGENMTIzKAtv9+vWDj48Pfv31V0RERGDfvn3o2rUrpFIpAODvv/9G06ZNcevWLURFReHQoUMICwvDtGnTEBkZqbaP/fv3h4+PD3bv3o0ffvih1PMZNGgQGjZsiD179mD8+PH45ptvMGPGDPTt2xdhYWHYu3cvQkJCMHv2bMTGxiqep02/BgwYAF9fX+zZswdz5szBzp07MWPGDADAuHHj8MknnwB4t3Th+2WzFy9eoEqVKli2bBni4+Oxdu1aWFhYoHnz5rh3716p51iS3NxcxMTEoHv37nBzc8OYMWOQmZmJ3bt3l/ncwsJCnDp1CsHBwTqXzC5duoSUlBR07Nix1P3OnDmDVq1aITAwEKdOnYKLiwsA4K+//kLTpk1x8eJFfPHFFzhy5AiWLl2K/Px8FBQUAOD/56ft++bMmTMICQlBeno6Nm/ejJiYGNjb26NXr174+eefOfdDHZlMhry8PMXvatH/F+fm5gZ/f3+N/rExKEaMxtatWxkAtV/m5uZK+/78888MAPv2229ZeHg4MzMzY8eOHVPaZ9GiRQwAmzFjhtL26OhoBoDt2LGDMcZY165dWfXq1Vl6errSflOnTmUSiYSlpqaqHDM8PLzE/j98+FBp36ioKKX9GjVqxACw2NhYxTapVMqqVq3K+vfvr9imTb9WrFihtO/kyZOZRCJhcrmcMcbYypUrlfpYGplMxgoKClidOnWUfobvn2dpfvrpJwaA7dmzR3FMNzc31rZt2zKfm5SUxACwIUOGqO2bVCpVfBWdX0mWL1/OALCkpCSl7UU/tzdv3rD//Oc/zNLSkk2bNo0VFhYq7RcSEsIcHR3Z69evy+x38T5q8/PT9X3TokUL5uLiwjIzM5X6Ur9+fVa9enXFz4rL61hSH4t/bd26VWW/4cOHM1dXV87H1ye60jdCP/30E65cuaL09f6Hf4MGDcKkSZPw2WefYcmSJZg3bx46d+6s9njDhw9Xea6FhQVOnTqFvLw8nDhxAv369YONjY3SXxc9evRAXl4eLl68qHLMAQMGaHw+PXv2VPo+ICAAIpEI3bt3V2yzsLCAj48PHj9+DABa96t3795K3wcGBiIvL0+pTFESmUyGr776CnXr1oWlpSUsLCxgaWmJ+/fv486dOxqfb3GbN2+Gs7Oz4mdgbm6OESNG4Ny5c7h//75WxwSAJk2aQCwWK76ioqJK3f/FixcQiURwdnZW+/iXX36J0aNHY9myZfjuu++USkA5OTk4c+YMBg0aVOpnNnz//LR532RnZ+PSpUv44IMPYGdnp9iv6Of+7Nkzrf9qKy4iIgKMMaWv0aNHq+zn4uKC169fQyaT6dwmXyj0jVBAQACCg4OVvpo0aaKy39ixYyGVSmFhYYFp06aVeDw3Nzel7y0sLFClShWkpKQgJSUFMpkMq1evVgoRsViMHj16AIDa4Xxcyg1OTk5K31taWsLGxgYSiURle15eHgBo3a8qVaoofW9lZQXgXZmlLDNnzsTChQvRt29fHDx4EJcuXcKVK1fQsGFDjZ7/vsTERJw9exbDhw9XqsePGTMGwLsRPaVxdnaGtbW1ItCK27lzJ65cuYIDBw5o1Jfc3FyIxWKV0l+RHTt2oFq1ahgyZIjKY2lpaSgsLET16tVLbYPvn58275u0tDQwxtS+P4s+90hJSeHcF21JJBIwxhT9MwY0eqecys7OxogRI+Dr64tXr15h3LhxJd4okpSUhGrVqim+l8lkSElJQZUqVVC5cmXFVdCUKVPUPt/b21tlm0gk4udESqBtv3SxY8cOjBw5El999ZXS9uTkZDg6OnI+3pYtW9ReAQYEBKB58+bYvn07lixZUmIQm5ubIyQkBMeOHcPLly+Vgqxu3boAoPEYc2dnZxQUFCA7Oxu2trYqj8fHx2Pw4MFo27YtTpw4AS8vL8VjTk5OMDc3x7Nnz0ptg++fnzYqV64MMzMzvHz5UuWxFy9eAECJf+3oQ2pqKqysrJT+6hAaXemXUx9//DGePHmC2NhYbN68GQcOHMA333yjdt/o6Gil73/55RfIZDJ06NABNjY26NixI65fv47AwECVvzCCg4NVrp4NQV/9Ku3KXyQSKR4vEhcXh+fPn3Nup7CwENu3b0fjxo3RqFEjlcfHjBmDly9f4siRI6UeZ+7cuSgsLMTHH3+s+OBdG/7+/gBQ4nh+Ly8vnDt3DlZWVmjbtq1S6cna2hrt27fH7t27S72Ji8+fn7ZsbW3RvHlzxMbGKr3GcrkcO3bsQPXq1eHr62uw/jx48EDxD7SxoCt9I3Tr1i21NcDatWujatWq2LRpE3bs2IGtW7eiXr16qFevHqZOnYrZs2ejdevWaNasmdLzYmNjYWFhgc6dO+P27dtYuHAhGjZsiEGDBgF4N367TZs2aNu2LSZNmoSaNWsiMzMTiYmJOHjwIE6ePGmQ836fPvrVoEEDxbFHjRoFsVgMPz8/2Nvbo2fPnti2bRv8/f0RGBiIP//8EytXriyzrKHOkSNH8OLFC3To0AH79u1TebyoRLF582aV2nVxrVu3xtq1a/HJJ58gKCgIEyZMQL169RRXs3v27AEAVKpUqdT+dOjQAQBw8eJFBAYGqt3H3d0dZ86cQdeuXdGuXTv89ttvijuIV61ahTZt2qB58+aYM2cOfHx88OrVKxw4cAAbNmzg/eeni6VLl6Jz587o2LEjZs2aBUtLS6xbtw63bt1CTEyM3v9KLSKXy3H58mV89NFHBmlPYwJ+iEzeU9roHQBs48aNLCEhgVlbW7NRo0YpPTcvL481adKE1axZk6WlpTHG/jfC4M8//2S9evVidnZ2zN7eng0dOpS9evVK6fkPHz5kY8eOZdWqVWNisZhVrVqVtWrVii1ZskRpv+KjPUrq//ujd97fd9SoUczW1lbl+e3bt2f16tXjtV/qRmjMnTuXeXh4MDMzMwaAnTp1ijHGWFpaGvvoo4+Yi4sLs7GxYW3atGHnzp1j7du3Z+3bty/1mO/r27dvqa9l0ZeFhYXKiBp1bty4wcaMGcO8vb2ZlZUVk0gkzMfHh40cOZKdOHGizOczxljbtm1Zjx49lLap+7m9ffuWtW7dmjk5ObErV64otv/9999s4MCBrEqVKszS0pLVqFGDjR49muXl5fH68+PjfXPu3DkWEhLCbG1tmbW1NWvRogU7ePCg0j66jN7RxIkTJxS/f8ZExBhjBvnXhRhcREQEIiMj8ebNG4PWMYlx2rNnDwYPHozHjx8rfcZD9GPEiBF48OBBiXf4CoVq+oSYiP79+6Np06ZYunSp0F2p8P7991/8/PPPWL58udBdUUGhT4iJEIlE2LhxIzw8PBSzbBL9ePLkCdasWYM2bdoI3RUVVN4hhBATQlf6hBBiQij0CSHEhFDoE0KICaHQJ4QQE0KhTwghJoRCnxBCTAiFPiGEmBAKfUIIMSEU+oQQYkIo9AkhxIRQ6BNCiAn5f/yFBzaba1RaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAHxCAYAAACBC2zyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByzklEQVR4nO3dd1xT1/8/8FcCIWEjogxFRJGloiLujVu0rjpa6x6t2trqz9aNUG0drba1VWvd/YrYqqh14V6texV3pS4UQRmyZCTk/P6w5ENMgNxwkxvI+/l48Gi5ubnnhBteXk7OPW8RY4yBEEKIWRAL3QFCCCHGQ6FPCCFmhEKfEELMCIU+IYSYEQp9QggxIxT6hBBiRij0CSHEjFDoE0KIGaHQJ4QQM0KhTwghZoRCnxBCzAiFPiGEmBEKfUIIMSMU+oQQYkYo9AkhxIxQ6BNCiBmh0CeEEDNCoU8IIWaEQp8QQswIhT4hhJgRCn1CCDEjFPqEEGJGKPQJIcSMUOgTQogZodAnhBAzQqFPCCFmhEKfEELMCIU+IUQQW7duhYuLC7KystS2165dGyKRCD///LPa9t69e6N27dpG7GHJFi1ahB49esDZ2RkikQibNm3S2OePP/5AaGgo3NzcIJVK4e3tjfHjx+Pp06ca+8rlctStWxffffedwftOoU8IMbrXr19jxowZmDFjBuzt7bXus2rVKiP3Snc//vgjXr9+jZ49e5a4z/Pnz9GwYUN8//33OHToECIiInD06FG0aNEC6enpavtKJBLMnz8fX375JVJSUgzbeUYIIUa2evVqJpVKWVpamsZjXl5ezNfXl4lEInb69GnV9rCwMObl5WXEXpZMoVAwxhi7dOkSA8A2btyo0/OOHDnCALD169drPJafn8+cnZ1ZZGQkn13VQFf6hBCjW716NXr16oUqVapofdzb2xvdu3c32at9CwsLvZ7n6OgI4M1wztusrKwwePBg/PLLL1AqleXqX2ko9AkhRvX06VPExcWhY8eOpe43adIkxMTEIDk5We+2GGNQKBSlfjHG9D6+LgoLC5GXl4fr169j6tSpcHV1xYABA7Tu27FjRzx79gx///23wfpDoU8IMaqzZ88CAJo2bVrqfmFhYXB3d8e6dev0buvUqVOQSCSlfm3evFnv4+uiTZs2sLa2RpMmTZCXl4dLly6hWrVqWvct+pn89ddfBuuPpcGOTAghWiQmJgIAqlevXup+YrEYEyZMwM8//4yZM2fq1VbTpk1x6dKlUvfx9vbW69i62rRpE169eoW7d+/i66+/xjvvvIOjR4+iatWqGvsW/UyePXtmsP5Q6BNCjCo3NxcAIJPJytx33LhxiIyMxL59+/Rqy87ODo0bNy51H33H53Xl7+8PAGjZsiU6d+6MOnXq4Ntvv8WiRYs09i36mRT9jAyBhncIIUbl4uICAEhLSytz3+rVq2PgwIFYuXKlXm2ZwvBOcZ6enqhRowauX7+u9fGin0nRz8gQ6EqfEGJUAQEBAIB///0XjRo1KnP/iRMnokOHDvD19eXclpDDO4wxiEQitW1PnjzB06dP0blzZ63P+ffffwEAgYGBBukTQKFPCDGy5s2bw8bGBufPny9xFktx7dq1Q4MGDXDjxg14eXlxasve3h4hISH6drVEp06dwsuXL/HgwQMAwOXLl2FnZwcAePfddwEAbdu2Rfv27RESEoKqVavi/v37WLp0KaRSKaZMmaL1uOfOnYNYLC5zZlN5iJih5ysRQshbRo0ahbNnz+Kff/7ReKx27drw9/dHbGysatvq1asxadIkeHl54dGjR0bsqXYdO3bEqVOntD5WFKmRkZE4ePAgHjx4gIyMDLi7u6NVq1YIDw9X/bXztjZt2qBKlSp6f4ahCwp9QojRXbt2DcHBwfjzzz/Rpk0bobtjEu7fvw9fX1/Exsaie/fuBmuHQp8QIohhw4YhLS0NBw8eFLorJmHkyJF49uwZjh49atB2aPYOIUQQ33zzDVq2bKmxyqY5UigUqFevnlGWnaArfUIIMSN0pU8IIWbErEO/qFiDSCSCRCKBt7c3PvjgA9y/f1+1z8mTJ1X73Lp1S7U9PT0dVlZWGgUULly4gF69esHNzQ22trYICAjA2LFjkZCQoNpn06ZNqmO+/dWyZUujvHa+JCUl4b333oOTkxPs7e3Rt29f3mZXTJ48GSKRCB999JHGY7oUseCq+LkWiUS4fPmyxj47duxAkyZNIJPJ4OLigvfff1/jlvmSzq8hpg7qi8/zxqVYiCHfL6Xhs119z29p7+fLly+rHevkyZN69U0XZj9Pv2XLlvjuu+8gl8tx9epVREREYN++ffj777/V5gQ7Ojri999/R2RkJABg165dsLW1xatXr1T7HDlyBD179kSXLl2wevVq2NnZ4datW9i8eTP+/fdfeHp6qrW9bt061K9fX21bSQUlTJFCoUD37t2RlpaGtWvXQiqVYsaMGQgNDcWNGzdga2ur97EvXLiA7du3l/j4jz/+CB8fH/Ts2RNbt27Vux1tVq5cieDgYI1pdcePH8egQYPw7rvvYtGiRUhISMDMmTNx9epV/P3335BKpWr7x8TEwN3dXfV90Txu4M3SulOnTsWWLVvg4OCAyMhIjB49mtfXURK+z1tRsZAJEybAzc0Njx8/RkREBA4cOICbN2+qlk825PulNIZqt7Tz+7ay3s8BAQE4d+4crl69ismTJ+vVH50ZdLV+E+fl5cW6d++utm3Dhg0MgKqQwYkTJxgANnz4cObv76/ar3v37mzkyJFqBRQ6d+7MvL29mVwu12grPz9f9f8bN25kANi5c+cM8KqMZ+vWrQwAi42NVW27du0aA8B++OEHvY8rl8tZUFAQW716NQPAPvzwQ4199C1iUZqic33ixAmtj3fs2JF5eXmp2maMsejoaAaAbdq0SbWt6Pw+fPiwxLaWLFnCfHx82P79+9mGDRuYjY0Nu3z5crlfgy4Mdd6K01YsxBjtasN3u7qc3+J0eT8XKes9yAezHt7RpkWLFgDeXL0U17VrVyQnJyMuLg6pqak4efKk6s67Is+ePYOLiwssLTX/gLKysipXv+7evYu7d++W6xh8O3jwIBwcHNC1a1fVtsaNG8PHxwcHDhzQ+7jLli2DhYUFJkyYUOI+hl4kS5ubN2+iZcuWam0XvfbDhw9zOtaZM2cwZcoU9OrVC6NHj0aPHj1KvNmnOD7eB4Y6b8VpKxZijHa1EardIrq8n42JQv8tReOzb699IZFI0LdvX/z++++IiYlBy5Yt4ebmprZPcHAwLl26hPDwcDx+/LjMtgoLCzUKOpRUMScgIKDEu/iEcvfuXfj6+kIsFqOgoAB5eXkAAD8/P9y5c0evYz58+BBffvklfvrpJ4jFpvX2LCgogEQiUdtW9I958c+BirRq1QoWFhZwdXXFhAkT1BYY8/PzQ0xMDJKSknD9+nX8+eefqtUYAeD27dtISkrSOCYf7wNDnDeg7GIhhmq3LIZqt7TzW8QU38+m0QsBsf8q6+Tl5eHatWuYMWMG2rVrh3HjxmnsO2jQIPz+++/47bffMHjwYI3HlyxZguDgYCxYsAC1a9dG7dq18emnn2oNBODN2hxvr/g3e/Zs3l+joaSnp8PJyQnAm3/w6tSpg9evX8PJyUmj8LOuJk6ciIEDB6J169Y89pQfPj4+iIuLU9t28eJFAFD7bMfd3R0LFizApk2bcPjwYXz00UfYsmULOnbsiPz8fADA7NmzkZ+fD3d3dzRp0gSDBg1CSEgIfvjhBzRv3hyTJk1S+/CfT4Y4b0DZxUIM1W5Z+G5Xl/NbxBTfz2b/Qe7hw4fVrt66deuGXbt2wdraWmPfrl27IiUlBQ8fPkRUVJTGL2XNmjVx8eJFnDp1Cvv27cOpU6ewYsUKrFu3DgcOHECHDh3U9t+4cSMaNGigtq34B0PFMRO/naJq1apQKpWwsLDQurqgLrZu3YqzZ8/i3r17Buhh+X344Yf48MMP8dVXX+Gjjz7CkydPMGXKFDg4OKhdxXXv3l3tNvrOnTujbt26GDlyJKKjozFq1Cg4Ozvjr7/+wp07d3Ds2DEcOnQI3bp1w5AhQ7Bjxw7UqlVLax/4fh/wcd6KcCkWwme7XPDRri7nFzDd97PZX+m3atUKly5dwpkzZzB16lQcPny4xBXwJBIJpk+fjkmTJsHV1VXrPhYWFggNDcXy5ctx5coVXLx4EWKxWOsVvL+/P0JCQtS+atSowevrMyQnJyfVFe6pU6dw+/ZtSKVSZGRkqK6sdJWTk4Np06Zh+vTpsLe3R3Z2NrKzswG8mX2RnZ1t0GLRuhg7diw+/vhjREREwMXFBc2bN8c777yDoKCgMtc/HzhwIEQikWqZ36SkJEyYMAHvvvsuHj16hAULFmD8+PH48ccfERQUhE8//RQKhcIgr4PP81acv78/WrZsiVGjRuHYsWO4efMmvv32W4O3WxZjtPv2+TXl97PZh76DgwNCQkLQtm1bLF++HB988AE2bNhQ4hrcs2fPxg8//KDz8Zs1a4Zu3boZdMxSKAEBAbh//77G1ee9e/c4jzu/fPkSycnJmD9/Puzt7VVfALB+/XrY29vj6tWrvPVdHxYWFvjxxx+RkpKCuLg4JCUlYcGCBbh16xaaNGlS6nOLriiL/mtnZ4fBgwfj5s2bWLZsGbKzszFr1iwsWbIE0dHROHz4MJYvX26Q18HneSuJtmIhxmhXG2O0+/b5NeX3s9mH/tuWLFkCqVSK8PBwzs/V9sGbUqnEv//+W2Y90LKY4uydHj16ICMjQ22BqLi4OMTHx6NXr15an1PS63B3d8eZM2c0vgCgb9++OHPmjNoHnUJydHREw4YNUbVqVWzevBnp6el47733Sn3O7t27wRhT3XxnZ2eHrl27qoaFLly4gK5du2L48OHo2bMnJk6ciD///FPjOHy8D/g8b4D2IaeiYiEeHh7larfoBsry3MDF9+vV5u3za8rvZ7Mf03+bh4cHPvzwQ/zwww+4cOECp+eOGTMGYrEY7777LurUqYO0tDRs2LABf//9t9Zyb8Xv8C1iaWmp9c6+oisSUxrbHzx4MJYsWYJx48Zh2bJlsLKywsyZM+Ht7Y2xY8dqfU5Jr0MqlaJt27Zan+Pm5qbxmC5FLPiWnJyMFStWoF27dpBKpTh27Bi++eYbjBkzRu2Dus6dOyM0NBSNGjWCTCbD2bNnsXTpUjRr1gxDhgzReuwWLVrgyy+/xObNm+Hi4oLVq1dj+PDhGvvx8T7g87wBuhcL0afdoiEQbdOghXq9upxfru9nozLYHQAVgLabsxhjLCkpidnY2LAePXqobpaIjo7W2O/tG4N2797N+vfvz7y8vJhUKmXVq1dn7du3Z7t27VJ7XtHNHdq+HB0dtfa16HFT8/z5czZkyBDm4ODA7OzsWJ8+fdiDBw9K3J/r60AJN7N06NChxJ+hvsq6MSY1NZV16tSJOTk5MalUygIDA9myZcvUbtZijLFPPvmE1a1bl9na2jJLS0vm7e3Npk+fzrKyskpt/6effmI1atRgzs7ObNKkSWo39BXh633A53mLiIhgLVq0YNWqVWNWVlbMy8uLDR06lN2+fbtc7aampjKRSMTatm2r34vUs13GSn+9+p7fouMKfXMWrbJJyH9OnjyJTp064ejRo+jQoUO5ri5J+e3atQsDBgzAwYMH0aNHD6G7Y3AKhQKnTp1Cly5dcOLECYOVTKQxfULe0qVLF0gkEq0LrhHjOXXqFIKDg80i8C9fvgyJRIIuXboYvC260ifkP1lZWWpzqgMDA2FjYyNgj4i5eP36NW7fvq363s/Pz2CLL1LoE0KIGaHhHUIIMSMU+mXgUkSlY8eOWufe9u7dG7Vr11Z9T0VUtONSjEOhUODbb79F/fr1IZPJUL16dfTo0aNc9VapiMojvY51/PhxDB06FN7e3rC2tkbdunUxZcoUpKamauxriPOmC6GK/Zw7dw7dunWDi4sLnJyc0Lp1a+zdu1djPyqiYoJ0KaLCFRVRUadrMQ7gzZII0dHRmD59Orp27YrMzEycOHFCbSlffVERFW7nbe3atXj16hXCw8NRp04d3Lt3D/PmzcOhQ4dw7do1tc9FDHneSiJUsZ+7d++iS5cuaNKkCTZu3AgrKyusWrUKffv2RWxsLLp166bal4qomBAuRVQ6dOjA/Pz8NI4RFhbGvLy8VN9TERXdaSvGcfr0aQaA/fjjj7y0UYSKqOh33l68eKGx7ffff2cA2ObNm1XbDHXeyiJUsZ+FCxcyAOzx48eqbbm5uUwmk7GRI0dqPSYVUTEhuhRRMSRTXIZBqGIc27Ztg62tLcaPH89LG7qiIiraFV8+uUjDhg0BAImJiaptQp03oYr9FC2YV/yvd5lMpvEXobFR6OtIlyIqXFERFe3KKsZx/fp1BAYGYtu2bahduzYsLS3h5+eHzZs3l/s1lYaKqOju3LlzAKC2EJ1Q502oYj/Dhw+Ho6MjvvjiCyQlJSE1NRXh4eFQKBQlruRrDBT6HJRVRIUrKqKiXVnFOFJSUpCQkIAZM2YgIiICsbGxaNKkCUaNGoVDhw6V92WViIqo6CY1NRXz5s1Dy5Yt1cathTpvQhX7qVOnDs6ePYszZ87A3d0dLi4u+OWXX3Do0CEEBwfr1S4f6INcDsoqosIVFVHRrqxiHEqlEklJSdi5c6fqL4COHTuqFr4qXuCCT1REpWxyuRyDBw9Gfn4+oqOj1Y4n1HkrzpjFfh49eoS+ffuiTp06WL58OSQSCTZt2oRevXrhwIEDaNOmjb4vo1wo9DkoKqKSnJwMV1dXjdAv7Q2k7U/AoiIqFdXbxSmK8FGMAwBatmyJzp07o06dOvj222+xaNEiAP8b5w8NDVU9p2h10vPnz+vdblnGjh2LGzduICIiAnPnzoWlpSWmT5+OP//8s8wwHjhwIEaNGoVLly5h1KhRSEpKwrx58/DXX3+hZ8+eWLBgAc6ePYuvvvoKS5YswciRI7Fs2TKDrP9jqPPGGMOoUaNw8eJFHDt2TG2aMiDceePz9WorjlKkqDiKjY0NxGIx5syZg6ysLOzZswcymQzAmyU+QkJCMG3aNM6r+PKFhnc4Kq2Iio2NjdYxeaVSWSlv5xeqGIevr6/WfRljBi0+TUVUSjdlyhTExMRgz549aN68ucbjQp03oYr9XLt2DX5+fqrAB96c/0aNGuHGjRvlfFX6o9Dnkbe3N5KSktSKIzPG8ODBA3h7e5fr2KY4e0eoYhxFszCOHz+u2iaXy3H58mWN4TJDoCIqmmbPno01a9Zg+/btalfyxelz3kytiAqX4ihVqlTB3bt3kZubq3o+YwzXr1/XOuPJaAw2GbSS4LKe/rVr15iVlRULDQ1lO3bsYH/88QcbOHAgE4lE7MCBA6rnFc3jXrduHTt37pza16VLl7T2Aya4nn7RPOVatWqx7du3sz179rCAgADm7e3NsrOztT6ntNfRunVrNnPmTLZjxw524sQJ9ssvvzAfHx9mY2PDrl+/rtovLy+P+fr6smrVqrF169ax2NhYNnDgQAaAnTlzRu/XU9Yc6aSkJDZ79mx28OBBdvz4cTZnzhxmZWXFxowZo7ZfaGgoW7hwIdu7dy87cuQIi4yMZLa2tqxZs2asoKBA67FPnz7N7O3t2aZNm9i+ffuYv78/++qrrzT24+N9wPd5W7p0KQPA/t//+38a7+f4+HjVfvqcN09PTwaAJSQkmMzrLWn/t+fpF93D0blzZ7Znzx528OBB9t577zEAbNmyZVqPY4x5+qaVIiaIS+gXbevVqxerVq0ac3JyYh06dGBHjhxRex4VUSl/MY6EhAQ2ZMgQVqVKFWZlZcWaNGnCdu7cWa7XQkVU9DtvpRW0efsmJC7nzVSLqJS0v7biKPv372ft2rVjzs7OzNHRkTVv3pxFRUWVeBwqokKIEVERFdNCRVQ6GqQdGtMn5C1URMU0UBEVw6ArfUL+Q0VUiFCoiAohhBCDoOEdQggxIxT6hBBiRij0eVR0I4lIJIJEIoG3tzc++OADjRUYuVQaMnV8VyTStdJQcaVVLuKCKmc90utYXF5vZamcxff7wJiVs0xv4ncF5uXlxVq2bMnOnTvHTp8+zb7//nvm5OTEHB0d2aNHj1T7DR06lHXv3p1t2LCBnTx5kq1Zs4ZVr16d+fr6spycHAFfATdFN73UrFmT/f7772zPnj3M39+/1JteSnPnzh1mY2PD2rRpw/744w8WGxvL3nnnHSYSidihQ4e0Puf8+fOsWrVqJc6T5qJojvTKlSvZuXPnNF7DsWPHGAD27rvvsoMHD7JffvmFOTs7Mz8/P5aXl6far+g+jJiYGLUblW7cuKHap6CggE2ePJk5OjoyT09PtmHDhnL1nQu+z5sur7fIiBEjmEQiYbNmzWLHjx9nu3fvZp9++ilLTU3l46Vpxffr5fN9UCQ7O5udO3eOrVy5km7Oqki8vLxY9+7d1bZt2LCBAWCRkZGqbbpWGjJ1fFck4lppqKzKRVxR5Sz9zpsur5exylM5i8/3wduoclYl0KJFCwBv6r8W0bXSUHGmuPYO3xWJuFYaKqtyEd+oclb5VJbKWXy+D4RAoW9gReN8gYGBpe6nrdJQceZQOYtLpSFdKhfxjSpnla601wtUnspZfL4PhED3mfOMMaYqfXjnzh3MmDED7dq1w7hx40p8TkmVhkxdenq6as304OBgpKWlIT4+Xu+KREWVhgYMGKAqJuPq6qq10pAulYv4xrVyVrNmzWBpaYnTp0/jm2++wfnz53Hp0iVIpVLMnj0bvXv3Vr3OyZMnqypnRUVFwcbGBt988025S3Jqw/d50+X1Am8qZ2VmZmLGjBlYvHgxatasiXXr1mHUqFFwc3MzWBEVvl8vn+8DQRhs4MgMeXl5aSw41a1bt1I/nC0oKGChoaHMxcWF09ifKfDx8WFdunRhjDHWvn17FhAQwPLy8tj777/PHBwcOB/v4cOHzMfHh3Xr1o3t37+fHT58WHWsP//8U7VfVFQUs7e3Z4mJiaptMMKY/po1axgAtnDhQpaSksKuXr3KAgMDmYODA/Pz8yv12Js3b9ZYnE+pVLJbt26xFStWsLCwMNaoUSP29ddfq32mYQh8nzdttL1eHx8fBkBtgTW5XM48PT1ZaGgoL+1qw/fr5ft9UBytslnBeHl5sVatWrFLly6xM2fOsKlTpzIAbOzYsVr3VyqV7P3332d2dnbswoULRu5t+YWEhLCQkBCN7WFhYaxWrVqcj/f+++8zV1dXlpubq9qmVCpZcHAwa968OWPszSwHV1dXFhkZybKyslRfRT/nrKwsVlhYqNfrKesXTqFQsI8//phZWloyAMzS0pLNnDmTtW3blrVp06bUY2dnZzORSMQmTZrEGHuz6uO4ceNYQEAAmzZtGrt69Sr76aefmLu7O3N0dGRTpkxhcrlcr9dRFr7PmzZvv17GGGvatCkDwNLT09X27d+/P3N3d+elXW34fr18vg/eRh/kVkAODg4ICQlB27ZtsXz5cnzwwQfYsGEDLl26pLFvWZWGTB3fFZh0qTTEpXIR36hylu7efr1A5aicBfD7PhAChb6BLVmyBFKpFOHh4Wrbdak0VJwpzt7huwKTLpWGuFQuMhSqnFW2t18vUDkqZxXHx/tAEAb7G8IMaZunzxhjn376KQPAzp8/zxjTvdJQcTDBIip8VyTSp9JQ8eMaekyfKmdpb1fX11tZKmcZ8n1AY/oVTEmhn5SUxGxsbFiPHj0YY9wqDRUxxdBnjP+KRFwrDRU/rqFDnypnaW+Xy+utDJWzDPk+oMpZhBgRVc4yLVQ5q6NB2qExfULeQpWzTANVzjIMutIn5D9UOYsIhSpnEUIIMQga3iGEEDNCoc+joqIJ5ZlTXNEIUZzCUEVoqIjKI72OVbx40Ntfb4/Hm1MRFS4/FyqiUkHps352RSZUcQpDFaGhIir6nberV69q3G9StD7NqlWr1PY1pyIqXH4uVESlgjK30BeqOIWhitBQERX9zps2kyZNYjKZTG2dHXMroqKNtp9LcbT2jokRiUSIiIjAxo0b4e/vD6lUilq1auGPP/5Q2+/x48cICwuDnZ0dvLy88N1332kc68qVK+jWrRvs7e1hY2OD9u3b4/Tp0yW2bYrLMAhVnEKfIjR8oCIqusnNzcXWrVvRv39/ODk5qbabexGVkn4uxkahz9H+/fuxePFizJw5EwcOHMCUKVOQnZ2tts/48ePRs2dP7Nq1Cy1atMC0adNw/vx51ePx8fHo0KEDkpKSsHHjRkRHR0OhUKBLly64cuWK1nbNoYgK1+IUxZVVhIYPVERFNzt27MCrV68wevRote3mWkSlSEk/F6Mz2N8QlRAA5ujoyFJSUrQ+XvRn/YoVK1TbsrKymEQiYfPmzVNtmzx5MrOwsFBbNz0tLY3Z2NiwQYMGldi2qZ2u4uuU169fn7m7u7OcnBw2bNgwZm9vz/l4wcHBLCgoSG3b0aNHGQBWr169Ep+XkpLCatSowVq2bMmUSiXndouU9ae1rv2LjY1lCxYsYLGxsezo0aMsPDycWVtbs4YNG6rGfFNTU1mrVq1U53Xy5MksOTmZff/996xZs2asQ4cO7OLFixp94ON9wPd5e1v79u1ZrVq1NJa49vX1ZW5ubszV1ZVt3LiRHTlyhA0ZMkRj6IVvpvI+LennUhwN75igPn36oGrVqqXu0759e9X/29nZwdXVVa1G7vnz51G/fn3UqlVLta1KlSpo3bq12l8ExbE3n7+Us/eGU7VqVTg5OcHCwgKMMb2Wjv3www8RFxeHr776Cqmpqbh27RqmTJkCBweHEpfelcvlGDx4MPLz8xEdHW3QJWt17V/37t0xd+5cdO/eHZ07d0ZkZCR+/vln3LhxA9HR0QAAZ2dn/PXXX7h16xZWrFiBR48eoVu3bnj9+jV27NiBkydPolmzZhp94Pt9wMd5K+6ff/7B6dOnMXLkSI1zplQqkZSUhFWrVmHUqFHo0qULtmzZAk9PTyxdurRc7epKqPdpaT8XY6PQ58jLy6vMfRwdHdW+t7CwgFwuV33/6tUrrf9wuLi46FW+TShOTk6q8nCnTp3C7du3IZVKkZGRodeY5dixY/Hxxx8jIiICLi4uaN68Od555x0EBQXBxcVFY3/GGEaNGoWLFy9i//79qpJ4hsK1f8UNHDgQIpFIVVchKSkJEyZMwLvvvotHjx5hwYIFGD9+PH788UcEBQXh008/VRWK5xvf5624devWQSQSYdSoURqPFf1eFF9K3NLSEiEhIbwMK5VE6PcpUPrPxdgo9DniYxEuJycnpKSkaGxPSUkR9AMeroQuTmHsIjRURKV0crkcv/76K9q3b486depoPG6uRVTK+rkYG4W+AFq0aIHbt2/jyZMnqm3p6ek4e/ZsicUVTHH2jpDFKbgWoeETFVHRbu/evUhOTsaYMWO0Pm6uRVTK+rkYncE+LaiEALD58+eX+HhJ87O9vLzU1sm/d+8es7GxYQ0bNmTbt29nu3fvZq1atWKWlpZaP7wratvUTpdQxSn0KUKjCyqiot95K9KzZ09mb29f4jHMrYhKkbJ+LsVRERUTw1foM8bYhQsXWOfOnZmtrS2ztrZmbdq0YcePHy+1bVMLfcaEKU6hTxEaXVARFf2L3yQkJDCxWMzGjh1barvmVESFMd1/LkWoiAohRkRFVEwLFVHpaJB2aEyfkLdQERXTQEVUDIOu9An5DxVRIUKhIiqEEEIMgoZ3CCHEjFDoE0KIGaHQJ4QQM0KhTwghZoRCnxBCzAiFPiGEmBEKfUIIMSMU+oQQYkYo9AkhxIxQ6BNCiBmh0CeEEDNCoU8IIWaEQp8QQswIhT4hhJgRCn1CCDEjFPqEEGJGKPQJIcSMUOgTQogZodAnhBAzQqFPCCFmxFLoDpgypVKJxMRE2NvbQyQSCd0dQggpEWMMWVlZ8PDwgFhc8vU8hX4pEhMT4enpKXQ3CCFEZwkJCahZs2aJj1Pol8Le3h7Amx+ig4ODwL0hhJgypVKJlJQUpKenw8bGBpaWuscrYwyvXr1CZmYmZDIZLCwsdHreoUOHsHfvXixduhTZ2dkYMGCAKrdKQqFfiqIhHQcHBwp9QkiJlEolXr58CblcDldXV86Bn56ejsLCQri4uOgc+JmZmVixYgUyMjJw6NAhdOvWDQDKHIqm0CeEkHIoCvy0tDTY2trqFfgZGRmwtrbWOfCBNxejq1atwqFDhzBs2DC8fPlSp+dR6BNCiJ6ECPz8/HxIpVIAQP369VG/fn1OfaYpm4QQogchAn/fvn0YMGAAnj17pm+3KfQJIYQrIQJfLpdj/fr1ePbsGXbv3q1nz2l4hxBCOBFqDF8ikWDNmjWIiYnBhAkT9Ok6ALrSJ4QQnQkR+K9evVL9f/Xq1fHRRx+VevNVWSj0CSFEB0IE/v79+9G7d29cuXJF325roNAnhJAyCBH4jDEcOHAA2dnZOH78uL5d10Bj+oQQUgqhxvBFIhGWLVuG3bt3Y/Dgwfp0XSu60ieEkBIIEfgJCQmq/5fJZBg6dGi5xvDfRqFPCCFaCDWG369fP+zcuVPfbpeJQp8QQt4i1JDO3bt3UVhYiLt37+rTbZ3QmD4hhBQjVOADwLRp0xAUFITOnTtzeh5jDAUFBTrtS1f6hBDyHyEC/8aNG2CMAXjz4W3Xrl05jeEzxpCTkwMbGxud9qfQJ4QQCDeGP2LECCxZskQV/FwUBb6trS2cnJx0eg6FPiHE7Ak1pCOXywEACoWCc+gXD3xnZ2ed26UxfUKIWRNyDL9fv37w8vJCo0aN9BrSKQp8Ln2mK31CiNkSIvDPnj2L3Nxc1fdNmjQxWuADFPqEEDMl1Bj+5MmT8dlnnyE/P59zn8sb+ACFPiHEDAk1pOPh4QFra2t4enpCIpFw6jMfgQ/QmD4hxMwIOYbfpEkTREdHw9PT06hDOsXRlT4hxGwIEfhHjx5FcnKy6nsvLy/BAh8wg9Bft24dRCIR7OzshO4KIURAQgT+4cOH8fnnn2PcuHFIT0/n3Ge+Ax+o5KH/7NkzTJ8+HR4eHkJ3hRAiIKGGdBo0aAAPDw+0aNECjo6OnPpsiMAHABHT5zawCqJPnz4QiURwdnbGjh07kJ2dzen5mZmZcHR0REZGBhwcHAzUS0KIIQk5hg8AaWlpcHJyMviQzsuXL9G4ceMy86rSXulv2bIFp06dwqpVq4TuCiFEIEIE/oEDB3Djxg3V987OzoKO4b+tUs7eefHiBT777DMsXrwYNWvW1Pl5+fn5anNnMzMzDdE9QogRCBH4f/75J+bMmQNbW1vVLB0uDB34QCW90p80aRL8/PwwceJETs9btGgRHB0dVV9cTxghxDQINaTTtGlTBAcHo0ePHqhRowanPpcn8JVKZeVYWvnkyZMQiUQ6fV2/fh0AsHPnTuzduxdr166FSCTi1N6sWbOQkZGh+ipetowQUjEIOYZvbW2NlStXYvbs2UYb0lEqlcjKytJ5hqJJD+/4+flh7dq1Ou1bq1YtZGdnY/Lkyfjkk0/g4eGBV69eAYDqX8BXr15BIpHA1tZW6zGkUimkUikvfSeEGJ9QSysAQFhYGIA3dW254CPw7e3tYW1trdNzKtXsnUePHsHb27vUffr27Yvdu3frdDyavUNIxSFE4MfFxWHkyJEAgM2bNyMoKIhTn/kKfFdXV+Tm5uqUVyZ9pc+Vm5sbTpw4obF98eLFOHXqFA4ePAgXFxcBekYIMSQh5+EPHDhQ9f9c8Bn4EolEbeXO0lSqK/2SjBo1iubpE1JJCT0PX6lUAoDRx/CLBz6ge16Z9Ae5hBBSGqHG8FesWKGqdCUWiwUPfC7M4kpfX3SlT4jpEiLwHz9+jAEDBqCwsBDLly9HaGgopz4bMvB1zSvex/SVSiXy8vJ0rsxOCCFcCTWk4+Xlhc8//xz//vsvOnbsyKnPQl/hFyl36Ofl5WHbtm3Yv38//vrrL7x48QKMMUilUgQGBiI0NBTDhg1Do0aNytsUIYQIEviMMdV9P0OHDlX7Xtfnm0LgA+UY3snNzcXSpUvxww8/ICMjA/7+/ggODkb16tUhk8mQlpaGBw8e4OLFi8jMzETr1q2xdOlStGrVqlwdNiYa3iHEtAg1hn/48GF88803sLKy4txnYwW+wYd36tWrB1tbW8ydOxfDhg2Dq6ur1v0YYzhx4gQ2btyITp064aeffsK4ceP0bZYQYqaECPy0tDR89dVXeP36NXbv3o3Bgwdz6rMpXeEX0ftKf8OGDRg5ciSn8bAHDx7gyZMnnMfChEJX+oSYBiGnZV68eBEnT57E9OnTTXqWjq55RbN3SkGhT4jwhAh8uVxeritrIa7waZ4+IaTCEyLw9+3bh/feew8pKSl69dkUh3SK4y30lUolfv31V74ORwgxc0IEfl5eHlauXIn4+HjExMRw7rOpBz7A4/BOfn4+bGxsUFhYyMfhTAIN7xAiDCHH8J88eYI9e/Zg8uTJJj2G/zaDzN758ssvS3xMLpdzORQhhGglROBnZ2er1qOvVasWPvnkE059FjrwueA0vLNw4ULcunULCQkJGl/Pnj0zVB8JIWZCqHn4ffr0wd27d/Xqc0UKfIDjlX7Dhg0xYsQIVbGA4vLy8rBp0ya++kUIMTNCBH5hYSG2b9+O9PR0HDx4EP7+/pz6XNECH+AY+uPHjy9xzF4ikWD+/Pm8dIoQYl6EGsO3sLDAjz/+iJiYGAwfPpxTnyti4AM0T79U9EEuIYYnROAnJyeXuIqAru2aWuDTPH1CiMkTagy/d+/eOHLkiF59NsXA56LcoU9DOoQQfQg1pHPx4kXI5XJcvnyZc58reuADPAzv2NjY4PXr13z1x6TQ8A4hhiHkPPzCwkIcOHAAYWFhFWoeflmMNrxDHwkQQrgQIvDv3bun+n8LCwv06dOnUgU+F+UOfS6FBAgh5k2otXSGDh2K1atX69XnyhT4AH2QSwgxEqGGdNLS0sAYQ2pqKueRicoW+IABauQSQsjbhBzDHzFiBOrVq4cWLVpU2BKHfKIxfUKIQQkR+JcuXVJbD6xVq1ZmO4b/tnKHfps2bfjoByGkEhJqHv6ECRMwc+ZMvRaCrMyBD/AQ+kePHuWjH4SQSkaoIR1HR0dYWlqiSpUqnIeCKnvgAzSmTwgxACHH8Nu2bYuoqCj4+PjQkI4Weof+kydPOO1fq1YtfZsihFQgQgT+iRMn0LhxY1SpUgUA4Ovry6nP5hL4QDlCv3bt2pw+Ca9MFbUIIdoJEfiHDh3CzJkzUa9ePWzYsEFVDIVLu+YS+EA5Qn/Dhg10YxYhREWoIR1fX184OzsjKCgINjY2nPpsboEP0NLKpaK1dwjRjZBj+MCbpZKrVatm1mP4gi2t/M8//+DcuXO4f/8+34cmhJggIQI/NjYW8fHxqu9dXV3NOvC54C30t2/fDi8vLwQEBKBt27bw9/eHl5cXduzYwVcThBATI0Tgnzx5ErNmzcKECROQnJzMuc/mHPgAT1M2Dxw4gKFDh6J+/fr4+OOP4eHhgWfPnmHLli0YOnQo9u7di549e/LRFCHERAg1pNOkSRP4+fmhQYMGqFatGqc+m3vgAzyN6bdp0wYODg7Yv3+/2p9YjDH07NkTWVlZ+Ouvv8rbjNHRmD4h2gk9hp+TkwNra2sa0inGqGP6169fx6RJkzROgEgkwqRJk/D333/z0QwhxAQItbTC6dOnVd/b2tpS4OuJl+EdCwsLFBQUaH1MLpdzOjmEENMl1OJpc+fOhYWFBaKiouDn58epzxT46nhJ42bNmmHp0qXIzc1V256fn49vv/0WLVq04KMZQoiAhBzD79KlC/r164d69epx6jMFviZexvT//PNPdO7cGc7Ozhg0aBDc3Nzw/PlzxMTEIDU1FcePH0fr1q356K9R0Zg+IW8IPYavUCggFotpSKcUuuYVL8M7bdu2xeHDhzFz5kysXLkSjDGIxWK0aNEC0dHRFTLwCSFvCFXi8OXLlxg9ejQAcGqzqF1zCnwueFtls0OHDjh37hxev36N9PR0VKlShfMt0YQQ0yJE4N+/fx/z5s0DYwy+vr6ca3ZQ4JeO96WVbWxsKOwJqQSEGtKpV68eJk6ciBcvXqBVq1ac+kyBXzbeQn/37t2IiorC48ePkZeXp/aYSCSiaZuEVCBCj+FPmDABjDGqaWsAvMze+eabbzBgwACcPn0aEokEVatWVftydnbmoxlCiBEINQ9/7ty5akuwU+AbBi9X+qtWrcKYMWOwZs0avf5VJ4SYBiECPzk5GZGRkSgoKECzZs3Qt29fTn2mwOeGl9BPTU3F+++/T4FPSAUm1JCOq6srFi9ejAsXLqBPnz6c+kyBzx0vwztt2rTBnTt3+DgUIUQAQgR+8aGc0NBQzJo1i+bhGwEvof/9999j5cqV+OOPP0pcjoEQYpqEGsMfPXo0MjMz9eozBb7+eAl9Hx8fdOnSBf3794eNjQ0cHBzUvhwdHflohhDCMyECPycnB8uWLUNcXBxiYmI495kCv3x4GdP/4osv8NNPP6Fx48YICAiAlZUVH4fVy/Hjx7FlyxacPXsWCQkJcHJyQkhICMLDw9G0aVPB+kWIqRFqDN/W1hY///wzDhw4gBEjRnDqMwV++fGy9k7VqlUxYcIELFq0iI8+lcugQYOQmpqKQYMGITAwEC9fvsSyZctw+fJlHDp0CKGhoTofi9beIZWVEIGfm5sLa2trfbtMgV8GXfOKl9B3cnJCTEwMp0A1lBcvXqB69epq27Kzs+Hj44MGDRrg6NGjOh+LQp9URkKtpfPTTz9hzZo18PLy4txnCvyyGbWISrdu3XD+/Hk+DlVubwc+ANjZ2SEwMBAJCQkC9IgQ0yFE4Mvlcvz6669ISkrCnj17OPeZAp9fvIzpz5s3D0OGDIGtrS3CwsK03oEr5F25GRkZuHr1apl/ieTn5yM/P1/1vb4zCwgxRUKN4UskEvz888/YuXMnxo4dy6nPFPj842V4p2hubWm3TRefk2tsH3zwAX777TecP3++1A9zIyIiEBkZqbGdhndIRSdE4KelpZXrYo8CnxujrqcfHh7OaZ0MXZ08eRKdOnXSad9r166hcePGGtvnzZuHqKgo/Pjjj2XO3pk1axamTZum+j4zMxOenp6c+kyIqRFqHv7ChQuxfPlyzitlFrVLgW8YvIR+REQEH4fR4Ofnh7Vr1+q0b61atTS2RUZGYuHChfjqq6/w8ccfl3kMqVQKqVTKuZ+EmCohAp8xhqNHjyI3NxenT5+m5ZFNDC/DO6YoMjISERERiIiIwPz58/U6Bs3eIRWZkMsjy+Vy7N69GwMHDqSlFYzEqLN3TM2CBQsQERGBuXPn6h34hFRkQgT+o0ePVP8vkUgwaNAgCnwTVOlCf9myZQgPD0ePHj0QFhaG8+fPq30RUtkJNYY/YMAAbN26Va8+U+Abj95j+k+ePOG0v7Yxd0PYu3cvACA2NhaxsbEaj1fS0SxCAAg3pPPw4UMolUo8ePCAKl6ZOL3H9MViMacTK+SUTX3RmD6pSIQcw2eM4eTJk+jQoQMN6QjE4FM2N2zYYJBpmoQQ7oQI/OvXryMoKEh1Aajr9Ori7VLgG5/eoT9q1Cgeu0EI0RdfgW8ltcate4kQs9eQSS3g4+NT4vOKatr269cP8+bN43R1X9QuBb4weJmnTwgRBl+B/zyjCg5drQK5ogZEkMND8hdKyXzV1b0+JVIp8IVFoU9IBcVX4MuZHQ5edkah8r/HYIln8vZIy0qFs732z+J69uyJmjVron79+jSGX8HwFvr379/HmjVrcOfOHeTm5qo9JhKJcOzYMb6aIsTs8RH4cXFxSEhIQGahFwqVbsX2EAEQ4fCpe3CyjAfwpjre8+fPERwcDFtbWwBAw4YNOfWZAt808BL6N2/eRMuWLVGjRg3Ex8cjKCgIKSkpePbsGTw9PVG3bl0+miGEgL8rfJFIhLy8PBSyLK37FsqzkafIA/BmHayVK1eicePGWLVqFediKBT4poOXm7Nmz56N7t2749atW2CMYf369UhISMDevXuRl5eHhQsX8tEMIWaPz1k6VlZWkMlkcJKlw0acCIABKASghBRJcJa9gEwmg0wmQ82aNWFra4u6detyXp+KAt+08HKlf/XqVaxatUo1tqdUvhkcDAsLw/Tp0zFr1iycOnWKj6YIMVt8T8v08fFRzdBRFALXH2Qh7k4SxIVpqC67j549u6kdo0GDBvDw8FD9nufkiXHsCpBTIIWD7DW6NRNDYsk02qXANy28XOmnp6fD2dkZYrEYEokE6enpqsdCQkJw9epVPpohxGwZeh6+pQUQUu812ge+QAv/XPjW88bhw4fx7Nkz1T41a9ZUBX6+XISd51zxNNMd6XkuePyqJv64VA3/Xe+p2qXANz28XOnXqFEDKSkpAN584HP69Gl07doVABAXFwc7Ozs+miHELBnzxquiK/+jR49ixowZcHNzQ1RUlKoYSnx8POLj45HJfJGNGnjzoS8AiJH8Soo/Dl2DTJQMAPD09ERgYCAFvonhJfTbtm2Ls2fPol+/fhg2bBjmz5+P58+fw8rKCps2bcIHH3zARzOEmB2hllYICgpCrVq10KxZMzg5Oam2y+Vy5OXlQS7Gm/R466b8vAIlwN58+CsWiynwTRAvoT9nzhwkJiYCAGbMmIGkpCRERUVBJBJh8ODB+Pbbb/lohhCzIuRaOtWrV8evv/4Ke3t7tXn4EokEMpkMYpaMDCgBJgZEIoApIRYVwN4qA2JIIRKJ4ODgQIFvgiptERU+0IJrRChCLY/s5uZWZlnRIk9eynDwsg0KYQsJXqFv61zYWLyiMXyBGLVGrlwuR0FBgeqmjeJycnJgZWVFJ5EQHQkR+GfPnsXcuXMhk8kQHR2N2rVrl/mcWtXy4CXajdy8fFjLpLCxaEuBXwHwEvrjx49Hfn4+oqOjNR6bMGECrK2tsW7dOj6aIqRSE2pIJzg4WHWDJZfaFz4+PpDL5VAqlRT4FQQvoX/ixAksXrxY62N9+vTBrFmz+GiGkEpNyDF8mUyGH374AZaWlpzW0qlbty5Ny6xgeAn95ORkuLu7a33Mzc0NSUlJfDRDSKUl1Bh+Xl4eBg4cCACwtLTCxbvWuPeoAJYWBQjweI7ghjVLbZcCv+LhJfSdnJwQHx+Pjh07ajwWHx8Pe3t7PpohpFISIvBv3ryJuXPngjEGb29vBAcH4+BFO9x6JAVgA4DhebozvGtnoYq9UuP5FPgVFy+h36lTJyxatAgDBgxQ3cQBAGlpaVi8eDFCQ0P5aIaQSkeoIZ369evj/fffR35+Puzs7LDvwAnczhxUbA8RlAB2H02Eu/V1AFAt20CBX7HxEvoRERFo1qwZ6tWrhyFDhqBGjRp4+vQptm/fDrlcjsjISD6aIaRSMXbgx8fHQy6XQyKRwMfHB9OnTwdjDPfu3UNunrZ18xnkijcrcQJvZulR4Fd8vIS+n58fzpw5g2nTpmHt2rUoLCyEhYUFOnTogOXLl8PPz4+PZgipNIwZ+K8ylYg5VIAbt6UoyE1BaMtc+Pj4QCQSQSQSQSKRwM5aAaniFfKVDnizJBcDYIEqsiTIJDIAgKWlJQV+JcDLzVkpKSlwcXEBAOTm5qoWYJPJ3rxZrl69iuDg4PI2Y3R0cxYxBGMGfn4Bw6LVuUjPUIIxEZRKBSzF+fj6i2qwsVZfQyEzR4w/ztojMdUSYhTA3foahvX1UbVLgW/ajHpzVp8+fXDixAnIZDJYW1urFVi4desWunfvjpcvX/LRFCEVmrECv2hhtOR0Z6S9qo+iRXLEYksoYYltO6/Cw+XN72TRWL2DrRIfdM3AP/fjoZDLYWUlUbVLgV958DZlc9iwYdi5c6fa9vj4eHTt2hUBAQF8NENIhWbMK/yihdHy8wu0Pp5foFAbqy/Ot97/KqJT4Fc+vKynf+DAAZw8eRLTpk1TbXvy5Ak6d+4MDw8P7N+/n49mCKmwjP2hrUQiwZ07d3D04FpILAsgQtEorhKWFnJ4uGSrqmKVFMYU+JUTL1f6/v7+iImJQffu3VG7dm0MGTIEnTt3hr29PQ4fPkzz9IlZE2JaZrVq1bB//35kZ2eje88zyGJdkZCYD2urHATVeYC+73Qus10K/MqJ11U2t2zZgtGjR6NmzZqwtLTEmTNn4ObmxtfhjY4+yCXlJeTSCteuXcOxY8cwbdo0iMVixMbGIi8vDzKZDD169Ci1XQr8isfgH+SmpaVpbOvVqxc++eQTREVFITY2FlZWVqr9it+0RYg5ECLwCwoKYGVlBQBo0qQJmjRponqsaHG00oKYAr/y0zv0XVxcIBKJtD7GGENISIjatsJCbTd/EFI5CbWWzi+//IJffvkFrq6uGo8XlUIsrV0K/MpP79APDw8vMfQJMWdCXeH//PPPSEhIQExMDCZOnMipzxT45oMqZ5WCxvQJV0KO4T9//hy7du3CRx99xGl5ZAr8ykHXvKLQLwWFPuFCiMDPzMws13uTAr/y0DWveJmnT4i5E2oMv3fv3rhx44ZefabAN096h36DBg2wa9cunfd//vw5pkyZUmKFLUIqKiECX6lUYvfu3cjMzMThw4c595kC33zp/UHu4MGDMWLECFSpUgXDhg1Dx44dERwcrJrVk5ubi3///Rfnz5/Hnj17cOjQITRr1gwfffQRn/0nRFBCjeGLxWKsWLECO3fuxPvvv8+pzxT45q1cY/rPnz/H999/jw0bNiA1NVVtqdaCgjdrfjDG0K5dO3z66acYMGAAbx03BhrTJ6URIvATExPh4eGhb5cp8Csxo36QK5fLceHCBZw7dw6JiYnIzc2Fi4sL/P390bFjR9SsWXKdTVNGoU9KItQY/vz58xEZGYmwsDDOfabAr9yMurSyRCJB27Zt0bZtWz4OR4hJE2pI5++//4ZCocDff//NOfQp8EkRXkKfEHMh5Dz8mTNnokmTJujevTun51Hgk+JoyiYhOhIi8G/fvo2iEVixWIyePXvSjVekXCj0CdGBEIG/b98+DBs2DN999x30+eiNAp9oQ6FPSBmEGtJ5/fo1GGOq/3JBgU9KQmP6hJRCyDH8wYMHw9vbG02bNqUhHcIbutInpARCBP758+dV97gAQLNmzSjwCa/KdaX/8OFDWFtbq1XHWr58udo+Dg4OGDduXHmaIcTohJqHP3fuXLRp0wbfffcd59ClwCe60Dv0r1y5gubNm+P333/HwIEDAbwplDJ9+nS1/UQiEXx8fNCxY8dydZQQYylP4MfFxSEzMxMKhQL+/v6chnSqVasGqVQKNzc3zkNBFPhEV3qH/tq1a9G6dWtV4Be3d+9eNGjQAIwxfP7559i8eTOFPqkQynuFHxcXh9zcXMhkMtSvX59T282bN0dUVBS8vb1pSIcYjN5j+sePHy9xoSd3d3d4eXmhdu3aGDhwIM6ePat3B/WVnZ2Nzz77DB4eHpDJZGjcuDG2bdtm9H6QiqO8gZ/wPAPpyobIsmyBfFTT6XnHjx9HSkqK6vu6detS4BOD0vtK/+nTpwgICFDbJhKJ0KhRI9jY2Ki2ubu74+nTp/r3UE8DBgzApUuXsHjxYvj6+mLr1q147733oFQqOa9KSCo/roH/JEWCP+/aIrdAjOqOcvhUeY49F6qjQOQKWADZAB4kpaKOW26Jxzh06BBmzpwJb29vbNq0ifP6ThT4RB/l+iD37bnDYrEY165dU9umVCr1urGkPA4cOIAjR46ogh4AOnXqhMePH+Pzzz/HkCFDOI+ZksqLa+CnZFpg/zUHvHlbi5CQIsHt+CooUIgAiAERAMZw9LotauF/NSd8fHzUipMHBgaievXqCA4Ohp2dHac+U+ATfek9vOPh4YFbt26Vud+tW7fKtRSsPnbt2gU7OzsMGjRIbfvo0aORmJiICxcuGLU/xHRxCfy4uDhs3boVe47fB1MyvEl3ACIxlMwKar9OIhEKmQy5eXnI++9LLperHc/T0xNRUVGYPXs2DekQo9E79Dt06IBffvkFCoWixH0UCgV++eUXo3+Ie/PmTQQEBGj8MgQFBake1yY/Px+ZmZlqX6Ty4nqFL5fLkZOTA3lBvsZjlhILoPhftEwJK1EKrGUyyP77kkgkOHDgAO7evavazcXFhQKfGJXeof/pp5/i7t27GDRoEF68eKHxeHJyMgYNGoR79+7h008/LVcnuUpNTYWzs7PG9qJtqampWp+3aNEiODo6qr48PT0N2k8iHH0+tJVIJLC1tYWN8gGAQoAp3zzAlLCXJEMm+t9nVxbIxrvtFOjRo4fqKzExEXPmzMGECRPw7Nkzzn2mwCd80HtMPygoCD/++CMmT56MgwcPIiQkBF5eXgCAx48f4/Lly1AoFFi5ciUaNmzIW4d1JRKJOD82a9YsTJs2TfV9ZmYmBX8lpO8snaCgIDRs2BDp6el4kvwP4p5Vg5xJYWeZjnaN8mEpZth76Dfk5ythJ82Bo203tec3adIEDRs2hK+vL9zd3Tn1mQKf8KVcH+R++OGHaNCgAb7++mucPHlSNTXT2toaXbt2xaxZs9C6dWteOspF1apVtV7Np6WlAYDWvwIAQCqVQiqVGrRvRFh83WnrVsUaNVw032NWyICS5UEEmcZj9vb2WLNmDaRSKQ3pEMGUe8G1Nm3aYP/+/VAqlar5xlzHKfnWsGFDREdHQ6FQqP2C3LhxAwDQoEEDobpGBGSMpRV8fHwgl8tV4bp//35YWVmha9euAN5cEHFBgU/4xtsqm2KxGNWrV+frcOXSv39/rF27Fjt37sSQIUNU2zdv3gwPDw+0aNFCwN4RIRhrLZ3iUzKvXbuGuXPnQiwWw8PDg/MduhT4xBAq5dLKPXv2RNeuXTFx4kRkZmbCx8cH0dHRiI2NxZYtW2iOvpkRannkoKAghIWFQSaTadzIqEu7FPjEEETM2HdOGUl2djbmzJmD33//HWlpafD398esWbMwdOhQnY+ha3V5Yrr0Cfy4uDjVEE3NmjX1Xg8feLMIoUgk4nUMv3j/iqYhF6HAN1+65lWlvNIHADs7O/zwww/44YcfhO4KEYg+gV+oBC7dVSJPYQuZOAN2dhmwseG2PPKTJ0/w0UcfQSQSGWS1zH/iH0OuFEGszFMLfQp8ootKG/rEvOkb+DHn7JAl7QhIlZCLLHAjKR2tfF7q1ObDhw8xb948KJVKBAYGokOHDpz6XFbgMwYk59ggsP2oN/1VFCC7IA92VnIKfKIzo4T+y5cvUa2abqsOElJeXAM/Li4ON2/eRJ6lDzJl3f9bXeHNFfrDlCpIe3gQlso3M9PeXj+nOG9vb0ydOhWPHz9Gu3btOPVZlyv8rAIrpOX9b/aP2EKCp1mW8HFKRU42BT7RjcFCnzGGgwcPYv369di/fz/y8vIM1RQhKvpc4auWV7C2BKRKQKQ+/p6nkMCyIE+1b3Hx8fEoKCiAlZUVfHx8MHz4cDDGSr058G26jOHfvHkT7vVao5pXY4jFb/5BEolEUDIR9uw7jLzsVFhYWKBVq1Zo1aqVzm0T88N76P/777/YsGEDNm/ejOfPn3P+BSBEX/rO0pFIJLCxsUGBOB0FxQOfMQBKWFtkwUImU+1b3O/bd+DmjRsYNux91V8AfAY+8L9/lHKy0lFdy7GzMtIgz38N4M36UYSUhpfQz8vLw/bt27F+/XqcOXMGjDG0aNEC4eHhkEqlGDNmDB/NEFKi8kzLbNiwoWqWzuNXybj+pDogEgEoRFu/F/Cq2lbjOfkFDL/ueo0U9hlc6yvx5/Vr6NmTQSzmN/CB/635k/3yPvKyG0NmVxWMKSEWW+B5/HnIrMSQWdkDAN1RTspUrtC/dOkS1q9fj23btiEzMxNubm6YPn06Ro8eDX9/fwDAnj17eOkoISXRN/Dj4uJQUFAAhUIBV1dXWFtbo75dBh7f2otcuRWsJbnwqtpJ63N3HirEvUdWEIkBESxQgGY4fl6JLq0tkJ1ngT/vOCEplcHGMhv+rg8QFFBT7flc5uEHBQWpZukoGXDkzEkwkQTy16kY80F/SCTcPjAm5q1cC67dunULEokEvXv3xujRo9GzZ09Bl18g5kffwE/NFOOve46QKxis2RPUrv2/aZli9hoWijSILTXXz4mPj8e9e/fw951OYKz4UI8If11KR0HGdTzFuyiEDAxivC6wxrlHdvD1SYdM8uaWmPLceAWmxMsnb+rw2tvb04e2hDO9Q//mzZsQi8WYOnUqpk6dajJLMBDzoW/gJ7wU4/c/7aC0aABYAAWiIPz78iV83d7UT3h7/Zzijh8/jl27dqFRp3YAij/OIBLJkSl3gUJi/7/NIjEKYYt9Ry/ATvQvgDfFUwIDA/W+05Y+IyPloXfof//999i4cSOWLFmCZcuWoVevXhg9ejTCwsK4XbkQogd977S9cfM2nktHgon+V/mKMeD8fQc8uP67al9tUzNzc3Oxbds2pKWloUH2UcCmD4D/3dBe0/kBGOyhTYFcgTzlmxlAYrG4XEsrtGrVCgqFgsbviV70TucpU6ZgypQpuHz5smpcf+/evXBxccEHH3yAUaNGCbKOPqn89A38q1ev4jVqgMk0w5LBCrl5eUUFEDWmZgJvVshcv3499u7di48/7ofrd4HDJ5+DMQVqVn2Gak5ZKGT5yMBrKCEDIAaYEiIUwEHyAhaQQiQSwcHBoVxr6dSsWbPsJxFSAt7W3nl7Bg/wpmhEQEAAtm7disLCQj6aMSpae8f06Dukc+XKFVy9ehUFVvXw2v4djcctClNh/2rTm/+3sEBAQIDqSv/169ewsbHRetzY2Fjk5eVBJpOhR48eAID0bEucvFkFyemAhfIVqov/Qud2gbR4GjEoXfOKt09dZTIZhg8fjpMnT+Kff/7BjBkzkJSUhKioKL6aIGauPNMyJRIJrK2tYSN+CREreKueLYNjwTFVLdvigb9v3z688847iI+P13pcHx8f+Pn5qQ0FVbFToH/Ll+hS7xza1omDTy1bCnxiMgy6yqZSqcSBAwewYcMGxMTEGKoZg6ErfdPB5/LIqTk2OH3PFdl5EogKs2CfewgDejbReJ5CocDIkSNx69YtjB49mnOtZ1oemRiTrnlVaZdW5gOFvmkw1Hr49+//C4WiABKJpMT1dDIyMrBz506MGjWKShwSk0ahzwMKfeEJUQClvAsEUuATIRh9TJ8QvgkR+Pv370fv3r1x+vRpvfpMgU9MHYU+MUlCBD5jDGfOnEF+fj7Onj3Luc8U+KQioLuoiMkRqqatSCTCwoUL0aJFC/Tt25dTnynwSUVBV/rEpAgR+MWnY1paWqJ///70oS2ptCj0ickQagx/8ODB2LBhg159psAnFY3ewztisZjTwk8V8Y5cYjxCDek8f/4cSqUSiYmJvFe8Kg0FPhGK3qEfHh6u9guyceNGZGdno0+fPnBzc8Pz58+xb98+2NraUhEVUiqhAh8Axo0bBz8/P7Rp04YCn5gFvUM/IiJC9f/Lli2Dm5sbjh49Cjs7O9X2rKwsdOnSpcR1SwgRIvCvXLmCRo0aqdoyRBHzklDgE6HxMqa/atUqfPHFF2qBDwD29vb44osvsGrVKj6aIZWMEIG/b98+jBs3DvPmzdNryJECn1R0vIT+s2fPSnzzW1paIikpiY9mSCUi1JCOjY0NLCwsYGtry7kYCQU+qQx4WYahSZMmcHR0xJEjR9TezAUFBejSpQuysrJw7dq18jZjdLQMg2EIOYYPAHfu3IGfnx9NyySViq55xcvNWQsXLkS/fv1Qp04dDBgwAG5ubkhKSkJMTAySkpKwe/duPpohlYAQgX/69Gk0btxY9YsQEBDAqc8U+KQy4SX0w8LCEBsbizlz5mDlypVQKpUQiURo3rw5Nm7ciC5duvDRDKnghAj82NhYzJo1C4GBgVi7di3nSQUU+KSy4W0Zhs6dO6Nz5854/fo10tPTUaVKFZq1Q1SEGtKpU6cOHB0dERAQAJlMxqnPFPikMuJ17Z2MjAycP38eKSkp6NWrF4U+ASDsGL6vry+io6Ph6upKY/iEgMdlGBYsWAAPDw/07NkTI0aMwMOHDwG8+Qtg8eLFfDVDKhghAv/QoUN4/Pix6nt3d3cKfEL+w9s8/cjISIwdOxb79+9H8QlBvXv3xv79+/lohlQwQgT+8ePHMXPmTIwbNw4vXrzg3GcKfFLZ8TK889NPP2HatGlYunSpxg0v9erVw/379/lohlQgQg3pNG7cGHXr1kXjxo3h4uLCqc8U+MQc8BL6Dx48QPfu3bU+Zm9vj1evXvHRDKkghBzDd3Z2xsaNG2Fra0tDOoRowcvwjqOjI5KTk7U+9ujRI1SvXp2PZkgFINTyyOfOnVN9b29vT4FPSAl4Cf3OnTtj6dKlyMnJUW0TiURQKBRYvXp1iX8FkMpFiMC/cOEC5s6di88++0ytGAqXdinwiTnhZXjnyy+/RLNmzRAYGIj+/ftDJBLhp59+wrVr1/DkyRP8/vvvfDRDTJhQQzrBwcFo3749qlWrhjp16nDqMwU+MUe8rL0DvFnPZOrUqTh+/DgUCgUsLCzQqVMn/PDDD5xvezcVtPaOboReS0cul8PCwoKGdIhZ0zWveBneOX36NDw9PREbG4usrCw8ffoUmZmZOHz4MDw9PXH69Gk+miEmSKgx/K1bt6q+l0gkFPiE6IiX4Z1OnTrh3LlzaN68OaRSKTw8PFSP3bt3D506daJyiZWQEIF/9+5dzJ07F4wx+Pj4oHnz5pz6TIFPzB0voV/aCJFcLud0FUYqBqGGdPz8/DBmzBhkZGQgJCSEU58p8AkpR+hnZmaqzb9PSkrCkydP1PbJzc3F5s2b4ebmpncHiekRcgxfJBLh448/Vv0/l3Yp8AkpR+h/9913+PLLLwG8+eXr37+/1v0YY5g9e7a+zRATI1SJwytXrmDevHkQi8VU8YqQctA79Lt16wY7OzswxvDFF1/gk08+Qa1atdT2kUqlaNiwITp06FDujhLhCRH4z58/R0REBBQKBUJCQhAWFsapzxT4hKjTO/RbtWqFVq1aAQBycnIwfvx4tQ9wSeUi1JCOu7s7Fi5ciKtXr6Jnz56c+kyBT4gm3ubpV0Y0T/8NIQJfqVSWawIABT4xN0adp08qL6Hm4Y8fP15tWQ8uKPAJKRlvlbPu37+PNWvW4M6dO8jNzVV7TCQS4dixY3w1Vabjx49jy5YtOHv2LBISEuDk5ISQkBCEh4ejadOmRutHRSdE4GdmZmLp0qXIyMhATEwMhg8fzqnPFPiElI6X0L958yZatmyJGjVqID4+HkFBQUhJScGzZ8/g6emJunXr8tGMzlavXo3U1FR8+umnCAwMxMuXL7Fs2TK0bNkShw4dQmhoqFH7UxEJNYbv4OCAVatW4dChQxg2bBinPlPgE1I2Xsb033nnHUgkEvz222+wsrLC5cuXERwcjP3792PMmDHYtWsXWrduzUd/dfLixQuN5Zyzs7Ph4+ODBg0a4OjRozodx1zH9IUI/Pz8fEilUn27TIFPzJ5Rx/SvXr2KkSNHqj54UyqVAICwsDBMnz4ds2bN4qMZnWlbv9/Ozg6BgYFISEgwal8qGqHG8AcMGIBnz57p1WcKfEJ0x0vop6enw9nZGWKxGBKJBOnp6arHQkJCcPXqVT6aKZeMjAxcvXoV9evXL3Gf/Px8ZGZmqn2ZEyECXy6XY/369Xj27Bl2797Nuc8U+IRww0vo16hRAykpKQAAHx8ftVU14+LiYGdnx0cz5TJ58mTk5ORgzpw5Je6zaNEiODo6qr48PT2N2ENhCTWGL5FIsGbNGkycOBETJ07Uuk98fDzu3LmjUSSFAp8Q7nj5ILdt27Y4e/Ys+vXrh2HDhmH+/Pl4/vw5rKyssGnTJnzwwQd8NKO3efPmISoqCj/++GOps3dmzZqFadOmqb7PzMw0i+AXIvDT09NRpUoVAEC1atXw4Ycfajk2cOuZE+ISm0KpVMBOcQM+Pv9rlwKfEO54Cf05c+YgMTERADBjxgwkJSUhKioKIpEIgwcPxjfffMNHM3qJjIzEwoUL8dVXX6kW6iqJVCot14eJFZFQa+ksWrQIK1asKPUf4b8TnBGXUAWwEAFihkyJOx68TIK3SxYFPiF64iX069atq5qWaWFhgRUrVmDFihV8HLpcIiMjERERgYiICFr0TQshAp8xhoMHDyInJwfHjh3TGvrx8fGIj4/HS9uxgPi/xdVEIoAxnL+txL3XsRCJRGjYsKHWD+1LQoFPSDlC/+1llMvy9mJshrZgwQJERERg7ty5mD9/vlHbrgiEGsMXiURYtmwZdu/ejcGDB2vdRy6XIy8vD8xW48lgjCE/Px8AOBXmocAn5A29Q7927dqclrg1ZuWsZcuWITw8HD169EBYWBjOnz+v9njLli2N1hdTJETgJyQkqD4fkclkGDp0aIn7SiQSyGQyyBX3kCtp9OYq/z/WhfdhY2MDkUikc3BT4BPyP3qH/oYNGziva24se/fuBQDExsYiNjZW43FzXmNOqHn44eHhmD17NgYOHFjm/j4+PvDx8YFSCVx9/Ap3n1qBsULYyuMwZmBDSCRNdO4zBT4h6vQO/VGjRvHYDX6dPHlS6C6YJKGGdO7evYvCwkLcvXuXU3/FYqBp7RS8vBuL/Px82NjYQCJpqPPzKfAJ0cTbgmvEtAlZ4nDatGkICgpC586dOT2vaFqmj48PJBIJp5lVFPiEaEehbwaECPwbN26gQYMGEIlEEIlE6Nq1K6c+F5+H37x5c5qWSQhPeLkjVywWw8LCotQvIgyhxvBHjBiBRYsW6fX5Cd14RYjh8HKlHx4ervGh7suXL3H48GEUFhZixIgRfDRDOBJqSEehUKjaZ4xx+sCfAp8Qw+Il9CMiIrRuLygoQPfu3TndQEP4IeQYft++feHl5YWgoCBOJQ8p8AkxPIOWS7SyssInn3yC5cuXG7IZ8hYhAv/s2bNqFdMaN25MgU+ICTJ4jVxra2s8f/7c0M2Q/wg1hj958mR89tlnqrtluaDAJ8R4DBr6L1++xDfffAM/Pz9DNkP+I9SQjoeHB6ytreHp6ck5dCnwCTEuXsb0vb29NT6sy8/Px4sXLyAWi/HHH3/w0QwphZBj+E2aNEF0dDQ8PT1pSIcQE8dL6Hfo0EEj9GUyGWrXro0hQ4agdu3afDRDSiBE4B89ehQNGzaEq6srAMDLy4tTnynwCREGL6G/adMmPg5D9CBE4B85cgRffPEFatasiV9//VVVDIVLuxT4hAiDlzF9uVyOnJwcrY/l5ORALpfz0Qx5i1BDOg0aNICHhwdatGgBR0dHTn2mwCdEWLxc6Y8bNw4FBQWIjo7WeGzChAmwtrbGunXr+GiK/EfIMXx3d3f83//9H5ycnGgMn5AKhpcr/ZMnT+Kdd97R+lifPn1w7NgxPpoh/xFqWmZcXJzqe2dnZwp8QiogXq70k5OT4e7urvUxNzc3JCUl8dEMgTCB/+eff2Lu3LmwtbXF1q1bOVdBo8AnxHTwcqXv5OSE+Ph4rY/Fx8fD3t6ej2bMnlBDOk2bNkVwcDB69OiBmjVrcuozBT4hpkXEeCgj9d577+HixYu4dOkSnJ2dVdvT0tLQvHlzhISEYNu2beVtxugyMzPh6OiIjIwMODg4CNoXIcfwASAvLw9WVlY0pEOIidI1r3gJ/Xv37qFZs2aQSCQYMmQIatSogadPn2L79u2Qy+W4ePFihbwr11RCX6gxfAAICwvTq88U+IQYl655xcuYvp+fH86cOYNp06Zh7dq1KCwshIWFBTp06IDly5dXyMA3FUIEflxcHObOnQsA8PT0RFBQEKc+U+ATYrp4q5zVqFEjHDt2DLm5uUhPT4ezszNkMhlfhzdLQs7DLypg3qBBA059psAnxLTxMrxTWQk5vCP0GL5SqQQAGsMnpIIw+PDOkydPOO3PdZqfORNqDP/+/fv49NNPIRKJOIV9UbsU+ISYPr1Dv3bt2pzK4BUWFurblFkRIvCfPHmC8PBwFBYWomHDhujcuTOnPlPgE1Jx6B36GzZs4BT6pGxCDenUqlULM2bMwP3799GpUydOfabAJ6RioTH9UhhzTF+IwOdatFzb8ynwCTENuuaVwcslkrIJNYb/2WefoaCgQK8+U+ATUjHxNmXz/v37WLNmDe7cuaNWIBsARCIRLbpWAiECPy0tDV999RVev36N3bt3Y/DgwZz6TIFPSMXFS+jfvHkTLVu2RI0aNRAfH4+goCCkpKTg2bNn8PT0RN26dfloptIRagzf2dkZ33//PU6ePIl3332XU58p8Amp2HgZ03/nnXcgkUjw22+/wcrKCpcvX0ZwcDD279+PMWPGYNeuXWjdujUf/TUqQ47pCxH4crm8XEFLgU+I6TLqmP7Vq1cxcuRI1dzuoht7wsLCMH36dMyaNYuPZioNocbw33vvPaSkpOjVZwp8QioHXkK/aNkFsVgMiUSC9PR01WMhISG4evUqH81UCkIEfl5eHn766SfEx8cjJiaGc58p8AmpPHgJ/Ro1aqiuIH18fHD69GnVY3FxcbCzs+OjmQpPqDF8mUyGX375BePGjcO4ceM49ZkCn5DKhZcPctu2bYuzZ8+iX79+GDZsGObPn4/nz5/DysoKmzZtwgcffMBHMxWaEIFfFLjAm9UyP/74Y059psAnpPLhJfTnzJmDxMREAMCMGTOQlJSEqKgoiEQiDB48GN988w0fzVRYQgT+vn37sGzZMqxatQoBAQGc+0yBT0jlRHfkloKP2TtCBH5hYSHGjh2L69evY8SIEZg2bRqnPlPgE1LxGHz2Tnp6OgYOHIh9+/aVuM++ffswcOBApKam6ttMhSbUGL6FhQV++uknTJ06FZ999hmnPlPgE1K56R3669atw99//40ePXqUuE+PHj1w48YNrFy5Ut9mKiwhAj85OVn1/3Z2dmrTaHVtlwKfkMpN79Dftm0bxo8fX2owWFpaYvz48fjjjz/0baZCEmoefu/evXHkyBG9+kyBT4h50Dv0//nnH4SEhJS5X3BwMP755x99m6lwhBrSuXjxIuRyOS5fvsy5zxT4hJgPvWfvKBQKnX7BJRIJ5HK5vs1UKEKWOAwPD0dISAjCwsI4PY8CnxDzoveVvru7O27fvl3mfrdu3YKbm5u+zVQYQgT+vXv3UDT5ysLCAn369KExfEJIqfQO/Q4dOmDVqlWlXsXL5XKsXr2aczWmikaoMfyhQ4di9erV0GfWLQU+IeZJ79CfOnUq7t69i/79+6tuzCouMTER/fr1w7179zB16tRyddKUCTWkk5aWBsYY0tLSOPeZAp8Q86X3mH5QUBBWrlyJSZMmwdvbG02bNoW3tzcA4OHDh7hy5QqUSiVWr16Nhg0b8tZhUyLkGP7w4cNRr149NG/enFPJQwp8Qsxbue/IPXfuHL7++mucOHECr1+/BgDY2Nigc+fOmDVrFlq2bMlLR4VQ2h1uQgT+xYsX0aRJE73DlgKfkMpL1ztyeVuGQalUqlbadHFx4fSBoqkq6Yco1Bj+3Llz0alTJyxZsoRz6FLgE1K56Rr6vNXIFYvFqF69Ol+HM1lCDek4OjrC0tISzs7OnIeCKPAJIUUq/uW4DtatWweRSFTudf2FHMNv27YtoqKiMHv2bJqWSQjRW6UP/WfPnmH69Onw8PAo13GECPwTJ06oVSHz9fWlwCeElEulD/2PPvoI7du3R9euXfU+hhCBf+jQIUybNg0ffvghsrOzOfeZAp8Qok2lDv0tW7bg1KlTWLVqVbmOk5KSYvQhHV9fXzg7OyMoKAg2Njac+kuBTwgpCW8f5JqaFy9e4LPPPsPixYtRs2ZNnZ6Tn5+P/Px81feZmZkA3tQOcHV1NeoYvre3N7Zu3Ypq1arRkA4hhDeV9kp/0qRJ8PPzw8SJE3V+zqJFi+Do6Kj68vT0BPDmvgNjBH5sbCzi4+NV37u6ulLgE0J4VSlDf+fOndi7dy/Wrl3L6W7VWbNmISMjQ/WVkJAAAEYJ/FOnTmHWrFkYP348kpKSdG6veLsU+ISQslS64Z3s7GxMnjwZn3zyCTw8PPDq1SsAQEFBAQDg1atXkEgksLW11XiuVCqFVCrVu+3yDOk0adIE/v7+qF+/Puf7HSjwCSG6qnSF0R89eqRaA6gkffv2xe7du8s8VtEdbnfv3oW9vX2p+5Z3DB8AcnJyYG1tTUM6hBDOjH5Hrqlwc3PDiRMnNLYvXrwYp06dwsGDB+Hi4sJrm+VZWsHe3h7t27cHAK1/fZTVLgU+IYSLShf6MpkMHTt21Ni+adMmWFhYaH2sPPQN/EuXLmHu3LmwsLBAVFQU/Pz8OLdLgU8I4arShb4xlXcMv0uXLnB0dES9evU4t0uBTwjRR6Ub0+dTaWP6fIzhKxQKiMViGsMnhJSbrmP6lXLKpqGVZwx/48aNqu8tLS0p8AkhRkXDOxzpG/jx8fGYN28elEolfH190aZNG87tUuATQsqLQp+D8gzp+Pj4YOLEiUhOTkarVq04t0uBTwjhA4W+jvQNfMaY6q7g8ePHq32v6/Mp8AkhfKExfR3oG/j79u3D3LlzoVAoVNso8AkhQqIrfR28evUKhYWFnAI/OTkZX375JQoKCtCsWTP069ePU5sU+IQQQ6DQ10FmZiZcXFw4jeG7urpi8eLFuHDhAt555x1O7VHgE0IMhUJfBzKZTOfALywsVO0bGhqK0NBQTm1R4BNCDInG9HXAZR7+6NGjVcVXuKLAJ4QYGoU+T3JycrBs2TLExcUhJiaG8/Mp8AkhxkDDOzyxtbXFzz//jAMHDmDEiBGcnkuBTwgxFgr9csrNzYW1tTWAN8XMfX19OT2fAp8QYkw0vFMO+/fvR79+/fD48WO9nk+BTwgxNgp9PSkUCmzevBnJycnYs2cP5+dT4BNChEDDO3qytLTEzz//jJ07d2Ls2LGcnkuBTwgRCl3pc5SWlqb6f2dnZ4wfP56WRyaEVBgU+hzs27cPvXr1wtmzZ/V6PgU+IURoFPo6Yozh2LFjyMvLw5kzZ/R6PgU+IURoNKavI5FIhKVLl2L37t0YOHAgp+dS4BNCTAWFPgcSiQSDBg3i9BwKfEKIKaHhHR1s375dr+dR4BNCTA1d6ZeCMQYAuH//PrKysjgXQHn9+jVsbGwgkUiQm5ur83OVSiWys7NhZ2cHa2tr5Obmcno+IcT8FC30WJRbJRGxsvYwY0+fPoWnp6fQ3SCEEJ0lJCSgZs2aJT5OoV8KpVKJxMRE2Nvbc7rKL6/MzEx4enoiISEBDg4ORmtXKPR6Kzd6vcbBGENWVhY8PDxKvXeIhndKIRaLS/0X09AcHBzM4pekCL3eyo1er+E5OjqWuQ99kEsIIWaEQp8QQswIhb4JkkqlmD9/PqRSqdBdMQp6vZUbvV7TQh/kEkKIGaErfUIIMSMU+oQQYkYo9AkhxIxQ6JuodevWQSQSwc7OTuiuGMTx48cxZswY+Pv7w9bWFjVq1EDfvn1x5coVobtmMNnZ2fjss8/g4eEBmUyGxo0bY9u2bUJ3y6jM8bwXZwq/1/RBrgl69uwZ6tevD1tbW2RkZCA7O1voLvFu0KBBSE1NxaBBgxAYGIiXL19i2bJluHz5Mg4dOoTQ0FChu8i7bt264dKlS1i8eDF8fX2xdetWrFu3DlFRUXj//feF7p5RmON5L2Iqv9cU+iaoT58+EIlEcHZ2xo4dOypl6L948QLVq1dX25adnQ0fHx80aNAAR48eFahnhnHgwAGEhYVh69ateO+991Tbu3Xrhlu3buHJkyewsLAQsIfGYW7nvThT+b2m4R0Ts2XLFpw6dQqrVq0SuisG9fYvPgDY2dkhMDAQCQkJAvTIsHbt2gU7OzuNegyjR49GYmIiLly4IFDPjMvcznsRU/q9ptA3IS9evMBnn32GxYsXC7rmj1AyMjJw9epV1K9fX+iu8O7mzZsICAjQqKkQFBSketxcVebzDpje7zWFvgmZNGkS/Pz8MHHiRKG7IojJkycjJycHc+bMEborvEtNTYWzs7PG9qJtqampxu6SyajM5x0wvd9rCn0TsXPnTuzduxdr16416jLOpmLevHmIiorCd999h6ZNmwrdHYMo7bxWxHN+8uRJiEQinb6uX7+u9RgV6bzr83pN8feallY2AdnZ2Zg8eTI++eQTeHh44NWrVwCAgoICAMCrV68gkUhga2srYC8NJzIyEgsXLsRXX32Fjz/+WOjuGETVqlW1Xs2npaUBgNa/Akydn58f1q5dq9O+tWrV0thW0c4719drsr/XjAju4cOHDECpX3379hW6mwYRERHBALCIiAihu2JQ48ePZ3Z2dkwul6ttj46OZgDYX3/9JVDPhGEO591Uf69pyqYJyMvLw/nz5zW2L168GKdOncLBgwfh4uKCBg0aCNA7w1mwYAHCw8Mxd+5cLFiwQOjuGNTBgwfRq1cvbNu2DUOGDFFt79mzJ+Li4sxmyiZgPufdVH+vKfRN2KhRoyrtPP1ly5Zh+vTp6NGjB+bPn6/xeMuWLQXolWF169YNly9fxpIlS+Dj44Po6GisXbsWW7ZswbBhw4TunlGY43l/m9C/1zSmTwSxd+9eAEBsbCxiY2M1Hq+M1yIxMTGYM2cOwsPDkZaWBn9/f0RHR2Po0KFCd81ozPG8mxq60ieEEDNCUzYJIcSMUOgTQogZodAnhBAzQqFPCCFmhEKfEELMCIU+IYSYEQp9QggxIxT6hBBiRij0CSHEjFDoE0KIGaHQJ4QQjlavXo3g4GBIJBJEREQI3R1OKPQJIYQjd3d3REZGol+/fkJ3hTNaZZMQQjgqCvs9e/YI2xE90JW+Cdm0aVOpdTdPnjwpdBdLVdT/R48eCd2VEp09exYRERGq0nX60Od1rlixAiKRSO+CGXFxcRg7dizq1q0La2trWFtbo169evjwww9x+fJlnY/z5ZdfIjAwEEqlEgAQEREBkUiElJQUvfqlD1N5nxiyH+vXr0eNGjWQk5PD+7HLi0LfBG3cuBHnzp3T+AoODha6a6UKCwvDuXPn4O7uLnRXSnT27FlERkaWK/T1sWHDBohEIty6dQsXLlzg9Nw1a9agadOmuHDhAj799FPs27cP+/fvx2effYZbt26hWbNm+Pfff8s8TmJiIpYuXYovv/wSYjH96hvSyJEjYWtri6VLlwrdFQ00vGOCGjRogJCQEKG7obPXr1/DxsYG1apVQ7Vq1YTujsm5fPky/v77b3zxxRf4/vvvsX79erRo0UKn5/7111+YNGkSwsLCsGPHDlhZWakeCw0NxeTJk7F9+3ZYW1uXeawffvgBTk5OGDBggN6vpbLr3Lkz/vrrL62Pff755zqXd7S0tMSHH36IBQsWYMaMGbCxseGzm+VC/9xXMHl5eWjSpAl8fHyQkZGh2p6UlAQ3Nzd07NgRhYWFAP73p/u1a9cwYMAAODg4wNHRER988AFevnypdtz79+/j/fffR/Xq1SGVShEQEICVK1dqtF90zKtXr+Ldd99FlSpVULduXQCafy4X7RsXF4dBgwbB0dERzs7OmDZtGhQKBe7du4cePXrA3t4etWvX1npVxLVft27dwnvvvQdHR0e4urpizJgxqp9TREQEPv/8cwCAt7e3xrBZfHw8Ro8ejXr16sHGxgY1atRAnz59cOPGDY5nSd369ethYWGBqVOnonfv3ti2bRtev36t03O//vprWFhYYM2aNWqBX9ygQYPg4eFR6nEKCgqwfv16vP/++2Ve5d+9exd16tRBixYt8OLFC7Xt7733HlxdXSGVSlGrVi2MGDEC+fn5APj7+fHxvvnzzz/RuXNn2Nvbw8bGBq1bt8b+/fvLbPvYsWPIy8vT+sW1nu+wYcOQmZmJbdu2cXqeoVHom6DCwkIoFAq1r6Igl8lk+P333/HixQuMGTMGAKBUKjFs2DAwxhAdHa1RYLt///7w8fHBjh07EBERgd27d6N79+6Qy+UAgNu3b6NZs2a4efMmli1bhn379iEsLAxTpkxBZGSk1j4OGDAAPj4+2L59O37++edSX8/gwYPRqFEj7Ny5E+PHj8d3332HqVOnol+/fggLC8OuXbsQGhqKGTNmICYmRvU8ffo1cOBA+Pr6YufOnZg5cya2bt2KqVOnAgDGjRuHTz75BMCb0oVvD5slJiaiatWqWLx4MWJjY7Fy5UpYWlqiRYsWuHfvXqmvsSS5ubmIjo5Gz5494ebmhtGjRyMrKwvbt28v87mFhYU4ceIEQkJCyj1kduHCBaSmpqJTp06l7nfq1Cm0bt0aQUFBOHHiBKpXrw4A+Pvvv9GsWTOcP38eX375JQ4ePIhFixYhPz8fBQUFAPj/+en7vjl16hRCQ0ORkZGB9evXIzo6Gvb29ujTpw9+++03zv3QRqFQIC8vT/W7WvT/xbm5ucHf31+nf2yMihGTsXHjRgZA65eFhYXavr/99hsDwL7//nsWHh7OxGIxO3z4sNo+8+fPZwDY1KlT1bZHRUUxAGzLli2MMca6d+/OatasyTIyMtT2+/jjj5lMJmNpaWkaxwwPDy+x/w8fPlTbd9myZWr7NW7cmAFgMTExqm1yuZxVq1aNDRgwQLVNn34tXbpUbd9JkyYxmUzGlEolY4yxb775Rq2PpVEoFKygoIDVq1dP7Wf49ussza+//soAsJ07d6qO6ebmxtq1a1fmc5OSkhgANnToUK19k8vlqq+i11eSJUuWMAAsKSlJbXvRz+3ly5fs//7v/5iVlRWbMmUKKywsVNsvNDSUOTk5sRcvXpTZ7+J91OfnV973TcuWLVn16tVZVlaWWl8aNGjAatasqfpZcTmPJfWx+NfGjRs19hs2bBhzdXXlfHxDoit9E/Trr7/i0qVLal9vf/g3ePBgTJw4EZ9//jkWLlyI2bNno2vXrlqPN2zYMI3nWlpa4sSJE8jLy8OxY8fQv39/2NjYqP110atXL+Tl5eH8+fMaxxw4cKDOr6d3795q3wcEBEAkEqFnz56qbZaWlvDx8cHjx48BQO9+vfPOO2rfBwUFIS8vT22YoiQKhQJff/01AgMDYWVlBUtLS1hZWeH+/fu4c+eOzq+3uPXr18PFxUX1M7CwsMDw4cNx5swZ3L9/X69jAkDTpk0hkUhUX8uWLSt1/8TERIhEIri4uGh9/KuvvsKoUaOwePFi/PDDD2pDQK9fv8apU6cwePDgUj+z4fvnp8/7JicnBxcuXMC7774LOzs71X5FP/enT5/q/VdbcREREWCMqX2NGjVKY7/q1avjxYsXUCgU5W6TLxT6JiggIAAhISFqX02bNtXYb8yYMZDL5bC0tMSUKVNKPJ6bm5va95aWlqhatSpSU1ORmpoKhUKBH3/8US1EJBIJevXqBQBap/NxGW5wdnZW+97Kygo2NjaQyWQa2/Py8gBA735VrVpV7XupVArgzTBLWaZNm4Z58+ahX79+2Lt3Ly5cuIBLly6hUaNGOj3/bfHx8Th9+jSGDRumNh4/evRoAG9m9JTGxcUF1tbWqkArbuvWrbh06RL++OMPnfqSm5sLiUSiMfRXZMuWLahRowaGDh2q8Vh6ejoKCwtRs2bNUtvg++enz/smPT0djDGt78+izz1SU1M590VfMpkMjDFV/0wBzd6poHJycjB8+HD4+voiOTkZ48aNK/FGkaSkJNSoUUP1vUKhQGpqKqpWrYoqVaqoroImT56s9fne3t4a20QiET8vpAT69qs8tmzZghEjRuDrr79W256SkgInJyfOx9uwYYPWK8CAgAC0aNECmzdvxsKFC0sMYgsLC4SGhuLw4cN4/vy5WpAFBgYCgM5zzF1cXFBQUICcnBzY2tpqPB4bG4shQ4agXbt2OHbsGLy8vFSPOTs7w8LCAk+fPi21Db5/fvqoUqUKxGIxnj9/rvFYYmIiAJT4144hpKWlQSqVqv3VITS60q+gPvroIzx58gQxMTFYv349/vjjD3z33Xda942KilL7/vfff4dCoUDHjh1hY2ODTp064dq1awgKCtL4CyMkJETj6tkYDNWv0q78RSKR6vEi+/fvx7Nnzzi3U1hYiM2bN6NJkyZo3LixxuOjR4/G8+fPcfDgwVKPM2vWLBQWFuKjjz5SffCuD39/fwAocT6/l5cXzpw5A6lUinbt2qkNPVlbW6NDhw7Yvn17qTdx8fnz05etrS1atGiBmJgYtXOsVCqxZcsW1KxZE76+vkbrz4MHD1T/QJsKutI3QTdv3tQ6Bli3bl1Uq1YN69atw5YtW7Bx40bUr18f9evXx8cff4wZM2agTZs2aN68udrzYmJiYGlpia5du+LWrVuYN28eGjVqhMGDBwN4M3+7bdu2aNeuHSZOnIjatWsjKysL8fHx2Lt3L44fP26U1/02Q/SrYcOGqmOPHDkSEokEfn5+sLe3R+/evbFp0yb4+/sjKCgIV65cwTfffFPmsIY2Bw8eRGJiIjp27Ijdu3drPF40RLF+/XqNsevi2rRpg5UrV+KTTz5BcHAwJkyYgPr166uuZnfu3AkAcHBwKLU/HTt2BACcP38eQUFBWvdxd3fHqVOn0L17d7Rv3x5HjhxR3UG8fPlytG3bFi1atMDMmTPh4+OD5ORk/PHHH1izZg3vP7/yWLRoEbp27YpOnTph+vTpsLKywqpVq3Dz5k1ER0cb/K/UIkqlEhcvXsTYsWON0p7OBPwQmbyltNk7ANjatWtZXFwcs7a2ZiNHjlR7bl5eHmvatCmrXbs2S09PZ4z9b4bBlStXWJ8+fZidnR2zt7dn7733HktOTlZ7/sOHD9mYMWNYjRo1mEQiYdWqVWOtW7dmCxcuVNuv+GyPkvr/9uydt/cdOXIks7W11Xh+hw4dWP369Xntl7YZGrNmzWIeHh5MLBYzAOzEiROMMcbS09PZ2LFjWfXq1ZmNjQ1r27YtO3PmDOvQoQPr0KFDqcd8W79+/Uo9l0VflpaWGjNqtLl+/TobPXo08/b2ZlKplMlkMubj48NGjBjBjh07VubzGWOsXbt2rFevXmrbtP3cXr16xdq0acOcnZ3ZpUuXVNtv377NBg0axKpWrcqsrKxYrVq12KhRo1heXh6vPz8+3jdnzpxhoaGhzNbWlllbW7OWLVuyvXv3qu1Tntk7ujh27Jjq98+UiBhjzCj/uhCji4iIQGRkJF6+fGnUcUximnbu3IkhQ4bg8ePHap/xEMMYPnw4Hjx4UOIdvkKhMX1CzMSAAQPQrFkzLFq0SOiuVHr//vsvfvvtNyxZskTormig0CfETIhEIqxduxYeHh6qVTaJYTx58gQ//fQT2rZtK3RXNNDwDiGEmBG60ieEEDNCoU8IIWaEQp8QQswIhT4hhJgRCn1CCDEjFPqEEGJGKPQJIcSMUOgTQogZodAnhBAzQqFPCCFmhEKfEELMyP8HT38DzkInkagAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2710,12 +4544,12 @@ ], "source": [ "# note you can pass the filename argument to write to file\n", - "cinnabar_plotting.plot_DGs(fe.graph, figsize=5, xy_lim=[5, -5])" + "cinnabar_plotting.plot_DGs(fe.to_legacy_graph(), figsize=5, xy_lim=[5, -5])" ] }, { "cell_type": "markdown", - "id": "18619f57-fa05-4cfd-a970-8fb66db8b871", + "id": "999ee6ed-b2b2-4d79-aca4-de45d06bdaa5", "metadata": {}, "source": [ "We can also shift our free energies by the average experimental value to have DGs on the same scale as experiment:" @@ -2723,24 +4557,21 @@ }, { "cell_type": "code", - "execution_count": 50, - "id": "8dfc0f1f-e928-4d7a-8c13-9895ab8f37cb", - "metadata": {}, - "outputs": [], - "source": [ - "exp_DG_sum = sum([fe.results['Experimental'][i].DG for i in fe.results['Experimental'].keys()])\n", - "shift = exp_DG_sum / len(fe.results['Experimental'].keys())" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "id": "80a46f11-8e99-414b-b9ee-8cfe120fbe3c", + "execution_count": 125, + "id": "873fb9e5-5035-4c2d-9d16-620acdc6f94a", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/david/micromamba/envs/alchemiscale-client-user-guide-2024.09.26/lib/python3.12/site-packages/cinnabar/femap.py:35: UserWarning: Assuming kcal/mol units on measurements\n", + " warnings.warn(\"Assuming kcal/mol units on measurements\")\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAHxCAYAAAB3bisvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/tklEQVR4nO3dd1xTV/8H8M9NgLBBBAEXqChDxb0HOFHU1l1brdtq1dpHpa4+taI+rlprtdq67bC2zlZFrROxFVcVFTeiIiqWJUtCEnJ+f/BLSkiAJNwMyPf9euWl3Jzcc3Jzcz+56xyOMcZACCGElCAwdQMIIYSYJwoIQgghGlFAEEII0YgCghBCiEYUEIQQQjSigCCEEKIRBQQhhBCNKCAIIYRoRAFBCCFEIwoIQgghGlFAEEII0YgCghBCiEYUEIQQQjSigCCEEKIRBQQhhBCNKCAIIYRoRAFBCCFEIwoIQgghGlFAEEII0YgCghBCiEYUEIQQQjSigCCEEKIRBQQhhBCNKCAIIYRoRAFBCCFEIwoIQgghGlFAEEII0YgCghBi1n7++We4u7sjJydHZbqvry84jsN3332nMr1///7w9fU1YgtLt3z5cvTp0wdubm7gOA47d+5UK3Po0CF0794dXl5eEIlEqFevHiZNmoTk5GS1slKpFA0aNMBXX31lhNZTQBBCzNibN28wd+5czJ07F05OThrLbNy40cit0t769evx5s0b9O3bt9QyL1++RNOmTbF27Vr88ccfWLRoEU6dOoV27dohMzNTpay1tTU+//xzLF68GGlpaYZuPsAIIcRMffvtt0wkErGMjAy153x8fFijRo0Yx3EsJiZGOb1fv37Mx8fHiK0snUwmY4wxduXKFQaA7dixQ6vXnTx5kgFg27ZtU3uuoKCAubm5scjISD6bqhHtQRBCzNa3336L8PBwVKtWTePz9erVQ1hYmNnuRQiFQr1e5+LiAqDokFJJNjY2GD58ODZv3gy5XF6h9pWHAoIQYpaSk5Nx8+ZNhIaGlllu6tSpOHDgAF69eqV3XYwxyGSyMh+MMb3nr43CwkKIxWLExcVh5syZ8PT0xODBgzWWDQ0NxfPnz3Hjxg2DtokCghBili5cuAAAaNWqVZnl+vXrB29vb2zdulXvus6dOwdra+syH99//73e89dGp06dYGdnhxYtWkAsFuPKlSvw8PDQWFaxTP766y+DtsnKoHMnhBA9vXjxAgBQo0aNMssJBAJ88MEH+O677zBv3jy96mrVqhWuXLlSZpl69erpNW9t7dy5E69fv8a9e/ewbNkyvPXWWzh16hSqV6+uVlaxTJ4/f27QNlFAEELMUn5+PgDA1ta23LITJ05EZGQkjhw5olddjo6OaN68eZll9D2foK2AgAAAQPv27dGjRw/Ur18fq1evxvLly9XKKpaJYhkZCh1iIoSYJXd3dwBARkZGuWVr1KiBIUOGYMOGDXrVZQ6HmIqrU6cOatWqhbi4OI3PK5aJYhkZCu1BEELMUmBgIADg0aNHaNasWbnlP/zwQ4SEhKBRo0Y612XKQ0yMMXAcpzItKSkJycnJ6NGjh8bXPHr0CAAQFBRkkDYpUEAQQsxS27ZtYW9vj4sXL5Z6NU9xXbp0QZMmTXDr1i34+PjoVJeTkxNat26tb1NLde7cOaSmpiIxMREAcPXqVTg6OgIAhg4dCgDo3LkzunbtitatW6N69ep4+PAhVq1aBZFIhBkzZmicb2xsLAQCQblXeFUUxwx97RYhhOhp7NixuHDhAh48eKD2nK+vLwICAnD8+HHltG+//RZTp06Fj48Pnjx5YsSWahYaGopz585pfE6x6Y2MjMSxY8eQmJiIrKwseHt7o0OHDli4cKFyL6qkTp06oVq1anqfc9EWBQQhxGxdv34dLVu2xJ9//olOnTqZujlm4eHDh2jUqBGOHz+OsLAwg9ZFAUEIMWsjR45ERkYGjh07ZuqmmIUxY8bg+fPnOHXqlMHroquYCCFm7YsvvkD79u3VenO1RDKZDA0bNjRa1yK0B0EIIUQj2oMghBCiEQWEFhQDk3AcB2tra9SrVw+jRo3Cw4cPlWWio6OVZW7fvq2cnpmZCRsbG7XBQi5duoTw8HB4eXnBwcEBgYGBmDBhAp49e6Yss3PnTuU8Sz7at29vlPfOl5SUFLz77rtwdXWFk5MT3n77bd6uMpk2bRo4jsOUKVPUntu3bx9atGgBW1tbuLu747333qtw9wTFP2uO43D16lW96i3t8zXE5Zb64vNzO3PmDEaMGIF69erBzs4ODRo0wIwZM5Cenq5Srvj3reSjT58+PLyr0vG9nspkMqxevRqNGzeGra0tatSogT59+qgdLtN2Pb169arK8oiOjta7bVoxeIfiVYCPjw9r3749i42NZTExMWzt2rXM1dWVubi4sCdPnjDGGDt79iwDwFxcXNjChQuVr922bRtzdXVV6Qv+xIkTTCgUsrCwMHbgwAF24sQJ9tVXX7HmzZuzs2fPKl+7Y8cOBoBt3bqVxcbGqjzi4+ONuQgqRCqVsuDgYFa7dm22Z88e9vvvv7OAgABWr149lpubW6F5X7x4kXl4eDAAbPLkySrPnT59mgFgQ4cOZceOHWObN29mbm5uzN/fn4nFYr3rVHzWGzZsYLGxsWrvQdt6FZ/vgQMHVD7bW7duKctIJBI2bdo05uLiwurUqcO2b9+ud7t1xffnNmLECBYWFsa2b9/OoqOj2aZNm1iNGjVYo0aNWF5enrLctWvX1Nb3TZs2MQBs48aNfL5FFYZYT0ePHs2sra3Z/Pnz2ZkzZ9hvv/3GPv74Y5aenq4so8t6mpuby2JjY9mGDRsYAJXthSFQQGjBx8eHhYWFqUzbvn07A6ActEOx0Xj//fdZQECAslxYWBgbM2aMSkD06NGD1atXj0mlUrW6CgoKlP9XbEBiY2MN8K6M5+eff2YA2PHjx5XTrl+/zgCwr7/+Wu/5Kr7Q3377rcaACA0NZT4+PspBWxhjbPfu3QwA27lzp971Kj7r0r6c2tar+HwfP35cal0rV65kfn5+LCoqim3fvp3Z29uzq1ev6t12XfD9uf3zzz9q0/bs2cMAsO+//77M106dOpXZ2tqyzMxMnevVFt/vNyYmhgFg69evL7OcPutpeesgX+gQk57atWsHoGi4wOJ69eqFV69e4ebNm0hPT0d0dLTyjkmF58+fw93dHVZW6jey29jYVKhd9+7dw7179yo0D74dO3YMzs7O6NWrl3Ja8+bN4efnh6NHj+o93y+//BJCoRAffPCBxufj4+PRvn17lU7WFG04ceKE3vWWh896z58/jxkzZiA8PBzjxo1Dnz59Sr3xqjg+1gO+PzdNXVc3bdoUwL89t2qSn5+Pn3/+GYMGDYKrq6vO9WqL7/f7yy+/wMHBAZMmTSqznKnWU21QQOhJcXywZF8o1tbWePvtt7Fnzx4cOHAA7du3h5eXl0qZli1b4sqVK1i4cCGePn1abl2FhYVqg5eUNpJUYGBgqXdfmsq9e/fQqFEjCAQCSCQSiMViAIC/vz/u3r2r1zwfP36MxYsX45tvvoFAoHk1lkgksLa2VpmmCODi54/4pmu9HTp0gFAohKenJz744AOVzun8/f1x4MABpKSkIC4uDn/++aey108AuHPnDlJSUtTmycd6YIjPraTY2FgAQIsWLUots2/fPrx+/Rrjxo3jpc7S8P1+4+LiEBQUhF9++QW+vr6wsrKCv7+/Wqd/plpPtUEBoSX2/yNOicViXL9+HXPnzkWXLl0wceJEtbLDhg3Dnj178Ouvv2L48OFqz69cuRItW7bEkiVL4OvrC19fX3z88celrgydO3dW61lywYIFvL9HQ8nMzFT+8mvZsiXq16+PN2/ewNXVVW1Qdm19+OGHGDJkCDp27FhqGT8/P9y8eVNl2uXLlwEAr1+/1qtebWhbr7e3N5YsWYKdO3fixIkTmDJlCn766SeEhoaioKAAALBgwQIUFBTA29sbLVq0wLBhw9C6dWt8/fXXaNu2LaZOnapyYQOfDPG5FZeeno7PPvsM7du3R+/evUstt3XrVtStW7fUjuv4wvf7TUtLw7NnzzB37lwsWrQIx48fR4sWLTB27Fj88ccfynKmWk+1QZ31aenEiRMqKd+7d28cPHgQdnZ2amV79eqFtLQ0PH78GLt27VL7AteuXRuXL1/GuXPncOTIEZw7dw7r1q3D1q1bcfToUYSEhKiU37FjB5o0aaIyzdvbW2M7mZnf1lK9enXI5XIIhUKNvVhq4+eff8aFCxdw//79MstNnjwZkydPxv/+9z9MmTIFSUlJmDFjBpydnUvd6+CDtvWGhYWpdJXQo0cPNGjQAGPGjMHu3bsxduxYuLm54a+//sLdu3dx+vRp/PHHH+jduzfeeecd7Nu3D3Xr1tXYBr7XAz4+t+KkUimGDx+OgoIC7N69u9T5PXjwADExMfjss88M+pmVxMf7lcvlSElJwf79+5WdDYaGhuLChQtYtWqV8rM31XqqFYOe4agifHx8WIcOHdiVK1fY+fPn2cyZMxkANmHCBGUZxUmj3bt3M8YY+9///sdmzJjBGGPsypUrKiepNbl8+TJzdHRkHTt2VE6rKiepW7duzVq3bq02vV+/fqxu3bo6zSs3N5d5enqyyMhIlpOTo3woPo+cnBxWWFjIGGNMJpOx6dOnMysrKwaAWVlZsXnz5rHOnTuzTp066f1+yjtBWJF6c3NzGcdxbOrUqYwxxl6+fMkmTpzIAgMD2axZs9i1a9fYN998w7y9vZmLiwubMWOGxosd+MDn51acXC5n7733HnN0dGSXLl0qs+wnn3zCOI5jjx490rs+bfH9flu1asUAqJ1YHzRoEPP29lb+rc/6YqyT1BQQWtB0FdOoUaMYx3Hs8uXLjDH1gChOm4BgjLHBgwezatWqKf+uKgHx/vvvMxcXFyaXy1Wm+/n5qS3X8jx+/JgBKPNx5coVlde8fv2a3bx5k6WlpTGpVMqqVavGpk+frvf70fbLqU+9eXl5jOM4Nm3aNMYYYzk5OezEiRPK0IuJiWFOTk7shx9+YEePHmUBAQFs5cqVer+XsvD5uRU3ffp0Zmtry06fPl1mOYlEwjw9PVlISIjedemC7/f77rvvagyIgQMHslq1aqmV12V9oauYzNzKlSshEomwcOFCnV+r6aSiXC7Ho0ePyh1/tzzmeBVTnz59kJWVpdK52M2bN5GQkIDw8HCNryntfXh7e+P8+fNqDwB4++23cf78eZWTuADg4uKCpk2bonr16vj++++RmZmJd999l8d3qJk+9f72229gjClvhHR0dESvXr2UhxouXbqEXr164f3330ffvn3x4Ycf4s8//1SbDx/rAZ+fm8KCBQuwadMm7N27F927dy+z/sOHD+PVq1cYP358uW1V3FxXkZva+H6/iiuRzpw5o5wmlUpx9epVtUPGgOnW0zIZNH6qCE17EIwx9vHHHzMA7OLFizrtQfTt25f169eP7dixg507d44dPHiQDRgwQHnzlUJZN8qV/JWsgP//FW1OFPcr1K1bl+3du5f9/vvvLDAwsMwbkHR9H9BwH0RKSgpbsGABO3bsGDtz5gz79NNPmY2NDRs/fnyF3k95v960rbd79+5s6dKl7PDhw+zkyZMsMjKSOTg4sDZt2jCJRKJx3oo9iJ07d7IjR46wgIAA9r///U+tHB/rAd+f26pVqxgANnv2bLX1OSEhQa183759mZOTk1Y3qdWpU4cBYM+ePdPtTRbD9/sVi8WsUaNGzMPDg23dupUdP36cDRkyhAFg58+fV5bTZz2lQ0xmpLSASElJYfb29qxPnz46BcRvv/3GBg0axHx8fJhIJGI1atRgXbt2ZQcPHlR5nSIgND1cXFw0ttUcA4KxomPp77zzDnN2dmaOjo5swIABLDExsdTyfAREeno669atG3N1dWUikYgFBQWxL7/8UuWGJH2U9+XUtt6PPvqINWjQgDk4ODArKytWr149FhERwXJycsqs/5tvvmG1atVibm5ubOrUqSo3VyrwtR7w+bmFhISUuj6PGTNGpeyzZ8+YQCBQOc9XmvT0dMZxHOvcubNO700TvtfTZ8+esXfeeYdVq1aN2djYsBYtWrD9+/ertV/X9dRYAUG9uRKio+joaHTr1g2nTp1CSEiIxhseifEcPHgQgwcPxrFjxwzeV5M5kMlkOHfuHHr27ImzZ88adNhROgdBiJ569uwJa2trjZ31EeM5d+4cWrZsaRHhcPXqVVhbW6Nnz55GqY/2IAjRUU5Ojso9GEFBQbC3tzdhi4ilePPmDe7cuaP829/fH05OTgarjwKCEEKIRnSIiRBCiEYUEDzRZcCg0NBQtWv1AaB///7w9fVV/k0DBml26NAhdO/eHV5eXhCJRKhXrx4mTZqE5ORklXKGGniGBgx6ote8tB0wiO96dcFnvdp+vrqsp8YeMIguv+CZi4sL9uzZg8jISABFV1g4ODhUqNOtrVu3onHjxirTDHnckW8ymQxhYWHIyMjAli1bIBKJMHfuXHTv3h23bt2Cg4ODTvN7+fIlmjZtig8++ABeXl54+vQpFi1ahKNHjyI+Ph7VqlUDULTsFZ3eKdy8eROTJ0/G22+/XeH3tWHDBrRs2VKt19QzZ85g2LBhGDp0KJYvX45nz55h3rx5uHbtGm7cuAGRSKRS/sCBAyp9azk6Oir/L5VKMXPmTPz0009wdnZGZGSkwXs1VeD7c9uyZQtev36NhQsXon79+rh//z4+++wz/PHHH7h+/bryPA7f9WrLUPWW9fkCuq2ngYGBiI2NxbVr1zBt2jS92qMTg15Ea0F0GTAoJCSE+fv7q82jX79+zMfHR/l3Velqw1ADBhV38uRJBoBt27atzHJ8DDxDAwYZdsAgY6wvmvBdrzafb2nKW0+pq41KSpsBgwzJHLvaMNSAQcW5uLgAKPrFXRpjDTxDAwZppu2AQcZYXzQxVb0lGWs91QYFBM+0GTBIVzRgkGaFhYUQi8WIi4vDzJkz4enpqexWWRNjDTxDAwZpT9OAQcaoVxND1VvW56uJsdZTbVBAGEB5AwbpigYM0qxTp06ws7NDixYtIBaLceXKFY2/UhWMNfAMDRikndIGDDJ0vaXhu15tPl9NjLWeaoNOUhtAeQMG6YoGDNJs586deP36Ne7du4dly5bhrbfewqlTp1C9enW1ssYceIYGDCqftgMG8V2vtvioV5vPtyRTDZBUGtO3oAqytrZGREQEpk6dCk9PT7Xny1rZNK0UAQEBaN26tcqjVq1avLbZkFxdXZW/nM+dO4c7d+5AJBIhKyurQsdYAwIC0L59e4wdOxanT59GfHw8Vq9erbHs1q1bwXGcxi8l3yZMmIDp06dj0aJFcHd3R9u2bfHWW28hODgY7u7uZb52yJAh4DgOV65cAVB02eUHH3yAoUOH4smTJ1iyZAkmTZqE9evXIzg4GB9//DFkMplB3oehPjfGGMaOHYvLly8jKipK5dJuQ9ZbHmPUW/LzLcmY66k2KCAMZMGCBfj66681Pmdvb6/xHIJcLq+SXTYEBgbi4cOHar9q79+/z9v5kjp16qBWrVqIi4tTe04qleKHH35A165dUb9+fV7qK4tQKMT69euRlpaGmzdvIiUlBUuWLMHt27dVjrVrovjxoPjX0dERw4cPR3x8PL788kvk5uZi/vz5WLlyJXbv3o0TJ05gzZo1BnkfhvrcZsyYgQMHDuD3339H27ZtjVZveYxRb8nPtzhjr6faoIAwgXr16iElJUXlOCRjDImJiahXr16F5m2OVzHxPRCLpsMnSUlJSE5ORs2aNdWe02XgGT7RgEHqtBkwSJ96zXHAIE1Kfr7FmWo9LZNBL6K1ILqMB3H9+nVmY2PDunfvzvbt28cOHTrEhgwZwjiOY0ePHlW+jgYM0vw+OnbsyObNm8f27dvHzp49yzZv3sz8/PyYvb09i4uLUyuvy8Az2qABgww7YJA+9ZrjgEG6fr66rKc0YFAlo+uY1FeuXGHh4eHMw8ODubq6spCQEHby5EmV19GAQZrfx6JFi1i7du2Yh4cHs7GxYT4+PmzEiBHszp07amV1GXhGWzRgkOEHDNKlXnMdMEiXz1fX9ZQGDCLETNGAQeaFBgwKNVhddA6CED3RgEHmgQYMMhzagyBERzRgEDEVGjCIEEKIWaBDTIQQQjSigCCEEKIRBYQJFB9BytraGvXq1cOoUaPUevrUZQQuc8fnSF26jMAVGxuL3r17w93dHa6urujYsSMOHz5cofdCI8o94WXe06ZNA8dxmDJlisp0U673fL9fvtcDY48oZ34XzFsAHx8f1r59exYbG8tiYmLY2rVrmaurK3NxcWFPnjxRlhsxYgQLCwtj27dvZ9HR0WzTpk2sRo0arFGjRiwvL8+E70A3ihuQateuzfbs2cN+//13FhAQUOYNSGW5du2a2o1WmzZtYgDYxo0bleXu3r3L7O3tWadOndihQ4fY8ePH2VtvvcU4jmN//PGH3u9HcQ36hg0bWGxsrNp7OH36NAPAhg4dyo4dO8Y2b97M3NzcmL+/PxOLxcpyivtcDhw4oPJebt26pSwjkUjYtGnTmIuLC6tTpw7bvn273u3WFd+fW3EXL15kHh4eDACbPHmyynOmWu/5fr98rgcKubm5LDY2lm3YsIFulKuqfHx8WFhYmMq07du3MwAsMjJSOU3bEbjMnTFGCNM0AtfSpUsZAPb06VPltPz8fGZra6t2Y5YuaES5in1uig3xt99+qzEgTLXe8/1++VwPSqIR5SxMu3btABSNt6yg7QhcxZljX0yGHqmrtBG4FL2cFr8M0NbWVm1MaL7RiHJl+/LLLyEUCvHBBx9ofF6f9Z4PfL9fPtcDU6GAMBOK45JBQUFlltM0AldxljSinEJpI3C9//77cHFxwZw5c5CSkoL09HQsXLgQMpkMM2bMqHC9paER5Ur3+PFjLF68GN98841O4x2Ut97zge/3y+d6YCrUR4CJMMaUw4fevXsXc+fORZcuXTBx4sRSX1PaCFzmLjMzU9nnf8uWLZGRkYGEhATeRggrbQSu+vXr48KFCxg8eLBygCVPT0/88ccfaNmyZYXrLY2uI8q1adMGVlZWiImJwRdffIGLFy/iypUrEIlEWLBgAfr3769s/7Rp05Qjyu3atQv29vb44osvKjysrSaG+Nw+/PBDDBkyBB07dtT6NcZa7/l+v3yuB6ZCAWEiJ06cUPl10bt3bxw8eBB2dnYay2s7Ahcz8/se+R4hrKwRuJ48eYK3334b9evXx5o1a2BtbY2dO3ciPDwcR48eRadOnSpUd2loRDnNfv75Z1y4cEHlLvTyaLve842P98vnemAyBj3DQTTy8fFhHTp0YFeuXGHnz59nM2fOZABK7clRLpez9957jzk6OrJLly4ZubUV17p1a9a6dWu16f369WN169at0Lw/+eQTxnEce/Tokdpz7733HvP09GT5+fnKaXK5nLVs2ZK1bdtW7zrLO0Eok8nY9OnTmZWVFQPArKys2Lx581jnzp1Zp06dypx3bm4u4ziOTZ06lTFW1LvoxIkTWWBgIJs1axa7du0a++abb5i3tzdzcXFhM2bMYFKpVO/3UhY+P7fc3Fzm6enJIiMjWU5OjvKhWO9zcnJYYWGhymuMvd7zvZ7yuR6URN19V2GarmIaNWoU4ziOXb58Wa389OnTma2tLTt9+rSxmsir999/n7m4uDC5XK4y3c/PT2056EIikTBPT08WEhKi8fnAwEDWtWtXtenjxo1jdnZ2eter7Zfz9evX7ObNmywtLY1JpVJWrVo1Nn369DJfk5eXxziOY9OmTWOMMZaTk8NOnDih3HgqxoP44Ycf2NGjR1lAQABbuXKl3u+lLHx+bo8fPy61q2/Fo+QYJ8Ze7w21nvKxHpREVzFZmJUrV0IkEmHhwoUq07UZgas4c7yKyVAjdZU3Ale1atVw79495OfnK6cxxhAXF6fxShm+0Yhy//L29sb58+fVHgDw9ttv4/z58yon33Vd7815RDk+1gOTMWj8EI007UEwxtjHH3/MALCLFy8yxrQfgas4mOGAQXyP1KVQ3ghcimvOe/TowX7//Xd27Ngx9u677zIA7Msvv9T7/dCIchX73EqWL3kfhD7rvTmOKGfI9YAOMVVhpQVESkoKs7e3Z3369GGM6TYCl4I5BgRj/I7UxZj2I3BFRUWxLl26MDc3N+bi4sLatm3Ldu3apff7YIxGlKvI56apfMmA0HW9N9cR5Qy5HtCIcoSYKRpRzrzQiHKhBquLzkEQoicaUc480IhyhkN7EIToiEaUI6ZCI8oRQggxC3SIiRBCiEYUECagGCCEr4FXKgO+B2LRdiAgGjCoYvj+3GQyGVavXo3GjRvD1tYWNWrUQJ8+fZCTk6MsY8rlYooBg3QZAMvYAwbR5RfE4GQyGcLCwpCRkYEtW7ZAJBJh7ty56N69O27dugUHBwed5nfv3j307NkTLVq0wI4dO2BjY4ONGzfi7bffxvHjx5UdumlbTl8bNmxAy5Yt1XpNPXPmDIYNG4ahQ4di+fLlePbsGebNm4dr167hxo0bap2vHThwQNkZH1B0c5yCVCrFzJkz8dNPP8HZ2RmRkZFqvdYaCt+fGwBMmDABu3fvRkREBHr16oXs7GycPXsWUqlUrWxZy8UQ+H6/2q4HBw8eREFBgcprb968icmTJ+Ptt99WmR4YGIjY2Fhcu3YN06ZNq9gb1oZBL6IlGukzQEhlxvdALNoOBEQDBlUM359bTEwMA8DWr19fZjlTfT9MNWCQJpoGwCqOutqoxDiOw6JFi7Bjxw4EBARAJBKhbt26OHTokEq5p0+fol+/fnB0dISPjw+++uortXn9/fff6N27N5ycnGBvb4+uXbsiJiam1LrNsasNvgdi0XYgIBowyLwGDPrll1/g4OCASZMmVahdhmIuAwaVNgCWKVBAGEhUVBRWrFiBefPm4ejRo5gxYwZyc3NVykyaNAl9+/bFwYMH0a5dO8yaNQsXL15UPp+QkICQkBCkpKRgx44d2L17N2QyGXr27Im///5bY72WMGCQtgMB0YBB5jVgUFxcHIKCgvDLL7/A19cXVlZW8Pf3x/fff6+xvLEH0DH1gEEKpQ2AZRIG3T+xUACYi4sLS0tL0/i8Yhd63bp1ymk5OTnM2tqaffbZZ8pp06ZNY0KhUOUQSUZGBrO3t2fDhg0rtW5z+1j9/PxYz549GWOMNW7cmHl7e7O8vDw2cuRI5uTkpNc8b9++zfz9/ZXv19PTk/355596l9NFebv3LVu2ZMHBwSrTTp06xQCwhg0bKqcdP36cLVmyhB0/fpydOnWKLVy4kNnZ2bGmTZsqB7VPT09nHTp0ULZ/2rRp7NWrV2zt2rWsTZs2LCQkRGMPwHysB3x/bo0aNWJeXl7M09OT7dixg508eZK98847aod1tFkuhsD3+9V2PSipa9eurG7dumrdnxdHfTFVYgDYqFGjSn1eERBxcXEq02vXrs0mTpyo/LtVq1ZqKxhjjPXs2ZPVqVOHvwYbWPEvXteuXVlgYCATi8XsvffeY87OzjrP7/Hjx8zPz4/17t2bRUVFsRMnTijnVXzjr205XZX35dy0aRMDwJYuXcrS0tLYtWvXWFBQEHN2dmb+/v5lzvv7779nANiOHTuU0+RyObt9+zZbt24d69evH2vWrBlbtmyZyg8HQ+D7c/Pz82MA2P79+5XTpFIpq1OnDuvevXuZr9W0XPjG9/vVZz24f/8+A6DyQ1ETCohKDAD79NNPS32+tJNwPj4+KidPGzRowLp166b2+hEjRjBHR0e+mmtwfA/Eou1AQDRgUMXw/bm1atWKAVA78Tpo0CDm7e1d5mvLG0CHD+YwYFBZA2AVRyepKzk+OnBzdXVFWlqa2vS0tDSTn7zSRWBgIB4+fKg2DOb9+/f1Ok5+/fp1+Pv7w9bWVjmN4zg0a9YMt27d0rkc34RCIdavX4+0tDTcvHkTKSkpWLJkCW7fvo0WLVqU+VrF0JaKfx0dHTF8+HDEx8fjyy+/RG5uLubPn4+VK1di9+7dOHHiBNasWWOQ98H359aoUSON0xljasPFllRyuRgC3+9X1/VAKpXihx9+QNeuXVG/fn293wefKCDMWLt27XDnzh0kJSUpp2VmZuLChQulDiRijlcx8T0Qi7YDAdGAQeYzYBDw7xU8Z86cUU6TSqW4evUqmjRpUmZbyhtApyoMGFTeAFgmYdD9EwsFgH3++eelPq/tIab79+8ze3t71rRpU7Z3717222+/sQ4dOjArKyuNJyYVdZvbx8r3QCzaDgREAwaZ14BBYrGYNWrUiHl4eLCtW7ey48ePsyFDhjAA7Pz588py+iyXyjxgkEJ5A2AVR+cgKjG+AoIxxi5dusR69OjBHBwcmJ2dHevUqRM7c+ZMmXWbW0Awxv/AM9oOBEQDBlWMIQZ6euedd1i1atWYjY0Na9GihcpJa8Z0Xy6VfcAgxrQfAEuBBgwixEzRgEHmhQYMCjVYXXQOghA90YBB5oEGDDIc2oMgREc0YBAxFRowiBBCiFmgQ0yEEEI0ooAghBCiEQUEIYQQjSggCCGEaEQBQQghRCMKCEIIIRpRQBBCCNGIAoIQQohGFBCEEEI0ooAghBCiEQUEIYQQjSggCCGEaEQBQQghRCMKCEIIIRpRQBBCCNGIAoIQQohGFBCEEEI0ooAghBCiEQUEIYQQjSggCCGEaGRl6gZUBXK5HC9evICTkxM4jjN1cwghpFSMMeTk5KBmzZoQCMreR6CA4MGLFy9Qp04dUzeDEEK09uzZM9SuXbvMMhQQPHBycgJQtMCdnZ1N3BpCSEmFhYVIS0vD69evYW9vDysr42/6ZDIZMjMz8ebNG9jb2xv1aINEIsF///tftGrVCv3790dYWJhyu1UWCggeKD5oZ2dnCghCzExhYSFSU1Mhk8ng6elpsnDIyMgAx3GoUaOG0Q9FR0VF4cKFC7h27Rq6desGAFq1gQKCEFJlKcIhMzMTDg4OJg2HvLw8ODg4mOQ8ZXh4OJKTk9G8eXPUqFFD69dRQBBCqiRLDwepVAqhUAiBQACO4zB58mQAQG5urtbzoMtcCSFVjqWHg0QiwaxZsxAZGQm5XK73fCggCCFViqWHAwDcuHEDf/31F44fP45Hjx7pPR86xEQIqTIoHIq0adMGy5cvh6urKxo2bKj3fCggCCFVgqWHg0QigVQqhYODAwAgLCyswvOkQ0yEkEqPwkGCiIgITJ06FXl5ebzNlwKCEFKpWXo4AEBycjKuX7+Oe/fuISEhgbf50iEmQkilReFQpH79+ti0aRNycnLQrFkz3uZLAUEIqZQsPRwkEgkyMjLg5eUFAAgKCuK9DjrERAipdCgcis45jB07FsnJyQarhwKCEFKpWHo4AEV3Qz979gyZmZl4+fKlweqhQ0yEkEqDwqGIm5sbNm/ejKSkJLRq1cpg9Vj8HsT169cxcOBA1KxZE/b29ggICMDixYvx5s0bUzeNEFKMpYeDRCLBvXv3lH97eHgYNBwACw+IO3fuoGPHjnjy5AnWrl2LI0eOYMSIEVi8eDHeffddUzePEPL/KBz+Pedw9epVo9Vr0YeYfv75Z4jFYuzfvx8NGjQAAHTv3h0vX77E5s2bkZmZiWrVqpm4lYRYtsoWDgkJCZBKpbC2toafnx8v9TPGIJPJwBhDYWEhL/PUhkUHhLW1NQDAxcVFZbqrqysEAgFsbGxM0SxCyP+rbOEAFAWEWCyGra0tbwEhEonw1Vdf4eHDh2jSpAkv89SGRR9iGjNmDFxdXfHhhx8iMTEROTk5OHLkCDZt2oRp06Yp+zQpqaCgANnZ2SoPQgi/KmM48EkikeD8+fPKv0UikVHDAbDwgPD19UVsbCzi4+PRoEEDODs7Y8CAARgzZgy+/vrrUl+3fPlyuLi4KB916tQxYqsJqfosPRykUikiIiLw0UcfYf/+/Uart6QqExDR0dHgOE6rR1xcHADgyZMnGDBgAKpXr459+/bh3LlzWLVqFXbu3ImJEyeWWtf8+fORlZWlfDx79sxI75KQqs/SwwEArKys4OPjA5FIhNq1axu1bpV2mKxmnvn7+2PLli1ala1bty4AYN68ecjOzkZcXJzycFLXrl3h7u6O8ePHY/To0QgJCVF7vUgkgkgk4q/xhBAAFA4KHMdh1qxZGDp0KHx8fIxev0KVCQhvb+8yf/VrEhcXh6CgILVzDW3atAEAxMfHawwIQgj/LD0cJBIJfv/9dwwZMkQ5jrQpwwGoQgGhj5o1ayI+Ph65ublwdHRUTo+NjQUAk+7aEWJJLD0cGGOYM2cOoqOj8eTJE3zyySdGq7ssVeYchD7+85//IC0tDb169cKePXtw5swZLFu2DLNmzUJQUBD69u1r6iYSUuVZejgARYeUunfvDjs7O3Tt2tWodZfFovcg3nrrLZw+fRorVqzAxx9/jKysLNSpUweTJ0/G/Pnz6T4IQgyMwuFfb731Fjp37gw3NzeT1K+JRQcEAHTr1g3dunUzdTMIsTiWHg4SiQTbtm3D2LFjYWdnBwBmFQ6AhR9iIoSYRlUNh8JCILfACflSRzBWdtmFCxdi06ZNmDNnToXrNRSL34MghBhXVQ2HzGxg+0EOaa+7AACq2aeihxSwsdZcfsSIEbh8+TJGjRpV4boNhQKCEGI0VTUcAGDPHxwysv79O/ONO05dBMK7aN6VaN68OaKiopSHl8wRBQQhxCgqczgkJCQgISGhzDJPX4aBMWGxKRxu3MmEIC9WWfeRI0cQGhoKV1dXldf6+fnx1rEfnyggCCEGV5nDASjqG0ksFpdZxlpQAEmhHQDFfOUQcnnK10VFReHKlStITEzElClTIBD8ewpYKpXq+nb0JpFItC5LAUEIMajKHg5A0dAAtra2ZZZp6HkHt1+0AiAHAAi4QjTwTIStqOh1PXr0QFJSEgYMGAB7e3u1+RuDRCKBXC7XujzHWHnn2kl5srOz4eLigqysLDg7O5u6OYSYjaoQDrpIfgUcPvkI8kIJarm9wsABoSrPFxYWQigUan6xgUkkEhQWFsLGxgatWrXSantFl7kSQgzC0sIBAGp7AvXcH6KWy31YcbmYP38+bt68qXze1OHg5uZW6jg3mlBAEEJ4Z4nhUNLZs2dx7NgxzJw5E/n5+Uatu7ji4VC8zzlt8P6pyeVyiMVitWNshBDLQOFQJCQkBAUFBXj//fdNdilrRcIB4CEgxGIxfvnlF0RFReGvv/7CP//8A8YYRCIRgoKC0L17d4wcORLNmjWraFWEEDNn6eFQ/JSujY0N1q9fb7K+nSoaDkAFAiI/Px+rVq3C119/jaysLAQEBKBHjx6oUaMGbG1tkZGRgcTERGzZsgVffvklOnbsiFWrVqFDhw76VkkIMWOWHg4SiQRz5syBh4cHGjduDACVOhyACgREw4YN4eDggP/+978YOXIkPD09NZZjjOHs2bPYsWMHunXrhm+++UbngX0IIebN0sMBAA4dOoTo6GjY2NjAx8en3MtiDYWvcAAqEBCLFy/GmDFjyj0rr+jnvHv37oiMjERSUpK+VRJCzBCFQ5HBgwfj8ePHsLOzq/CGWV98hgNA90Hwgu6DIJbK0sNBKpXCyspKpc7jx49DLBbD1tYWffr0MVpbtA2HnJwcBAQE0H0QhBDDsfRwkEgkmDVrFtasWQNT/87me89BgbeAkMvl+OGHH/iaHSHEjFl6OADAxYsXcf78eezZs8ekh84NFQ4AjwEhlUoxbtw4vmZHCDFTFA5Funbtiv/+979Yt24dfHx8jF4/YNhwAHQ8Sb148eJSnzNmb4SEENOw9HCQSCTK+7wAYOjQoWpl/Pz8IJVKDd4Bn6HDAdAxIJYuXYpBgwZpPLFRWFjIW6MIIeaHwkGCiIgIFBYWYs2aNcqQKMkY4zoYIxwAHQOiadOmGD16NPr166f2nFgsxs6dO/lqFyHEjFh6OABAYmIiLl++DMYYEhISlDfDGZuxwgHQMSAmTZpU6p6CtbU1Pv/8c14aRQgxHxQORQICArB+/XrI5XKLCAeA7oPgBd0HQaoqSw8HiUSC3NxcuLm5Ga3OstrCRzjQfRCEkAqjcCg65zBhwgSkpqYard7S2mLMPQeFCgcEHVYipOqx9HAAgIyMDDx48AAvXryosvc5lKfCh5js7e3x5s0bvtpTKdEhJlKVUDj8Kzk5GS9fvkSbNm1MUr8hwsGoh5joFAYhVYelh4NEIsHjx4+Vf9euXbtKhYOuKhwQpkp2Qgi/KBwkmD17NsaMGYO7d+8ard7S2mLqcADoJDUhBBQOQFFvEFlZWSgoKEB2drZR6y7OXMIBMMCY1ISQyoXCoYiDgwM2btyIR48emWyIZHMKB4DOQRBi0Sw9HCQSCa5evar829HRkcKhmAoHRKdOnfhoByHEyCw9HKRSKSIiIjB58mScOHHCaPVqYo7hAPAQEKdOneKjHYQQI7L0cAAAgUAAV1dXWFlZwcXFxah1F2eu4QBQVxu8oPsgSGVC4fCvwsJCJCYmomHDhiap3xThoMt9EHqvGbreWVi3bl19qyKE8MTSw0EikeDkyZMIDw8Hx3EQCoUWFQ660nvt8PX11emDpfEiCDEtSw8HuVyOiIgIxMTEIDk5GZMnTzZa3SVVhnAAKhAQ27dvp5vkCKkkLD0cgKJzDm3btsXly5fRvHlzo9ZdXGUJB4DOQfCCzkEQc0bhoOrVq1fw9PQ0Sd3mEA4pKSlo1aqVabr7fvDgAWJjY/Hw4UO+Z00I0VFlC4eEhATcvXsXCQkJvNQtkUiwY8cOSKVS5TRLDofc3FwIBNpv9nkLiL1798LHxweBgYHo3LkzAgIC4OPjg3379vFVBSFEB5UtHICigLh//z5vAbFgwQJ8/fXXWLhwIS/z05e5hINQKNQpIHkJiKNHj2LEiBFwcXHBihUr8MMPP2D58uVwcXHBiBEjcOzYMT6qIYRoqTKGgyEMGjQIzs7OGDhwoNHrVjCncPDy8oKDg4PWr+PlHESnTp3g7OyMqKgold0Xxhj69u2LnJwc/PXXXxWtxmzROQhiTipzOBw/fhxisRi2trbo06cPL23JycmBk5MTL/PSlTmGgy7bK172IOLi4jB16lS1Y1scx2Hq1Km4ceMGH9UQQspRmcOBDxKJBKtXr0ZmZqZyGoWD7nsOCrwEhFAohEQi0ficVCrV6aQIIUQ/lh4OALBs2TL89NNPmDFjhkk7Eq0K4QDwFBBt2rTBqlWrkJ+frzK9oKAAq1evRrt27fiohhBSCgqHImPHjkXt2rUxffp0k11KW1XCAeBpPIjIyEj06NED9evXx7Bhw+Dl5YWXL1/iwIEDSE9Px5kzZ/iohhCiAYXDv3x9fXHw4EFYW1ubpP6qFA4ATwHRuXNnnDhxAvPmzcOGDRvAGINAIEC7du2we/dudOzYkY9qCCElWHo4SCQSLFmyBKNHj1b2qUThwE84ADyOKBcSEoLY2Fi8efMGmZmZqFatGuzt7fmaPSGkBEsPBwDYsGEDDh8+jKtXr+L333+HjY2NUetXqIrhABhgyFF7e3sKBkIMrCqGA2PAG4kD8gocILTWfNFLSRMmTMCtW7cwefJkCgeewwHgMSB+++037Nq1C0+fPoVYLFZ5juM4utSVEJ5UxXCQM+DgaQ5/Pw0FAAhTZQh8BvjVKft1zs7O2LZtG52QNkA4ADxdxfTFF19g8ODBiImJgbW1NapXr67ycHNz46MaQixeVQwHALh+j8Pfd//dHBUyIX4+KoBUplpOIpFg9uzZiI6OVk6jcDBMOAA83Uldr1499OjRA5s2bYJQKOSjXZUK3UlNjKGyhkNCQkK5fSsl/BOEl1k+YCV+s7b2iYa9TZ7y7/PnzyMqKgq2traYO3cu7Ozs4OfnBz8/P/3ekJ4qczjosr3iZQ1LT0/He++9Z5HhQIgxVNZwAIpuli152LkkIXLBUHJ+DHJZNsTyf3tibdmyJZ4/f47g4GBwHAexWKzSU6sxVOZw0BUvh5g6deqEu3fv8jEro7t8+TLCwsLg5OQER0dHdOvWrUr3G0Uqn8ocDkDRZae2trZlPuq6P4e9TQ4ABkAOAKjvfheO9kLY2Ngoyzk4OGDEiBEICgpSTjPmZa2WFA4AT3sQa9euxaBBg1CnTh306dPHZFcT6OrKlSvo2rUr2rZtix9//BGMMaxatQo9evTA2bNn0aFDB1M3kVi4yh4OALQ+BNRLCuw6cAv5BQK4OeZgxOC2kEjqISIiAsHBwZg4caK+b4EXlhYOAE8B4efnh549e2LQoEHgOE7tMleO45CVlcVHVbz67LPP4OrqiuPHjyvb3LNnT9SvXx8RERG0J0FMqiqEgy5srAFvl2fK3lwB4OzZs4iJicGlS5cQHh6OmjVrGqz+slhiOAA8BcScOXPwzTffoHnz5ggMDKw0exB//fUX+vXrpxJoTk5O6Nq1Kw4cOICXL1/C29vbhC0klsrSwqE0YWFhePHiBYKCgigcjBwOAE8BsXPnTsydOxfLly/nY3ZGI5FIIBKJ1KYrpt26dUtjQBQUFKCgoED5d3Z2tuEaSSyOpYeDTCZDYWGh8u9x48YZre6SLDkcAJ5OUhcWFqJXr158zMqogoKCcPHiRcjlcuU0mUyGS5cuASi6OksTxWh5ikedOuXczUOIligcZPj111+xZ88eyGSy8l9gQJYeDgBPAdG7d29cvHiRj1npLTo6GhzHafWIi4sDAHz00Ud48OABpk+fjufPn+PZs2eYMmUKnj59CgCljmMxf/58ZGVlKR/Pnj0z1tskVZilhwMAJCcn49GjR7h9+zZv41Lrg8KhCC9r4GeffYZ33nkHDg4O6Nevn8Y7pw19N7W/vz+2bNmiVdm6desCAMaPH4/U1FQsXboU3377LQCgQ4cOiIiIwMqVK1GrVi2NrxeJRBoPTRGiLwqHIr6+vhg+fDgcHR0REBBg9PoBCofieLmTWvFLu6wVqvgxRXNTUFCAhw8fwsnJCT4+Ppg8eTJ27dqF1NRU2NnZlft6upO6coqNjUVBQQFEIpFJL2m29HCQSCQQi8VwdnY2yJjUuralqoeD0e+kXrhwocn6Q+GDSCRCkyZNAABJSUn49ddfMWnSJK3CgVResbGxygHtTRUQFA4SREREIC0tDd99953R6i2tLVU9HHTFy9q4aNEiPmZjdPHx8di/fz9at24NkUiEGzduYMWKFWjYsCGWLFli6uaRKs7SwwEAUlJScOvWLbx58waPHj0yat3FUThoZvw10ozY2NjgzJkzWLduHXJzc1G3bl1MmTIF8+bNM5sPiFRNFA5F6tati82bNyMzMxMtWrTA8ePHjd4GCofSWXRANGrUCOfOnTN1M4iFsfRwkEgkSE1NVV4EohgqFCjqlUEqlRqtfyUKh7JZdEAQYmwUDkXnHO7cuYOtW7fC19dX5XljdttN4VA+vdfOpKQkncorLi0lxFJZejgAwJs3b/Dy5Uvk5OQgNTVVLSCMhcJBO3qvob6+vjqtXOZ8mSshhkbhUMTV1RWbN2/GkydP0KJFC6PXD1A46ELvtXT79u2V+tJWQozF0sNBIpHgwYMHykvJq1WrhmrVqhmt/pJtoXDQnt5r6tixY3lsBiFVE4VD0TmHixcvYu3atejYsaPR6tbUFgoH3fDSFxMhRJ2lhwNQ1LuCQCAAx3EmHZKYwkE/dBUTIQZA4VDE2toaX3zxBRISEhAYGGj0+gEKh4rgba19+PAhNm3ahLt37yI/P1/lOY7jcPr0ab6qIsSsWXo4SCQS/Pnnn+jevTuAopCgcKh84QDwFBDx8fFo3749atWqhYSEBAQHByMtLQ3Pnz9HnTp10KBBAz6qIcTsVbZwSEhIUN6Yxsc9CDKZDBEREYiJicHcuXPx7rvvVnie+qJwqDhezkEsWLAAYWFhuH37Nhhj2LZtG549e4bDhw9DLBZj6dKlfFRDiFmrbOEAFAXE/fv3eRt7QSgUwt/fHyKRCPXr1+dlnvqgcOAHLwFx7do1jBkzRtntt2KEtn79+iEiIgLz58/noxpCzFZlDAdD4DgOU6dOxb59+9CuXTuj1w9QOPCJl4DIzMyEm5sbBAIBrK2tkZmZqXyudevWuHbtGh/VEGKWLD0cJBIJdu/erbwZluO4Cg/Dm5CQgLt37+q8Z0PhwC9eAqJWrVpIS0sDUNSXSkxMjPK5mzdvmuyDIsTQLD0cGGOYM2cOVq5ciRUrVvA2X30OfVE48I+Xtblz5864cOECBg4ciJEjR+Lzzz/Hy5cvYWNjg507d2LUqFF8VEOIWbH0cACK9hb69u2Ly5cvo2fPnsrpfJ/8Lg+Fg2HwskZ/+umnePHiBQBg7ty5SElJwa5du8BxHIYPH47Vq1fzUQ0hvBHn56N169ZgjCEtNRWMMZ37FrP0cFAICwtD27ZtVbrPSEhIUA4dauiAoHAwHF7W6gYNGigvZRUKhVi3bh3WrVvHx6wJ4V1+fj5evniBmt7eRcfLa9fG69evte4fyNLDQSKRYNOmTRg/frxyY0h9K1W9cAB4CgipVAqJRKJx4eTl5cHGxsZoA4AQyxYbG4vY2Ngyy7Rt0wbe3t7Kq+4A4J9Xr7Bjx45y59+uXTs0aNDAYsMBACIjIxEVFYX4+Hh89913vNfPGCDn7MAgKbMchYPh8bJ2T5o0CQUFBdi9e7facx988AHs7OywdetWPqoipEwFBQXIycnR+XVCoVCr12VmZlp0OADAyJEjcfnyZYwfP573+lOzbRF9zwv5jn6AgxQQR2ssR+FgHLys4WfPni31CoYBAwbQfRDEaEQiEZycnMosk5qWhpo1ayr/lsvlePXqVbmvk8vlkMlkFh0OABAUFIQjR45AJBLxOt8CmQCn7nhDWqjYs7NCjm1PpOUkw92pQFmOwsF4eFnLX716BW9vb43PeXl5ISUlhY9qCClXhw4d0KFDhzLLMMaQmZGB9PR0cByHV//8g/YdOqBT584ay9M5BwlWrlyJcePGoXbt2gCgVzgkJCSUedmqRFgTUvtid19zHMDkOHc5CQ7S68rJjDEIBAKVQ4RNmjRBcHCwzm3Sh6WEA8BTQLi6uiIhIQGhoaFqzyUkJJT7y4wQY+I4Dm7Vq2Pn998jNzcXjo6O6NSpk8ayVTkcJFLgjcQeTC4ts9xXX32F/fv34++//8a+ffv0XgZSqRRisbjU5wuFOYB9yakcCqW5Zb5OMW9jsKRwAHgKiG7dumH58uUYPHgw3NzclNMzMjKwYsUKZa+OhJgbxlipz1XlcLj5ANjzByCThYDjChFY82apZcePH4/r169j5syZFVoG1tbWsLW1LfV5hhxIpYmQWNUDUPS5cPIsOOIJBLa2Gvccis/b0CwtHACeAmLRokVo06YNGjZsiHfeeQe1atVCcnIy9u7dC6lUisjISD6qIcRoKlM46HpTWtpr4JdjwP93mQbGBLj7vBlSMwEPDVerenh44Oeff9a4YdaFn59fue2Ty+W4+zId8Q/TwaSv4Vx4Ez27d6FzDibCy1rv7++P8+fPY9asWdiyZQsKCwshFAoREhKCNWvWwN/fn49qCDGKyhQOgPpNaeUd63+V5Q25vHmxKRwYOESduAEvlxeQyWTYs2eP8pLe4rTZyFeEQAA0rvUaz26dhFgshsDWlsLBhHhZ89PS0tCsWTOcPn0a+fn5ys77FLuT165dQ8uWLfmoihCDqmzhoEl5x/pZYV6p08ViMc6dO4ebN28iISEBH3/8scoJaWMd61e2iTEKBxPiZe0fMGAAzp49C1tbW9jZ2cHOzk753O3btxEWFobU1FQ+qiLEYKpCOADlH+v3FGUjJScNr99UBwcGBg7OtmnwrJYNAWeL7t27459//kGHDh3g4uKiNm9jEggEFA4mxNtlriNHjsT+/ftVpickJKBXr14mG26QEG1VlXAAtDsM1KsQuHQT+DvuGawFWajr8Rzhffsonx8wYIBedfNBIpEoLx6o6HkPfVE4FOFl6R89ehTR0dGYNWuWclpSUhJ69OiBmjVrIioqio9qCDGYqhIO2rISAp1aAI2878DD4T5++vF77Nu3z6B1akNxE5ypggGgcCiOl08hICAABw4cwMaNG7Fu3Tq8evUKPXr0gJOTE06cOEH3QRCzJpfLLSocSrp58ybu3r2L1atXm/RQcPE7pGnPwTzw9m0ICQnB1q1bMW7cOHz11VewsrLCqVOnVO6LIMQcyeVyiw0HAGjRogWys7Px7rvvwsPDw+j1A+rdZzRp0kR56a6xUDio0/sbkZGRoTYtPDwcH330EXbt2oXjx4/DxsZGWY6CgpiTwsJC5djpHMdZXDhIpVIIhUIARe+/T58+ZjWGtLG6zVCgcNBM72+Fu7t7qSs0YwytW7dWmaYYr5YQU1OckC4eEMZm6r6VIiIi4OnpiRYtWhit3tLaQvc5mC+9A2LhwoUm602SEH0Vv1rJVOsvX+EglwOnLlvh4tN+YIyDh2MypDLAupxv9d9//43z58/DxsYGtWvXVruUtaJSc0RItx+JQkcX5MmzkJqTC49ivbEqUDiYP70DYtGiRTw2gxDDK3kpa2Xfc/gzTog/44QAiubxT64Pjl8oxICusjJf16FDByxZsgQeHh7IzMwstyM8XbwpEOLk7VooFADgBCgUuODUbWcMbJkEO5t/jyJQOFQOxj/wSogJVLb7HMrrLgMA4p6HAnAtNoXD9XuFsH5zXGPdcrkcNjY2AIquPPTz88Px4+ply1Jeu8RWDSGzq6fILIATQFoI/BFzH7ayf19HXXZXDhQQpMqrbOEAlN9dBgBwkKGo11Ou2LRCtdcp+laSSCR47733YGNjo3eXGeW1S2qTD9hpmC7JByTUZXdlo/fFxk2aNMHBgwe1Lv/y5UvMmDGj1JHnCDGEyhgOwL/dZZT1qOWaiKJwYFB0j13bNUGtXG5uLp4+fYrk5GS8fv0atra2el8+Wl67HAUpEMpfA0zRVawcwsJMOApewdbWFiKRCHZ2dnBwcFB7UJfd5kfvb8vw4cMxevRoVKtWDSNHjkRoaChatmypvLopPz8fjx49wsWLF/H777/jjz/+QJs2bTBlyhQ+209IqSprOADa95p697EEx85lolDO4On0Au8PDQLHNVIr17x5cxQUFFT4UlZt2pUvycThv55DChdYIwtvdbaDgHWlcw6VUIWuYpo0aRLWrl2LrVu3YuXKleA4DhzHwdraGhKJBEDRscYuXbrgl19+weDBg3lrOCFlqczhoIvAenI8vR+r7O6b44IAFJ0EzsrKUt741rx5c97rLo2dTSGcC84q2yRg3SkcKqkKfWu8vb2xcuVKLF26FJcuXUJsbCxevHiB/Px8uLu7IyAgAKGhocpxbAkxBksJh9Io7nNITEzE1q1b4eXlZbS6NaFwqLx4+eZYW1ujc+fO6FzKoO+EGIsu4WCo7hxM3X1GVlYWEhMTkZqaiuTk5DIDws/Pz6BdWtB4DpUbXcVEqgxd9xwMcUmlqcMBKBoidOvWrUhOTlbr0aAkQ44OB9B4DpUdBQSpEiz9sJJMJkNKSoryby8vL5MdWqLxHKoOCghS6VE4yPDrr78iKSkJzZs3N+oJ6ZJoPIeqxXSfIiE8sPRwAIq6K5dKpSgsLERBgXqfR8ZC4zlUPbQHQSotCociNjY2eO+99/D69Wuz6rLb2Cgc+Ed7EKRSsvRwkEgkiI2NVf5tY2ODunXrGq3+km2hcKiaKvStevz4Mezs7FROhq1Zs0aljLOzMyZOnFiRaghRYenhIJVKERERgfPnz2PJkiUa339CQoLy8lVDXqlE4VC16f3N+vvvv9G2bVvs2bMHQ4YMAVD0xY2IiFApx3Ec/Pz8EBoaWqGGEgJQOACAUCiEp6cnbGxs4OHhgerVq6vdy5CQkKC8k9lQAUHhUPXp/e3asmULOnbsqAyH4g4fPowmTZqAMYZPPvkE33//PQUEqTAKhyICgQDz58/HiBEj0KBBA6PXD1A4WAq9z0GcOXMG7733nsbnvL294ePjA19fXwwZMgQXLlzQu4GEABQOEokEv/32m8r9BRQOFA6Gpve3LDk5GYGBgSrTOI5Ds2bNYG9vr5zm7e2N5ORk/VtILJ6lh4NiT/zcuXNISkrCjBkzjFZ3SRQOlqVCVzEpfs0oZyYQ4Pr16wgICFBOk8vlauUI0ZalhwNQ9MOrS5cusLW1NdllrACFgyXSOyBq1qyJ27dvl1vu9u3bqFmzpr7V6CwnJwdz5sxB79694eHhAY7jyhw/+9q1a+jZsyccHR3h6uqKwYMHIzEx0WjtJaWjcPjX0KFDcfjwYbrPgcLBqPQOiJCQEGzevBkyWekDpMtkMmzevNmoJ6jT09OxefNmFBQUYODAgWWWvXfvHkJDQyGRSLBnzx5s374dDx48QJcuXZCammqcBhONLD0cJBIJtmzZonJntGJsB2OjcLBcegfExx9/jHv37mHYsGH4559/1J5/9eoVhg0bhvv37+Pjjz+uUCN14ePjg8zMTJw7dw7Lly8vs+zChQshEolw5MgRhIeHY/DgwYiKikJqaipWr15tpBaTkiw9HADgv//9LzZs2IAFCxYYtd6SKBwsm97fvODgYKxfvx7Tpk3DsWPH0Lp1a/j4+AAAnj59iqtXr0Imk2HDhg1o2rQpbw0uj7ZfZJlMhiNHjmD06NFwdnZWTvfx8UG3bt1w8OBBrFy50lDNJKWgcCgybNgwXL58GcOHDzd63QoVCQe+xtqgcDCtCn37Jk+ejCZNmmDZsmWIjo5WXs5qZ2eHXr16Yf78+ejYsSMvDeXbo0ePkJ+fr3FMgODgYJw8eVJ5o1FJBQUFKrv+2dnZBm2rpaBw+FebNm1w9OhRlSsCjamiew58jLVB4WB6Fe6LqVOnToiKikJOTg5SUlKQkpKCnJwcHD582GzDASg6VwEAbm5uas+5ubmBMYbMzEyNr12+fDlcXFyUjzp16hi0rZbA0sNBIpFg5cqVKue+Kms48IHCwTzw1lmfQCBAjRo1UKNGDd66+o2OjgbHcVo94uLi9KqjrI1Aac/Nnz8fWVlZysezZ8/0qpsUsfRwAICVK1di9+7d+OijjyCXy41ad3EUDqQ4s+7u29/fH1u2bNGqrK49WVavXh3Av3sSxWVkZIDjOLi6ump8rUgkgkgk0qk+ohmFQ5Fx48bh77//xsyZM002lgKFAynJrAPC29vbYD3BNmjQAHZ2drh165bac7du3YKfn5/G8w+EPxQO/6pduzb27dvHyzKQy4E3gvoosLGCgMvQ6jUUDkQTix0PwsrKCgMGDMCBAweQk5OjnJ6UlISzZ89i8ODBJmxd1Wfp4SCRSPDpp5/izp07yml8LINCORAV54UM6zDk2XbHP9ZDcfe5U7ltoXAgmpj1HoS+jh07hry8POWG/86dO9i3bx8AIDw8XHnyLzIyEm3atEH//v0xb948iMViLFy4EO7u7pg9e7bJ2l/VWXo4AMCmTZsQFRWFy5cv48iRI1odskxISEBCQkKZZXIFTfDayhfgAPz/e/rrvhse3/odAkg0voYxBoFAgODgYF6uPtIVhYP5Mso3MzU11ah3gX744Yd4+vSp8u+9e/di7969AIoGOfL19QUABAQEIDo6GnPnzsXQoUNhZWWF7t27Y/Xq1Sa7a7Wqo3AoMn78eMTHx2P8+PFan8+SSqUQi8VllhHb2gOQAxD+O5ET4I3EGlbysi/HlkqlWrWDTxQO5s1g307GGI4dO4Zt27YhKiqq3BWbT0+ePNG6bKtWrXDq1CnDNYYoWXo4MMaU9Tk4OOC7777TqX5ra+tyz4sVCrIhLn7kmDEAhbC3kUAA1dcq9hwUJ8UrelObrigczB/v39BHjx5h+/bt+P777/Hy5UuVLwWxXJYeDhKJBHPnzkWfPn0QFhYGQPu7/hX8/PzKHR1OzoCzt/PwOFVxLkGOHk3TUc+jh0pb6JwD0QYv31KxWIy9e/di27ZtOH/+PBhjaNeunbKvo/Hjx/NRDamkLD0cAGD//v04e/YsLl++jHbt2pV6CXVFCTige+NUHDpxAmKpEA5W2ajn0Vn5PIUD0UWFvqlXrlzBtm3b8MsvvyA7OxteXl6IiIjAuHHjlGNC/P7777w0lFROFA5Fhg8fjsTERPTs2dNg4aDAcYCIvQKTiWFl9e9hJQoHoqsKddZ3+/ZtWFtbo3///hg3bhz69u1rspt8iPmx9HCQyWQQCoXgOA5CoRCffvqp0eouicKB6EPvb2x8fDwEAgFmzpyJmTNnokaNGny2i1Rylh4OEokEERER8Pf3x9SpU016Ho7CgehL75/7a9euRdOmTbFy5UrUrl0bAwcOxO+//17mAELEMlh6OADAn3/+iZiYGPzwww8mH5OdwoHoS++AmDFjBq5fv47Lly9jwoQJOHfuHAYPHoxatWph9uzZGruwIFUfhUOR7t27Y+7cuVi3bp1Je/tljFE4EL1xjDHGx4xKXskEAC1atEBgYCB+/vlnFBYW8lGNWcrOzoaLiwuysrJUBh+yNJYeDhKJBBzHGf1+Ak2OHz8OsVgMOzs7jBo1yiRtoHAwT7psr3g7o2xra4v3338f0dHRePDgAebOnYuUlBTs2rWLryqIGaNwkGD27Nn45JNPTHJHcsm2KH73meqiEQqHqsEga0+DBg2wbNkyJCUl4dChQ3j77bcNUQ0xE5YeDgBw//59XLp0CbGxseX2l2RIihPSpryakMKh6jDoN1kgEKB///7o37+/IashJkThUKRp06ZYu3YthEIhAgMDjV4/oHq1Eu05ED5Uyd5ciXFYejhIJBK8efNGeeObKYfYrcilrDdv3oRUKoW1tXWFenOlcKh66K42ohcKh6L7HCZNmlTq2OXGbEtFLmWNj4/HtWvXEB8fr3cbKByqJgoIojNLDwegqAv7O3fuICkpSafeg/lGN8ERQ6JDTEQnFA5FatWqha1btyI1NRUtWrQwev0AhQMxPNqDIFqz9HCQSCRISkpS/u3r64s2bdoYrf6SbaFwIIZGexBEKxQOReccbt26hc2bN6Nhw4ZGq1tTW8oLhyZNmihPPJelQCaEi3cQrPNyIMt9qXUbKBwsg97fcoFAoNMXtCrfSV3VWXo4AEU9BaSlpeHNmzcmPSmt7Z6DNlcjZRXYIDHTBd6BvQEABbnpkMnlsBKU3bkChYPl0PubvnDhQpUv6Y4dO5Cbm4sBAwbAy8sLL1++xJEjR+Dg4EADBlViFA5FnJ2d8d133+HRo0eV4pzDzZs3y70qya/zZAit/x3x0ca+Gs5evY7UhPOlvkYul4PjOLRt2xYNGjTQ/U2QSkXvb/uiRYuU///yyy/h5eWFU6dOqay4OTk56NmzJ+zt7SvUSGIalh4OEokEt2/fVgaCs7NzpQgHAJBKpcjLyyv1eYHQGlY2dqoTOQ4Ca8cyX6fAUxduxMzxcpJ648aNmDNnjtqK6+TkhDlz5mDjxo18VEOMiMKhqG+lSZMmITo62mj1ltYWXU9IW1tbw8HBodSHna0NpAW5YExe7FUMhQVZmsvb2cHe3h6Ojo5wcnKCSCQyzJslZoWXb/3z589L3YBYWVkhJSWFj2qIkVh6OABF59js7e0hFAphZ2dX/gsMRN+rlYKDg8s9D5EjkeJRJiD//50BcfY/6NG2HoTtfVXK0TkHy8VLd98tWrSAi4sLTp48qXLVhEQiQc+ePZGTk4Pr169XtBqzVZW6+6ZwUG1HQkKCcnx1YzPGpazSQgGOnY7Fm7xsyMXpeO/dESrPUzhUPbpsr3j59i9duhQDBw5E/fr1MXjwYHh5eSElJQUHDhxASkoKfvvtNz6qIQZm6eEgkUhw9uxZhIWFASja+63K4QAA1kI5ctMeKZd3cRQOhJctQL9+/XD8+HF8+umn2LBhg8qVDjt27EDPnj35qIYYkKWHQ2FhISIiIhATE4MXL15g3LhxRqu7JLoJjpgL3rYCPXr0QI8ePZTXiVerVo2uXqokLD0cAEAoFCI4OBiXLl1CUFCQUesujsKBmBNetwRZWVm4ePEi0tLSEB4eTgFRCVA4/GvixIkIDw9HzZo1TVI/hQMxN7z1xbRkyRLUrFkTffv2xejRo/H48WMARXsWK1as4KsawiNLDweJRIIff/wRMplMOc0Sw6FJkyZo2bIlGjVqROFAVPB2H0RkZCQmTJiAqKgolZto+vfvj6ioKD6qITyy9HAAgPnz5+PLL7/E4sWLjVpvSabecwgODoa/vz8aN25M4UBU8LJV+OabbzBr1iysWrVKrc+lhg0b4uHDh3xUQ3hC4VBkwIABuHTpEvr162f0uhVMHQ4AHVYipeNly5CYmKi8NLAkJycnvH79mo9qCA8oHP4VGhqKo0ePmuzeFQoHYu54OcTk4uKCV69eaXzuyZMnqFGjBh/VkAqy9HCQSCRYu3YtsrOzldMoHCgcSOl4CYgePXpg1apVKp18cRwHmUyGb7/9ttS9C2I8lh4OQNGFFDt37sTMmTNN2tkchQOpLHjZSixevBht2rRBUFAQBg0aBI7j8M033+D69etISkrCnj17+KiG6InCocjo0aNx9epVfPDBByY7rEXhQCoTXvpiAoC7d+9i5syZOHPmDGQyGYRCIbp164avv/4agYGBfFRhtsy5LyYKB1USiQQ2NjYmq5vCgZiaLtsrXg4xxcTEoE6dOjh+/DhycnKQnJyM7OxsnDhxAnXq1EFMTAwf1RAdWXo4SCQSLFq0CE+ePFFOo3CgcCDa4yUgunXrhjt37gAARCIRatasqewi+f79++jWrRsf1RAdWHo4AMC6devw22+/Yfr06ZBKpUatuzgKB1JZ8bLVKOsolVQqhUDA2w3bRAsUDkUmTJiAGzduYPr06Srd0BsThQOpzPTecmRnZ6vc35CSkoKkpCSVMvn5+fj+++/h5eWldwOJbigc/lWtWjX88MMPdEKawoHoSe+tx1dffaXsooDjOAwaNEhjOcYYFixYoG81RAeWHg4SiQQLFizAoEGD0KlTJwCgcKBwIBWg9xakd+/ecHR0BGMMc+bMwUcffYS6deuqlBGJRGjatClCQkIq3FBSNksPBwDYtWsXTp06hcuXLyMqKgpOTk5GrV+BwoFUFXpvRTp06IAOHToAAPLy8jBp0iST9YRp6SgciowaNQr379/HoEGDKBwoHAgPeLsPwpKZ8j4ISw8HuVxuNhdBUDiQysDo90EQ07D0cJBIJPjPf/6Dn376yWh1ltUWCgdS1fC2RXn48CE2bdqEu3fvIj8/X+U5juNw+vRpvqoioHAAgJMnTyImJgaXL19Gr1694OnpadT6FSgcSFXFy1YlPj4e7du3R61atZCQkIDg4GCkpaXh+fPnqFOnDho0aMBHNeT/UTgUCQ8PR3JyMpo3b07hQOFADICXcxBvvfUWrK2t8euvv8LGxgZXr15Fy5YtERUVhfHjx+PgwYPo2LEjH+01S8Y8B2Hp4aC48VIoFBqtztJQOJDKyOjnIK5du4YxY8YoTxbK5XIAQL9+/RAREYH58+fzUY3Fs/RwkEgkmD17NiIjI9VGLjQ2CgdiCXgJiMzMTLi5uUEgEMDa2hqZmZnK51q3bo1r167xUY1Fs/RwAICbN2/ir7/+wh9//IHExESj1l0chQOxFLxsZWrVqoW0tDQAgJ+fH2JiYtCrVy8ARV9qU32JqgoKhyKtW7fG8uXL4eLigoYNGxq9foDCgVgWXrY0nTt3xoULFzBw4ECMHDkSn3/+OV6+fAkbGxvs3LkTo0aN4qMai2Tp4SCRSCCVSpUbwt69exutbk1toXAgloSXrc2nn36KFy9eAADmzp2LlJQU7Nq1CxzHYfjw4fjiiy/4qMbiUDgUnXPIzs7Ghg0bTLonSuFALBEv5yAaNGiALl26AACEQiHWrVuH9PR0pKWlYefOnXBxceGjGq3k5ORgzpw56N27Nzw8PMBxHBYtWqSx7J9//omJEyeiVatWEIlE4DhOZXAZU7L0cACA5ORkxMXF4d69e3j06JFR6y6OwoFYKr23OiW79i5PyY78DCU9PR2bN29Gs2bNMHDgQGzdurXUsqdPn8apU6fQokULODs7Izo62ihtLI8+4XDz5k1IpVJYW1sjODi4wm0wdTgAQP369bFp0ybk5OSgWbNmRq8foHAglk3vgPD19dVpo2GsyxJ9fHyQmZkJjuOQlpZWZkB89tln+PzzzwEAq1evNouA0HfPIT4+Xrkxr2hAmPqwUkZGhnIMkaCgIKPVraktFA7EkukdENu3bzfp4POl0aVN5tLJm4KlH1aSSCSIiIjAgwcPsHXrVtSuXdtodWtqC4UDsXR6b4HGjh3LYzMql4KCAhQUFCj/zs7OrvA8LT0cgKIN4rNnz5CZmYmXL1+aLCAoHAgpYvytUBWwfPlyREZG8jY/Cocibm5u2Lx5M5KSktCqVSuj1w9QOBBSnHkdYykhOjoaHMdp9YiLizNau+bPn4+srCzl49mzZ3rPqzKHQ0JCAu7evYuEhAS965ZIJLh3757ybw8PDwoHCgdiJnjZGgkEgnI3KvqcpPb398eWLVu0Kmusq6SAoqFURSJRhedTmcMBKAoIsVgMW1tb+Pn56Vy34pzD5cuXsX79erRp00bnefCFwoEQdbxskRYuXKi2YUlNTcWJEydQWFiI0aNH6zVfb29vTJw4kY8mmp3KHg58YIyhsLAQjDFlB4+mQOFAiGa8bJVKuxFNIpEgLCwMNWrU4KOaKoPCoYhIJMKaNWuQkJCAxo0bG71+gMKBkLIYdMtkY2ODjz76CHPnzsWHH35oyKpUHDt2DHl5ecjJyQEA3LlzB/v27QNQNMiMvb09gKK9nHPnzgEAbt26pXyth4cHPDw8EBISwnvbLD0cJBIJLl26pLzzXiQSUThQOBAzZfCtk52dHV6+fGnoalR8+OGHePr0qfLvvXv3Yu/evQCAx48fw9fXFwBw+/ZtDBs2TOW1U6dOBQCEhITwfuOcpYeDVCpFREQEYmJi8Nlnn2HIkCFGq7skCgdCymfQLVRqaiq++OIL+Pv7G7IaNdr2pxQaGgoeBtTTiqWHAwBYWVnBx8cHIpGIboKjcCCVAC9bqXr16qltbAoKCvDPP/9AIBDg0KFDfFRTaVE4FOE4DrNmzcLQoUPh4+Nj9PoBCgdCdMHLliokJERtg2NrawtfX1+88847ykM6lsgY4SAt5CB3bAKhnRBM/o/a83yGQ0JCgrJTQG1IJBIcOnQIgwcPVl4OrSkcis9Xn0tmtW0LhQMh2uNla7Vz504+ZlPlGCscjt10A6veC1ZgkHMC3H+ZBX/vfAD87zkUv/ehPIwxzJkzB9HR0Xj8+DE++eQTreZriICgcCBEd7xssaRSKSQSicaVPi8vDzY2Nlr/4qwq+AiHmzdvIj4+vswycpe2YK4dAY4Dh6KN/+VEJ1yN/gGQSyCXy8EY0xgMfn5+Bvu1DhQdUurRowcuXbqErl27Gqye8lA4EKIfXgJi4sSJkEgk2L17t9pzH3zwAezs7Mrsdruq4WvPQSqVIi8vr8wyVs52EIJBZfPPCZBfADDpm3Lnb2gDBgxAp06d4ObmZvC6NKFwIER/vPTFFB0djbfeekvjcwMGDMDp06f5qKZS4POwkrW1NRwcHMp8WMszwBX7GBmTA4ViiIRSiEQi2NralvrQd6+OMeBFujcevmiAlNd1IGf/xpNEIsHGjRuRn5+vnEbhQOFAKide9iBevXoFb29vjc95eXkhJSWFj2rMHt/nHIKDg8sd/EfOgL8eivEkzQ4AwDEZWtd5DtvaHQxytRJjwN3nLZGe6wUODAwcMvLS0UfOIBBwWLhwIY4fP447d+5g/fr1JhszhMKBkIrjJSBcXV2RkJCA0NBQtecSEhLg5OTERzVmLy0tDTKZzKiXsgo4oHPDLCTd2AOxhIMNsmBbq7Xe4ZCQkFBq76yv81zw5FUg0vOKfgwoDmyl57jj531X4e6cjnr16sHR0REBAQH4448/VF5v6HMeChQOhPCDl61Yt27dsHz5cgwePFjlcEJGRgZWrFiB7t2781GN2Xv9+jU8PT2Nfp8DxwGQpEH+5g2YSFShPQepVAqxWKw2PTXHG/dftgTw/zcWcv/+FwBy33BwtBHD09MTM2bMgI2Njdp8jHHOg8KBEP7w1llfmzZt0LBhQ7zzzjuoVasWkpOTsXfvXkilUl4H1zFnAoHAZDfBKXpDVYyPoSvFnoNMJtP4fOI/iv6SBOC4oktYFSHBmByQPVeWtbGxUf7fyspKuUwMfSUbhQMh/OJla+bv74/z589j1qxZ2LJlCwoLCyEUChESEoI1a9YYvasNS6K4z6GiXYaUtuegrKfQBih2rRTHcWCMgbFC3LuyAvG5FzBlyhS1cb4bNGiAwMDACrVNGxQOhPCPt5+7zZo1w+nTp5Gfn4/MzEy4ublpdTMV0V/xm+AqejLY2tq6zM/LxSELWXkuYMorphg8XZ6huugy4nMv4K233lL2kltyvoZG4UCIYfB+PMTOzg52dnZ8z5aUUPIO6Yoq7wRy+2yGLXsL8Sq96G93p1Q0rpsAqcQW//nPfxAeHq533XIGiOEJsYCDNbJ0ei2FAyGGo3dAJCUl6VTemEOCVnWm6HjP1ZnD7HFC7Dt4FkeO/Aa/do0hFPhACqgdVtJFoRw4dr0GUgQDAVsgi0nxPCMdtdwKyn0thQMhhqV3QPj6+uq0YdJnTGqizpS9sgoEHC5diMLN6zFIfHgNc+bMqfA8bz51RnL6v4e2GIQ4ccMDY0KTISjjrVE4EGJ4egfE9u3bTXYTlKUyhy67Q0JCkJSUhJCQEI2XshZX1j0VCqlcNwAu/3+tLgBOgAIpcOyPcxAiv9TXMcYQFBRksj1TCgdiCfQOiLFjx/LYDFIeU4ZD8c7+bGxsMHLkSK0uQCjvyigAgHWm6lrIGDjIIBG/Boeyr8wy1Q8UCgdiKYx/0T7RmanHkJ4zZw569OiBAQMG6PTa8q6MAgAb3IYEfpCielE/HmBwZ9GwsxVpLM8Yg0AggEAgMEkPwRQOxJLwFhAPHz7Epk2bcPfuXZWO2oCiX3qW1GEfn0x9WOnQoUOIjo7GpUuX0KlTJ51eq23XGtLCPPx+Mg4SmQCOVql4q087AI1UytA5B0KMj5eAiI+PR/v27VGrVi0kJCQgODgYaWlpeP78OerUqYMGDRrwUY3FMXU4AMDgwYPx+PFjdO3aFW5ubvDz81OO/Fbe+QVtWQsZHJEAsUwMGyv1PQ4KB0JMg5fuvhcsWICwsDDcvn0bjDFs27YNz549w+HDhyEWi7F06VI+qrEopgwHqVSqvDNbIBDgk08+Qbt27QAU7RUEBgYapdM9gMKBEFPiJSCuXbuGMWPGKK+HV/QL1K9fP0RERGD+/Pl8VGMx9AkHPz8/+Pv7V3jDLZFIMHv2bKxZs6bC3XdUFIUDIabFS0AoutZQnDjMzMxUPte6dWtcu3aNj2osgr57Dnz9sr906RJiYmKwZ88enW+G5BOFAyGmx8s5iFq1aiEtLQ1A0YYqJiYGvXr1AlA0rrKpvuCVjTmcc+jSpQs+++wz1K5dGz4+PmWWLX4+gk8UDoSYB14ConPnzrhw4QIGDhyIkSNH4vPPP8fLly9hY2ODnTt3YtSoUXxUU6WZ+lJWxhhEoqJLS4cMGaLV6wx1HoLCgRDzwEtAfPrpp3jx4gUAYO7cuUhJScGuXbvAcRyGDx+OL774go9qqixTh8Ps2bNRWFiIr776ShkSpsIYo3AgxEzwEhANGjRQXsoqFAqxbt06rFu3jo9ZV3mmPqyUmJiIK1eugDGGhw8fokmTJkatvySBQEDhQIiZ0PskdWZmJoYMGYIjR46UWubIkSMYMmQI0tPT9a2mSjN1OABAQEAA1q9fj6+//tpk4aA4xAVUrGfYiqBwIESd3t/GrVu34saNG+jTp0+pZfr06YNbt25hw4YN+lZTZZn6sFJGRoby7zZt2qB9+/ZGq79kWwoLC00WDACFAyGl0ftb+csvv2DSpElljsFsZWWFSZMm4dChQ/pWUyWZOhwiIiIwYcIEpKamGq3e0tqiOCFNew6EmB+9v5UPHjxA69atyy3XsmVLPHjwQN9qqhxTH1bKyMjAgwcP8OLFC7O6z6FJkyZo2bKlUQ9zUTgQUja9T1LLZDKtrn+3traGVCrVt5oqxdThAABeXl7YunUrXr58iVatWhm9fkDzfQ7BwcFGbQOFAyHl03sPwtvbG3fu3Cm33O3bt+Hl5aVvNVWGqQ8rJSYmKv+uXbs22rRpY7T6S7aF7nMgpHLQOyBCQkKwcePGMvcOpFIpvv32W3Tr1k3faqoEU4dDREQExowZo1WgG7otFA6EVB56B8TMmTNx7949DBo0SHmTXHEvXrzAwIEDcf/+fcycObNCjazMTH1YSSqVIisrCxKJBDk5OUatuzgKB0IqH73PQQQHB2PDhg2YOnUq6tWrh1atWqFevXoAgMePH+Pvv/+GXC7Ht99+i6ZNm/LW4MrE1OEAAA4ODti4cSMSEhLQrFkzo9cPUDgQUllxrIJ9OsfGxmLZsmU4e/Ys3rx5AwCwt7dHjx49MH/+fJNdX29M2dnZcHFxwdWrV+Ht7Q3A9IeVbty4YbLzDCXbQuFAiPlQbK+ysrLg7OxcZtkKd7XRoUMHHD58GHK5XNmjq7u7u0lvfDI1Uw/2M3v2bFy4cAHLli1DWFiY0eouicKBkMqNtzGpBQIBatSowdfsKi1TH1YSCASoVq0arKys4OrqatS6i6NwIKTyq/AhJvLvLtvFixchEolMes4BKOouOzExEQ0bNjRJ/RQOhJgvXQ4xWe5xIAPIzs422TmHqKgoZYd3QqGQwoHCgZAK4+0QEwHevHkDDw8Po4aDXC5HREQEYmJikJycjMmTJxut7pIoHAipWmgPgkcCgcAk5xzatm0LW1tbNG/e3Kh1F0fhQEjVQ3sQVcCoUaPQq1cveHp6mqR+CgdCqibag6iEJBIJduzYodLNCYUDhQMhfKM9iEro008/xcmTJ3H//n2sWLHCZO2gcCCkaqM9iEpo0KBBcHZ2xqBBg0zWBgoHQqo+2oOohDp27IijR4+abMNM4UCIZaA9iEpAIpFg9erVyMzMVE6jcKBwIMTQKCAqgWXLluGnn37CjBkzYMob3ykcCLEsFBCVwNixY1G7dm1Mnz7dZN13UDgQYnnoHEQl4Ovri4MHD2o1BrghUDgQYploD8IMSSQSfPbZZ3j48KFyGoUDhQMhxlblAiInJwdz5sxB7969lf0iLVq0SK1cYWEh1qxZgz59+qB27dqwt7dHYGAg5s2bh9evXxu93cVt3LgRhw8fxowZMyCRSEzWDgoHQixblQuI9PR0bN68GQUFBRg4cGCp5fLz87Fo0SL4+Phg7dq1OHr0KCZNmoTNmzejU6dOyM/PN16jSxg/fjxatWqFRYsWwcbGxiRtoHAghFS5cxA+Pj7IzMwEx3FIS0vD1q1bNZazs7PD48ePUb16deW00NBQ1K1bF8OGDcP+/fsxatQoYzUbjDHlCWhnZ2ds3bqVTkhTOBBiUlVuD4LjOK02rEKhUCUcFNq2bQsAePbsGe9tK41EIsHs2bNx9uxZ5TQKBwoHQkytyu1BVNSZM2cAAI0bNy61TEFBAQoKCpR/Z2dnV6jOX3/9FWfOnMHly5dx9OjRckd5MhQKB0JIcRQQxTx//hzz5s1D69at0b9//1LLLV++HJGRkbzV++677yIhIQHh4eEUDhQOhJgNsz7EFB0drTxkVN4jLi6uQnVlZGQgPDwcjDH8+uuvEAhKXzTz589HVlaW8qHP4ajCwkLl/62srBAZGYl27drp1faKonAghGhi1nsQ/v7+2LJli1Zl69atq3c9mZmZ6NWrF54/f44zZ86gfv36ZZYXiUQQiUR61yeRSBAREYHg4GBMnDhR7/nwgcKBEFIasw4Ib29vg29AMzMz0bNnTzx+/BinT59GcHCwQesDgLNnzyImJgaXLl1CeHg4atasafA6NaFwIISUxawDwtAU4ZCYmIiTJ0+iRYsWRqk3LCwML168QFBQEIUDhQMhZqtKBsSxY8eQl5eHnJwcAMCdO3ewb98+AEB4eDjs7e2Rn5+PsLAwXL9+HWvXroVMJsPFixeV8/Dw8ECDBg14a5NEIoFAIICVVdEiHzduHG/z1qctFA6EkPJwzJT9RxuIr68vnj59qvG5x48fw9fXF0+ePEG9evVKnceYMWOwc+dOrerLzs6Gi4sLDh06pPFciOKcg52dHf73v/8pQ8IUKBwIsWyK7VVWVla5V01WyT2IJ0+elFvG19fXaGMr3LlzBxcuXIBQKERCQgICAgKMUm9JFA6EEF1UyYAwN82bN8fq1athZ2dH4UDhQEilQQFhIBKJBGKxWLkLFxoaatK2UDgQQnRl1jfKVVaKvpWmTJlS4W44+GgLhQMhRB8UEAaQkpKC+Ph4PHr0CI8ePTJZOygcCCEVQYeYDKBu3brYvHkzMjMzjXZvRUkUDoSQiqKA4NGrV6+Ul7k2bNjQZO2gcCCE8IEOMfFozpw5Wl1ia0gUDoQQvtAeBA8U91Pk5OQgKSkJ7u7uJmmHRCKBXC5HtWrVwBhT3kluTHl5eRAIBPD09ERhYaHJT9ITQlQpvpPa3AdWJe+kNrbk5GTUqVPH1M0ghBCtPXv2DLVr1y6zDAUED+RyOV68eAEnJye9hgrNzs5GnTp18OzZM5MNGGQOaDkUoeVAy0DBEMtBcXShZs2aZY57A9AhJl4IBIJyk1gbzs7OFv1lUKDlUISWAy0DBb6Xg4uLi1bl6CQ1IYQQjSggCCGEaEQBYQZEIhE+//zzCg1jWhXQcihCy4GWgYKplwOdpCaEEKIR7UEQQgjRiAKCEEKIRhQQhBBCNKKAMKGcnBzMmTMHvXv3hoeHBziOw6JFi9TKFRYWYs2aNejTpw9q164Ne3t7BAYGYt68eXj9+rXR2803bZcDAPz555+YOHEiWrVqBZFIBI7jTN7/FV90WQ4AcO3aNfTs2ROOjo5wdXXF4MGDkZiYaLwGG9nly5cRFhYGJycnODo6olu3bvjrr79M3Syjun79OgYOHIiaNWvC3t4eAQEBWLx4Md68eWOQ+iggTCg9PR2bN29GQUEBBg4cWGq5/Px8LFq0CD4+Pli7di2OHj2KSZMmYfPmzejUqRPy8/ON12gD0HY5AMDp06dx6tQp1K1bFx07djROA41El+Vw7949hIaGQiKRYM+ePdi+fTsePHiALl26IDU11TgNNqIrV66ga9euyM/Px48//ogff/wRYrEYPXr0QGxsrKmbZxR37txBx44d8eTJE6xduxZHjhzBiBEjsHjxYrz77ruGqZQRk5HL5UwulzPGGEtNTWUA2Oeff65WTiaTsbS0NLXpe/fuZQDYjz/+aOimGpS2y4ExxgoLC5X//+KLLxgA9vjxYyO00vB0WQ7Dhg1j7u7uLCsrSzntyZMnzNrams2ZM8cYzTWqsLAw5unpyfLy8pTTsrOzmbu7O+vYsaMJW2Y8n376KQPAEhISVKZ/8MEHDADLyMjgvU7agzAhjuO06rtJKBSievXqatPbtm0LoKjTrcpM2+UAoNy+YyozbZeDTCbDkSNHMGTIEJXuF3x8fNCtWzccPHjQkM00ib/++guhoaGwt7dXTnNyckLXrl1x4cIFvHz50oStMw5ra2sA6t1kuLq6QiAQwMbGhvc6q+63zQKcOXMGANC4cWMTt4QY06NHj5Cfn4/g4GC154KDg5GQkACxWGyClhmORCLReLOYYtqtW7eM3SSjGzNmDFxdXfHhhx8iMTEROTk5OHLkCDZt2oRp06YZZOwV6qyvknr+/DnmzZuH1q1bo3///qZuDjGi9PR0AICbm5vac25ubmCMITMzE97e3sZumsEEBQXh4sWLkMvlyr1ImUyGS5cuAfh3mVRlvr6+iI2NxaBBg9CgQQPl9BkzZmDt2rUGqZP2IHgSHR2tPERQ3iMuLq5CdWVkZCA8PByMMfz6669mddjFmMvBnBljOZR1OEqfbueNRZ9l89FHH+HBgweYPn06nj9/jmfPnmHKlCl4+vQpgMp36FGfZfDkyRMMGDAA1atXx759+3Du3DmsWrUKO3fuxMSJEw3STtqD4Im/vz+2bNmiVVnFuNX6yMzMRK9evfD8+XOcOXMG9evX13tehmCs5WDuDLkcFOejNP1qzsjIAMdxcHV11WmexqTPshk/fjxSU1OxdOlSfPvttwCADh06ICIiAitXrkStWrUM1l5D0GcZzJs3D9nZ2YiLi1MeTuratSvc3d0xfvx4jB49GiEhIby2kwKCJ97e3gZLcYXMzEz07NkTjx8/xunTpzUegzY1YyyHysCQy6FBgwaws7PTeNz91q1b8PPzg62trUHq5oO+y2bu3Ln4z3/+g4cPH8LJyQk+Pj6YPHkyHBwc0KpVKwO01HD0WQZxcXEICgpSO9fQpk0bAEB8fDzvAVG59sssmCIcEhMTceLECbRo0cLUTSImYmVlhQEDBuDAgQMq444nJSXh7NmzGDx4sAlbZ1gikQhNmjSBj48PkpKS8Ouvv2LSpEmws7MzddMMrmbNmrh9+zZyc3NVpivuA+Fj0LKSaA/CxI4dO4a8vDzlF/3OnTvYt28fACA8PBz29vbIz89HWFgYrl+/jrVr10Imk+HixYvKeXh4eKictKqMtFkOAJCamopz584B+PfKlWPHjsHDwwMeHh68/4IyNm2XQ2RkJNq0aYP+/ftj3rx5EIvFWLhwIdzd3TF79myTtd9Q4uPjsX//frRu3RoikQg3btzAihUr0LBhQyxZssTUzTOK//znPxg4cCB69eqFmTNnwt3dHRcvXsTy5csRFBSEvn378l8p73dWEJ34+PgwABofihvAHj9+XGoZAGzMmDEmfQ980GY5MMbY2bNnSy0XEhJisvbzRdvlwBhjV69eZT169GD29vbM2dmZDRw4UO0mqqri/v37rGvXrszNzY3Z2NgwPz8/9t///pfl5uaaumlGdebMGda7d2/m5eXF7OzsWKNGjdjs2bM13kjLBxoPghBCiEZ0DoIQQohGFBCEEEI0ooAghBCiEQUEIYQQjSggCCGEaEQBQQghRCMKCEIIIRpRQBBCCNGIAoIQQohGFBCEEEI0ooAghBAD+fbbb9GyZUtYW1tj0aJFpm6OziggCCHEQLy9vREZGYmBAweauil6oe6+CSHEQBTB8Pvvv5u2IXqiPYhKaOfOnWWOYRsdHW3qJpZJ0f4nT56YuimlunDhAhYtWoTXr1/rPQ993ue6devAcRyaNGmiV503b97EhAkTlKPO2dnZoWHDhpg8eTKuXr2q9XwWL16MoKAgyOVyAMCiRYvAcRzS0tL0apc+zGU9MWQ7tm3bhlq1aiEvL4/3efOBAqIS27FjB2JjY9UeLVu2NHXTytSvXz/ExsbC29vb1E0p1YULFxAZGVmhgNDH9u3bwXEcbt++jUuXLun02k2bNqFVq1a4dOkSPv74Yxw5cgRRUVH4z3/+g9u3b6NNmzZ49OhRufN58eIFVq1ahcWLF0MgoE2EIY0ZMwYODg5YtWqVqZuiER1iqsSaNGmC1q1bm7oZWnvz5g3s7e2Vo78RVVevXsWNGzcwZ84crF27Ftu2bUO7du20eu1ff/2FqVOnol+/fti3bx9sbGyUz3Xv3h3Tpk3D3r17tRqa8+uvv4arq2uVHrq0onr06IG//vpL43OffPKJ1qPcWVlZYfLkyViyZAnmzp2rHDHQXNDPgypKLBajRYsW8PPzQ1ZWlnJ6SkoKvLy8EBoaisLCQgD/Hj64fv06Bg8eDGdnZ7i4uGDUqFFITU1Vme/Dhw/x3nvvoUaNGhCJRAgMDMSGDRvU6lfM89q1axg6dCiqVaumHBa15C67ouzNmzcxbNgwuLi4wM3NDbNmzYJMJsP9+/fRp08fODk5wdfXV+OvLV3bdfv2bbz77rtwcXGBp6cnxo8fr1xOixYtwieffAIAqFevntqhu4SEBIwbNw4NGzaEvb09atWqhQEDBiiHQNXXtm3bIBQKMXPmTPTv3x+//PIL3rx5o9Vrly1bBqFQiE2bNqmEQ3HDhg1DzZo1y5yPRCLBtm3b8N5775W793Dv3j3Ur18f7dq1wz///KMy/d1334WnpydEIhHq1q2L0aNHo6CgAAB/y4+P9ebPP/9Ejx494OTkBHt7e3Ts2BFRUVHl1n369GmIxWKND12HQB05ciSys7Pxyy+/6PQ6Y6CAqMQKCwshk8lUHoqNvq2tLfbs2YN//vkH48ePBwDI5XKMHDkSjDHs3r0bQqFQZX6DBg2Cn58f9u3bh0WLFuG3335DWFgYpFIpgKLxkdu0aYP4+Hh8+eWXOHLkCPr164cZM2YgMjJSYxsHDx4MPz8/7N27F999912Z72f48OFo1qwZ9u/fj0mTJuGrr77CzJkzMXDgQPTr1w8HDx5E9+7dMXfuXBw4cED5On3aNWTIEDRq1Aj79+/HvHnz8PPPP2PmzJkAgIkTJ+Kjjz4CABw4cEDt0N2LFy9QvXp1rFixAsePH8eGDRtgZWWFdu3a4f79+2W+x9Lk5+dj9+7d6Nu3L7y8vDBu3Djk5ORg79695b62sLAQZ8+eRevWrSt82O7SpUtIT09Ht27dyix37tw5dOzYEcHBwTh79ixq1KgBALhx4wbatGmDixcvYvHixTh27BiWL1+OgoICSCQSAPwvP33Xm3PnzqF79+7IysrCtm3bsHv3bjg5OWHAgAH49ddfdW6HJjKZDGKxWPldVfy/OC8vLwQEBGgVTEZnkIFMiUHt2LGj1HGLhUKhStlff/2VAWBr165lCxcuZAKBgJ04cUKlzOeff84AsJkzZ6pM37VrFwPAfvrpJ8YYY2FhYax27dosKytLpdz06dOZra0ty8jIUJvnwoULS22/YoxlRdkvv/xSpVzz5s0ZAHbgwAHlNKlUyjw8PNjgwYOV0/Rp16pVq1TKTp06ldna2jK5XM4YY+yLL77QOA60JjKZjEkkEtawYUOVZVjyfZblhx9+YADY/v37lfP08vJiXbp0Kfe1KSkpDAAbMWKExrZJpVLlQ/H+SrNy5UoGgKWkpKhMVyy31NRU9uOPPzIbGxs2Y8YMVlhYqFKue/fuzNXVlf3zzz/ltrt4G/VZfhVdb9q3b89q1KjBcnJyVNrSpEkTVrt2beWy0uVzLK2NxR87duxQKzdy5Ejm6emp8/wNjfYgKrEffvgBV65cUXmUPLE5fPhwfPjhh/jkk0+wdOlSLFiwAL169dI4v5EjR6q91srKCmfPnoVYLMbp06cxaNAg2Nvbq+y1hIeHQywW4+LFi2rzHDJkiNbvp3///ip/BwYGguM49O3bVznNysoKfn5+ePr0KQDo3a633npL5e/g4GCIxWKVQyWlkclkWLZsGYKCgmBjYwMrKyvY2Njg4cOHuHv3rtbvt7ht27bB3d1duQyEQiHef/99nD9/Hg8fPtRrngDQqlUrWFtbKx9ffvllmeVfvHgBjuPg7u6u8fn//e9/GDt2LFasWIGvv/5a5TDUmzdvcO7cOQwfPrzMc0x8Lz991pu8vDxcunQJQ4cOhaOjo7KcYrknJyfrvTdY3KJFi8AYU3mMHTtWrVyNGjXwzz//QCaTVbhOPlFAVGKBgYFo3bq1yqNVq1Zq5caPHw+pVAorKyvMmDGj1Pl5eXmp/G1lZYXq1asjPT0d6enpkMlkWL9+vcoGx9raGuHh4QCg8RJIXQ55uLm5qfxtY2MDe3t72Nraqk0Xi8UAoHe7qlevrvK3SCQCUHSopzyzZs3CZ599hoEDB+Lw4cO4dOkSrly5gmbNmmn1+pISEhIQExODkSNHqpw/GDduHICiK5vK4u7uDjs7O+XGr7iff/4ZV65cwaFDh7RqS35+PqytrdUOPyr89NNPqFWrFkaMGKH2XGZmJgoLC1G7du0y6+B7+emz3mRmZoIxpnH9VJynSU9P17kt+rK1tQVjTNk+c0FXMVVxeXl5eP/999GoUSO8evUKEydOLPWmnZSUFNSqVUv5t0wmQ3p6OqpXr45q1aopf11NmzZN4+vr1aunNo3jOH7eSCn0bVdF/PTTTxg9ejSWLVumMj0tLQ2urq46z2/79u0af1kGBgaiXbt2+P7777F06dJSN9pCoRDdu3fHiRMn8PLlS5WNXlBQEABofQ2/u7s7JBIJ8vLy4ODgoPb88ePH8c4776BLly44ffo0fHx8lM+5ublBKBQiOTm5zDr4Xn76qFatGgQCAV6+fKn23IsXLwCg1L0oQ8jIyIBIJFLZmzEHtAdRxU2ZMgVJSUk4cOAAtm3bhkOHDuGrr77SWHbXrl0qf+/ZswcymQyhoaGwt7dHt27dcP36dQQHB6vtubRu3VrtV7kxGKpdZe1RcBynfF4hKioKz58/17mewsJCfP/992jRogWaN2+u9vy4cePw8uVLHDt2rMz5zJ8/H4WFhZgyZYryogJ9BAQEAECp90v4+Pjg/PnzEIlE6NKli8rhLzs7O4SEhGDv3r1l3lDH5/LTl4ODA9q1a4cDBw6ofMZyuRw//fQTateujUaNGhmtPYmJicowNye0B1GJxcfHazxm2aBBA3h4eGDr1q346aefsGPHDjRu3BiNGzfG9OnTMXfuXHTq1Alt27ZVed2BAwdgZWWFXr164fbt2/jss8/QrFkzDB8+HEDR9fGdO3dGly5d8OGHH8LX1xc5OTlISEjA4cOHcebMGaO875IM0a6mTZsq5z1mzBhYW1vD398fTk5O6N+/P3bu3ImAgAAEBwfj77//xhdffFHuoRVNjh07hhcvXiA0NBS//fab2vOKwyTbtm1TO9ZeXKdOnbBhwwZ89NFHaNmyJT744AM0btxY+St5//79AABnZ+cy2xMaGgoAuHjxIoKDgzWW8fb2xrlz5xAWFoauXbvi5MmTyju/16xZg86dO6Ndu3aYN28e/Pz88OrVKxw6dAibNm3ifflVxPLly9GrVy9069YNERERsLGxwcaNGxEfH4/du3cbfO9XQS6X4/Lly5gwYYJR6tOJCU+QEz2VdRUTALZlyxZ28+ZNZmdnx8aMGaPyWrFYzFq1asV8fX1ZZmYmY+zfKy3+/vtvNmDAAObo6MicnJzYu+++y169eqXy+sePH7Px48ezWrVqMWtra+bh4cE6duzIli5dqlKu+FUvpbW/5FVMJcuOGTOGOTg4qL0+JCSENW7cmNd2abpSZf78+axmzZpMIBAwAOzs2bOMMcYyMzPZhAkTWI0aNZi9vT3r3LkzO3/+PAsJCWEhISFlzrOkgQMHlvlZKh5WVlZqVxZpEhcXx8aNG8fq1avHRCIRs7W1ZX5+fmz06NHs9OnT5b6eMca6dOnCwsPDVaZpWm6vX79mnTp1Ym5ubuzKlSvK6Xfu3GHDhg1j1atXZzY2Nqxu3bps7NixTCwW87r8+Fhvzp8/z7p3784cHByYnZ0da9++PTt8+LBKmYpcxaSN06dPK79/5oZjjDGjJBExW4sWLUJkZCRSU1ONetyVmKf9+/fjnXfewdOnT1XOSRHDeP/995GYmFjqndmmROcgCCEqBg8ejDZt2mD58uWmbkqV9+jRI/z6669YuXKlqZuiEQUEIUQFx3HYsmULatasqezNlRhGUlISvvnmG3Tu3NnUTdGIDjERQgjRiPYgCCGEaEQBQQghRCMKCEIIIRpRQBBCCNGIAoIQQohGFBCEEEI0ooAghBCiEQUEIYQQjSggCCGEaEQBQQghRCMKCEIIIRr9HxOsQtvhn0xzAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAHxCAYAAAB3bisvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB79ElEQVR4nO3dd1xTV/8H8E8CIWwQAUFRUFFx4cStuFHUPm5ttQ5crVr7qNTV1oJardvWqnVrW2vddVurgjgQ956ICxHLUpB1E3J+f/BLHgIJJOFmQL7v1yuvlpube84lMR/uPfeer4AxxkAIIYQUIjR2BwghhJgmCghCCCEqUUAQQghRiQKCEEKIShQQhBBCVKKAIIQQohIFBCGEEJUoIAghhKhEAUEIIUQlCghCCCEqUUAQQghRiQKCEEKIShQQhBBCVKKAIIQQohIFBCGEEJUoIAghhKhEAUEIIUQlCghCCCEqUUAQQghRiQKCEEKIShQQhBBCVKKAIIQQohIFBCGEEJUoIAghhKhEAUEIIUQlCghCCCEqUUAQQghRiQKCEGLS/vjjD7i6uiIjI0NpuY+PDwQCAX755Rel5b1794aPj48Be6jeokWL0KNHD7i4uEAgEGDbtm1F1jl06BA6d+4MDw8PiMViVK9eHePGjUN8fHyRdSUSCWrWrImVK1caoPcUEIQQE5aVlYWZM2di5syZcHBwULnO2rVrDdwrza1evRpZWVno2bOn2nXevHmDhg0bYtWqVfj7778RFhaGU6dOoWXLlkhLS1NaVyQS4bvvvsO8efOQnJys7+4DjBBCTNS6deuYWCxmqampRZ7z9vZmtWvXZgKBgEVFRSmW9+rVi3l7exuwl+pJpVLGGGNXrlxhANjWrVs1et0///zDALDNmzcXeS43N5e5uLiw8PBwPruqEh1BEEJM1rp16xAcHIwKFSqofL569eoICgoy2aMICwsLnV7n5OQEIP+UUmFWVlYYPHgwNmzYAJlMVqr+lYQCghBikuLj43H79m107Nix2PUmTpyI/fv34+3btzq3xRiDVCot9sEY03n7msjLy0NOTg5u3ryJqVOnolKlSujfv7/KdTt27IjXr1/j1q1beu0TBQQhxCRdvHgRANCsWbNi1+vVqxc8PT2xadMmnds6e/YsRCJRsY/t27frvH1NtG3bFjY2NmjSpAlycnJw5coVuLm5qVxX/ju5cOGCXvtkqdetE0KIjhISEgAA7u7uxa4nFAoxfvx4/PLLL5g1a5ZObTVr1gxXrlwpdp3q1avrtG1Nbdu2De/evcPDhw+xcOFCfPTRRzh16hQqVqxYZF357+T169d67RMFBCHEJGVnZwMArK2tS1x37NixCA8Px5EjR3Rqy97eHo0bNy52HV3HEzTl5+cHAGjVqhW6dOmCGjVqYNmyZVi0aFGRdeW/E/nvSF/oFBMhxCS5uroCAFJTU0tc193dHQMGDMCaNWt0assUTjEVVLVqVVSpUgU3b95U+bz8dyL/HekLHUEQQkxS3bp1AQBPnz5Fo0aNSlz/888/R2BgIGrXrq11W8Y8xcQYg0AgUFr28uVLxMfHo0uXLipf8/TpUwBAvXr19NInOQoIQohJatGiBWxtbXHp0iW1V/MU1L59ezRo0AB37tyBt7e3Vm05ODigefPmunZVrbNnzyIpKQlxcXEAgKtXr8Le3h4AMHDgQABAu3bt0KFDBzRv3hwVK1bEkydPsGTJEojFYkyZMkXldqOjoyEUCku8wqu0BEzf124RQoiORo0ahYsXL+Lx48dFnvPx8YGfnx9OnDihWLZu3TpMnDgR3t7eeP78uQF7qlrHjh1x9uxZlc/Jv3rDw8Nx/PhxxMXF4f379/D09ETr1q0xd+5cxVFUYW3btkWFChV0HnPRFAUEIcRk3bhxA02bNsX58+fRtm1bY3fHJDx58gS1a9fGiRMnEBQUpNe2KCAIISZt2LBhSE1NxfHjx43dFZMwcuRIvH79GqdOndJ7W3QVEyHEpC1duhStWrUqMpurOZJKpahVq5bBphahIwhCCCEq0REEIYQQlSggNCAvTCIQCCASiVC9enUMHz4cT548UawTGRmpWOfevXuK5WlpabCysipSLCQmJgbBwcHw8PCAnZ0d6tatizFjxuDVq1eKdbZt26bYZuFHq1atDLLvfElMTMTHH38MZ2dnODg44D//+Q9vV5lMmjQJAoEAn332WZHnNCnYoq2C77VAIMDVq1eLrLN37140adIE1tbWcHV1xSeffFJkWgR1768+LrfUFZ/vmzaFcfT5eSkOn+3q+v4W93m+evWq0rYiIyN16pum6D4IDbVq1QorV66ERCLB9evXERYWhiNHjuDWrVtK11w7OTlh9+7dCA8PBwAcOHAAdnZ2ePfunWKdf/75Bz179kTXrl2xbt062Nvb4969e9i+fTuePn2KqlWrKrW9adMm1K9fX2mZuuIppkgqlSIoKAipqanYuHEjxGIxZs6cic6dO+POnTuws7PTedsxMTHYs2eP2udXr14NX19f9OzZE3/88YfO7aiyZs0aNG3atMiliGfOnMGgQYMwcOBALFq0CK9evcKsWbNw/fp13Lp1C2KxWGn9/fv3w9PTU/Gz/Dp5IH+656lTp+L333+Ho6MjwsPDMXr0aF73Qx2+3zd5YZzx48fDw8MDL168QFhYGI4dO4a7d+8qpvTW5+elOPpqt7j3t7CSPs9169ZFdHQ0rl+/jkmTJunUH63oveJEOeDt7c2CgoKUlm3ZsoUBUBTtiIiIYADYp59+yvz8/BTrBQUFsZEjRyoVC+nSpQurXr06k0gkRdrKzc1V/P/WrVsZABYdHa2HvTKcP/74gwFgJ06cUCy7ceMGA8B+/PFHnbcrkUiYv78/W7duHQPAJkyYUGQdXQu2FEf+XkdERKh8vmPHjszb21vRNmOM7dy5kwFg27ZtUyyTv7/Pnj1T29bixYuZr68vO3r0KNuyZQuztbVlV69eLfU+aEJf71tBqgrjGKJdVfhuV5P3tyBNPs9yJX0G+UKnmHTUsmVLAPl/FRXUrVs3vH37Frdv30ZKSgoiIyMVd0zKvX79Gq6urrC0LHoAZ2VlVap+PXz4EA8fPizVNvh2/PhxODo6olu3bopljRs3hq+vL44dO6bzdpcvXw4LCwuMHz9e7Tr6nmBNlbt376JVq1ZKbcv3/eTJk1pt69y5c5gyZQqCg4MxevRo9OjRQ+2NVwXx8TnQ1/tWkKrCOIZoVxVjtSunyefZ0CggdCQ/n1x4LhSRSIT//Oc/2L17N/bv349WrVrBw8NDaZ2mTZviypUrmDt3Ll68eFFiW3l5eUWKl6irJFW3bl21d18ay8OHD1G7dm0IhUJwHIecnBwAQJ06dfDgwQOdtvns2TPMmzcPP//8M4RC0/oYcxwHkUiktEwe/AXHreRat24NCwsLVKpUCePHj1eanK5OnTrYv38/EhMTcfPmTZw/f14x6ycA3L9/H4mJiUW2ycfnQB/vG1ByYRx9tVsSfbVb3PsrZ6qfZ9PpiYlj/19xKicnBzdu3MDMmTPRvn17jB07tsi6gwYNwu7du7Fr1y4MHjy4yPOLFy9G06ZNMX/+fPj4+MDHxwdffvmlyi8PIH+ulsIzS86ZM4f3fdSXtLQ0ODs7A8gPxxo1aiArKwvOzs5FirJr6vPPP8eAAQPQpk0bHnvKD19fX9y+fVtp2eXLlwFAaSzK09MT8+fPx7Zt23Dy5El89tln+P3339GxY0fk5uYCAObMmYPc3Fx4enqiSZMmGDRoEJo3b44ff/wRLVq0wMSJE5UubOCTPt43oOTCOPpqtyR8t6vJ+ytnqp9nGqTW0MmTJ5X+KuzevTsOHDgAGxubIut269YNycnJePbsGXbs2FHkH7CXlxcuX76Ms2fP4siRIzh79ix++uknbNq0CceOHUNgYKDS+lu3bkWDBg2UlhUc9CqImfhtLRUrVoRMJoOFhYXKWSw18ccff+DixYt49OiRHnpYehMmTMCECRPw/fff47PPPsPLly8xZcoUODo6Kv11GBQUpDRVQpcuXVCzZk2MHDkSO3fuxKhRo+Di4oILFy7gwYMHOH36NP7++290794dQ4YMwd69e1GtWjWVfeD7c8DH+yanTWEcPtvVBh/tavL+Aqb9eaYjCA21bt0aV65cwblz5zB16lScPHlS7UyLIpEIoaGhmDhxIipVqqRyHQsLC3Tu3BkrVqzAtWvXcPnyZQiFQpVHBn5+fmjevLnSo0qVKrzunz45Ozsr/nI+e/Ys7t+/D7FYjPfv3yv+YtNUZmYmpk2bhtDQUDg4OODDhw/48OEDgPyrUD58+KD3Qu4lGTNmDCZPnoywsDC4urqiRYsW+Oijj+Dv71/i/P0DBgyAQCBQTD2dmJiI8ePHY+DAgXj+/Dnmz5+PcePGYfXq1fD398eXX34JqVSql/3g830ryM/PD61atcKoUaNw+vRp3L17F8uWLdN7uyUxRLuF319T/zxTQGjI0dERzZs3R7t27bBixQoMHz4cW7ZsUTuH/Jw5c/Djjz9qvP2AgAB0795dr+dYjaVu3bp48uRJkb9qHz16pPV58qSkJLx9+xbfffcdHBwcFA8A2Lx5MxwcHHD9+nXe+q4LCwsLrF69GsnJybh9+zYSExMxf/583Lt3D02aNCn2tfK/VOX/tbe3x+DBg3H37l0sX74cHz58wOzZs7F48WLs3LkTJ0+exIoVK/SyH3y+b+qoKoxjiHZVMUS7hd9fU/88U0DoaPHixRCLxZg7d67Wr1U1qCiTyfD06dMS6++WxBSvYurRowfev3+vNLnY7du3ERsbi+DgYJWvUbcfnp6eOHfuXJEHAPznP//BuXPnlAZxjcnJyQkNGzZExYoVsX37dqSlpeHjjz8u9jV//fUXGGOKGyHt7e3RrVs3xampmJgYdOvWDZ9++il69uyJzz//HOfPny+yHT4+B3y+b4Dq017ywjiVK1cuVbvym1lLczMd3/urSuH319Q/zzQGoaPKlStjwoQJ+PHHHxETE6PVa0NCQiAUCjFw4EDUqFEDqamp2LJlC27duqWyZGLBO7PlLC0tVd6RKf9Lx5TGIgYPHozFixdj7NixWL58OaysrDBr1ixUr14dY8aMUfkadfshFovRrl07la/x8PAo8pwmBVv49vbtW/z0009o3749xGIxTp8+jaVLlyIkJERpELJLly7o3LkzGjVqBGtra1y8eBFLlixBQEAAhgwZonLbLVu2xLx587B9+3a4urpi3bp1+PTTT4usx8fngM/3DdC8MI4u7cpPw6i6dNxY+6vJ+6vt59ng9HqXRTmh6kY5xhhLTExktra2rEePHoobV3bu3FlkvcI3af3111+sX79+zNvbm4nFYubu7s46dOjADhw4oPQ6+Y02qh5OTk4q+yp/3tS8efOGDRkyhDk6OjJ7e3vWp08fFhcXp3Z9bfcDam4sCgwMVPs71FVJNymlpKSwTp06MWdnZyYWi1m9evXY8uXLlW6cY4yxL774gtWsWZPZ2dkxS0tLVr16dRYaGsoyMjKKbf/nn39mVapUYS4uLmzixIlKN1fK8fU54PN9CwsLYy1btmRubm7MysqKeXt7s6FDh7L79++Xqt2UlBQmEAhYu3btdNtJHdtlrPj91fX9lW/XFG6Uo9lcCdFSZGQkOnXqhFOnTiEwMLBUf7WS0jtw4AD69++P48ePo0ePHsbujt5JpVKcPXsWXbt2RUREhF7LjtIYBCE66tq1K0QikcrJ+ojhnD17Fk2bNjWLcLh69SpEIhG6du1qkPboCIIQLWVkZChds16vXj3Y2toasUfEXGRlZeH+/fuKn+vUqaPXiTspIAghhKhEp5gIIYSoRAHBE20KBnXs2FHltc29e/eGj4+P4mcqGKSaNoVnpFIpli1bhvr168Pa2hru7u7o0aNHqeobU8Gg5zpt68yZMxg6dCiqV68OGxsb1KxZE1OmTEFKSkqRdfXxvmnCWIWtoqOj0b17d7i6usLZ2Rlt2rTB4cOHi6xHBYPKOE0KBmmLCgYp07TwDJA/7cXOnTsRGhqKbt26IT09HREREUrTS+uKCgZp975t3LgR7969w9y5c1GjRg08evQI3377Lf7++2/cuHFDaRxHn++bOsYqbPXw4UN07doVTZo0wdatW2FlZYW1a9fiP//5D06cOIHu3bsr1qWCQWWUNgWDAgMDWZ06dYpso1evXszb21vxMxUM0pyqwjNRUVEMAFu9ejUvbchRwSDd3rd///23yLLdu3czAGz79u2KZfp630pirMJWCxYsYADYixcvFMuys7OZtbU1GzlypMptUsGgMkqTgkH6ZIpTbRir8Myff/4JOzs7jBs3jpc2NEUFg1QrOKW3XMOGDQEACQkJimXGet+MVdhKPtliwbMC1tbWRY40jYECgmeaFAzSFhUMUq2kwjM3b95EvXr18Oeff8LHxweWlpaoU6cOtm/fXup9Kg4VDNJcdHQ0AChNYmis981Yha0+/fRTODk5YcaMGUhMTERKSgrmzp0LqVSqdsZoQ6GA0IOSCgZpiwoGqVZS4Znk5GS8evUKM2fORFhYGE6cOIEmTZpg1KhR+Pvvv0u7W2pRwSDNpKSk4Ntvv0WrVq2UzrMb630zVmGrGjVq4OLFizh37hw8PT3h6uqKDRs24O+//0bTpk11apcvNEitByUVDNIWFQxSraTCMzKZDImJidi3b5/iyKJjx46KSdMKFnPhExUMKplEIsHgwYORm5uLnTt3Km3PWO9bQYYsbPX8+XP85z//QY0aNbBixQqIRCJs27YNwcHBOHbsGNq2bavrbpQaBYQeyAsGvX37FpUqVSoSEMV92FQdhsoLBpVVhQuxyPFReAYAWrVqhS5duqBGjRpYtmwZFi1aBOB/4xKdO3dWvEY+C+6lS5d0brckY8aMwZ07dxAWFoZvvvkGlpaWCA0Nxfnz50v84h4wYABGjRqFK1euYNSoUUhMTMS3336LCxcuoGfPnpg/fz4uXryI77//HosXL8bIkSOxfPlyvcwHpa/3jTGGUaNG4fLlyzh9+rTSpd2A8d43PvdXVSEgOXkhIFtbWwiFQnz99dfIyMjAwYMHYW1tDSB/GpfmzZtj2rRpWs8WzSc6xaQnxRUMsrW1VTmGIJPJyuWUDcYqPFO7dm2V6zLG9FoYngoGFW/KlCnYv38/Dh48iBYtWhR53ljvm7EKW924cQN16tRRhAOQ//43atQId+7cKeVelQ4FhBFUr14diYmJSoXLGWOIi4tD9erVS7VtU7yKyViFZ+RXo5w5c0axTCKR4OrVq0VO2ekDFQwqas6cOVi/fj327NmjdIRQkC7vm6kVDNKmEFCFChXw8OFDZGdnK17PGMPNmzdVXvllUHq9iNaMaFMP4saNG8zKyop17tyZ7d27lx06dIgNGDCACQQCduzYMcXr5NfJb9q0iUVHRys9rly5orIfMMF6EPLrwKtVq8b27NnDDh48yOrWrcuqV6/OPnz4oPI1xe1HmzZt2KxZs9jevXtZREQE27BhA/P19WW2trbs5s2bivVycnJY7dq1mZubG9u0aRM7ceIEGzBgAAPAzp07p/P+lHQNemJiIpszZw47fvw4O3PmDPv666+ZlZUVCwkJUVqvc+fObMGCBezw4cPsn3/+YeHh4czOzo4FBAQwjuNUbjsqKoo5ODiwbdu2sSNHjjA/Pz/2/fffF1mPj88B3+/bkiVLGAA2ffr0Ip/n2NhYxXq6vG9Vq1ZlANirV69MZn/VrV/4Pgj5PTJdunRhBw8eZMePH2cff/wxA8CWL1+ucjuGug/CtL5JyjBtAkK+LDg4mLm5uTFnZ2cWGBjI/vnnH6XXUcGg0heeefXqFRsyZAirUKECs7KyYk2aNGH79u0r1b5QwSDd3rfiijcVviFMm/fNVAsGqVtfVSGgo0ePsvbt2zMXFxfm5OTEWrRowXbs2KF2O1QwiBATRQWDTAsVDOqot7ZoDIIQHVHBINNABYP0h44gCNESFQwixkIFgwghhJgEOsVECCFEJQoIQgghKlFAGIH8ph6BQACRSITq1atj+PDhRWb61KYCl6nju1KXphW4Ciquopc2qKLcc523p2mlOH1WdisO3+3y/TkwdEU507tg3gx4e3uzVq1asejoaBYVFcVWrVrFnJ2dmZOTE3v+/LlivaFDh7KgoCC2ZcsWFhkZydavX8/c3d1Z7dq1WWZmphH3QDvyG5C8vLzY7t272cGDB5mfn1+xNyAV58GDB8zW1pa1bduWHTp0iJ04cYJ99NFHTCAQsL///lvlay5dusTc3NzUXoeuDfk16GvWrGHR0dFF9uH06dMMABs4cCA7fvw427BhA3NxcWF16tRhOTk5ivXk97ns379f6aaxO3fuKNbhOI5NmjSJOTk5sapVq7ItW7aUqu/a4Pt9Y4yxESNGMJFIxGbPns3OnDnD/vrrL/bll1+ylJQUvbarCb7b5fNzIPfhwwcWHR3N1qxZQzfKlVfe3t4sKChIadmWLVsYABYeHq5YpmkFLlPHd6UubStwlVTRS1tUUU63903TSnGGqEBoiHb5/BwURhXlzEzLli0B5NdbltO0AldBpjgXE9+VurStwFVSRS++UUU51TStFGeICoSGaJfPz4GxUECYCPl5yXr16hW7nqoKXAWZQ0U5bSpwaVLRi29UUU41TSvFGaKSnSp8t8vn58BYaI4AI2GMKcqHPnjwADNnzkT79u0xduxYta9RV4HL1KWlpSnm/G/atClSU1MRGxurc6UueQWu/v37KwonVapUSWUFLk0qevFN24pyAQEBsLS0RFRUFJYuXYpLly7hypUrEIvFmDNnDnr37q3Yz0mTJikqyu3YsQO2trZYunRpqcvaqsL3+5acnIz09HTMnDkTP/zwA7y8vLBp0yaMGjUKHh4eikJAfLerKb7b5fNzYCwUEEZy8uRJpb8uunfvjgMHDsDGxkbl+sVV4CqImfh9j3xU6tK0ApemFb34RhXlVNOlUhzflew0xUe7fH4OjEavIxxEJW9vb9a6dWt25coVdu7cOTZ16lQGgI0ZM0bl+jKZjH3yySfM3t6excTEGLi3pde8eXPWvHnzIst79erFqlWrpvX2PvnkE1apUiWWnZ2tWCaTyVjTpk1ZixYtGGP5V3tUqlSJhYeHs4yMDMVD/nvOyMhgeXl5Ou1PSQOEUqmUTZ48mVlaWjIAzNLSks2aNYu1a9eOtW3btthtf/jwgQkEAjZx4kTGWP7somPHjmV169Zl06ZNY9evX2c///wz8/T0ZE5OTmzKlClMIpHotB8l4ft9a9asGQPA0tLSlJb369ePeXp66q1dTfHdLp+fg8Jouu9yTNVVTMOHD2cCgYBdvny5yPqTJ09m1tbW7PTp04bqIq8+/fRT5uTkxGQymdJyX1/fIr8HTdStW5d16NChyPLRo0czGxsbxhhjz549Uzu1tPyhrqZGSTT9x/nu3Tt2+/ZtlpyczCQSCatQoQKbPHlysa/JzMxkAoGATZo0iTHGWEZGBjt58qQizOT1IH799Vd27Ngx5ufnxxYvXqzTfpSE7/dNXuOgcED07duXValSRW/takpf7fLxOSiMrmIyM4sXL4ZYLMbcuXOVlmtSgasgU7yKie/KZJpU4NKmope+UEU5ZZpWitOlXVOrKFcQH58Do9Fr/BCVVB1BMMbYl19+yQCwS5cuMcY0r8BVEEywYBDflbp0qcBVcLv6vg+CKsqpblfTSnG6tGuKFeX0+TmgU0zlmLqASExMZLa2tqxHjx6MMe0qcMmZYkAwxn+lLm0rcBXcrr4DgirKqW9X00px2rRrqhXl9Pk5oIpyhJgoqihnWqiiXEe9tUVjEIToiCrKmQaqKKc/dARBiJaoohwxFqooRwghxCTQKSZCCCEqUUAYgbxAiCEKoJgKYxRi0VfBJSoY9FynbRUslFX4UXj8QJeCUHwwxucU0Hx/qWCQGdBl/veyzFiFWPRVcIkKBun2vl2/fr3I/Tzr169nANjatWsV6+lSEIoPxvqcarO/VDDIDJhbQBirEIu+Ci5RwSD+CvdMnDiRWVtbK02/oW1BKL4Y63Oqy/7SVBtlmEAgQFhYGLZu3Qo/Pz+IxWJUq1YNhw4dUlrvxYsX6NWrF+zt7eHt7Y2VK1cW2da1a9fQvXt3ODg4wNbWFh06dEBUVJTatk1xqg1jFWLRpeASH6hgkGays7Pxxx9/oF+/fnB2dlYs17YgFF+M9Tk11v5qggJCT44ePYoffvgBs2bNwrFjxzBlyhR8+PBBaZ1x48ahZ8+eOHDgAFq2bIlp06bh0qVLiudjY2MRGBiIxMREbN26FTt37oRUKkXXrl1x7do1le2aQ8EgbQuxFFRSwSU+UMEgzezduxfv3r3D6NGjlZZrUxCKT8b6nBprfzWi1+MTMwWAOTk5seTkZJXPy08t/PTTT4plGRkZTCQSsW+//VaxbNKkSczCwkLp0DM1NZXZ2tqyQYMGqW3b1N5WX19f1rVrV8YYY/Xr12eenp4sMzOTDRs2jDk4OGi9vaZNmzJ/f3+lZadOnWIAWK1atdS+Ljk5mVWpUoW1atWqyIyd2ijp8F7T/p04cYLNnz+fnThxgp06dYrNnTuX2djYsIYNGyrOUaekpLDWrVsr3tdJkyaxt2/fslWrVrGAgAAWGBiocgZgPj4HfL9vhXXo0IFVq1ZN5bTr9+7dY3Xq1FHsR6VKldj58+dL3WZxjPk51XZ/6RRTGdenTx9UrFix2HU6dOig+H97e3tUqlRJqSb1pUuXUL9+faWiMBUqVECbNm2UjjQKYvnjSqXsvf5UrFgRzs7OpS7Ecvv2bXz//fdISUnBjRs3VBZiKUjTgkt80LR/QUFB+OabbxAUFIQuXbogPDwcv/zyC+7cuYOdO3cCgKJg0L179/DTTz/h+fPn6N69O7KysrB3715ERkYiICCgSB/4/hzw8b4V9PjxY0RFRWHkyJFF3jN5QShvb28cPXoUJ0+eRJcuXRAcHIwLFy6Uql1NGfJzagr7q5Ze48dMAWBff/212ufVDU56e3srDUrVrFmTderUqcjrhw4dyuzt7fnqrt4ZuxAL3wWXqGBQ6Qv3fPXVV0wgELCnT58WeU6TglD6YKzPqS77S0cQZRwfE7g5OzsjOTm5yPLk5GSlQT1TV7duXTx58qTIX7SPHj3S6Ty5hYUFVq9ejeTkZNy+fRuJiYmYP38+7t27p3JsYcqUKdi/fz8OHjyIFi1a6Lwf+upfQfK/VOX/tbe3x+DBg3H37l0sX74cHz58wOzZs7F48WLs3LkTJ0+exIoVK/SyH3y/b3ISiQS//vorOnTogBo1ahR5/saNG6hTpw6sra0VywQCARo1aoQ7d+7o3G5JjPU5Ndb+aoICwoS1bNkS9+/fx8uXLxXL0tLScPHiRbWFREzxKiZjFmLRtuASn6hgkGqHDx/G27dvERISovJ5TQpCFVaWCwbpsr8Go9fjEzMFgH333Xdqn9f0FNOjR4+Yra0ta9iwIduzZw/766+/WOvWrZmlpaXKgUl526b2thqrEIsuBZc0QQWDdHvf5Hr27MkcHBzUbkOXglBluWCQLvtLBYPKML4CgjHGYmJiWJcuXZidnR2zsbFhbdu2ZWfOnCm2bVMLCMaMU4hFl4JLmqCCQaUrGCQUCtmYMWOKbVebglBlvWAQY9oXwKKCQYSYKCoYZFqoYFBHvbVFYxCE6IgKBpkGKhikP3QEQYiWqGAQMRYqGEQIIcQk0CkmQgghKlFAEEIIUYkCghBCiEoUEIQQQlSigCCEEKISBQQhhBCVKCAIIYSoRAFBCCFEJQoIQgghKlFAEEIIUYkCghBCiEoUEIQQQlSigCCEEKISBQQhhBCVKCAIIYSoRAFBCCFEJQoIQgghKlFAEEIIUYkCghBCiEoUEIQQQlSyNHYHygOZTIaEhAQ4ODhAIBAYuzuEEKIWYwwZGRmoXLkyhMLijxEoIHiQkJCAqlWrGrsbhBCisVevXsHLy6vYdSggeODg4AAg/xfu6Oho5N4QQkqSl5eH5ORkvHv3DnZ2drCwsDBY21KpFGlpacjKyoKtra1BzjpwHIdvvvkGzZo1Q+/evREUFKT43ioOBQQP5G+wo6MjBQQhJi4vLw9JSUmQSqXw8PAweDikpqZCIBDA3d3dYKekjx49iosXL+L69evo1KkTAGjUNgUEIcRsyMMhLS0N9vb2RgmHzMxM2NnZGXS8Mjg4GPHx8WjcuDHc3d01fh0FBCHELJhbOEgkElhYWEAoFEIgEGDChAkAgA8fPmi8DbrMlRBS7plbOHAch2nTpiE8PBwymUzn7VBAEELKNXMLBwC4desWLly4gBMnTuDp06c6b4dOMRFCyi1zDAcACAgIwKJFi+Ds7IxatWrpvB0KCEJIuWRu4cBxHCQSCezs7AAAQUFBpd4mnWIihJQ75hgOoaGhmDhxIjIzM3nbLgUEIaRcMbdwAID4+HjcuHEDDx8+RGxsLG/bpVNMhJBywxzDAQBq1KiB9evXIyMjA40aNeJtuxQQhJBywdzCgeM4pKamwsPDAwBQr1493tugU0yEkDLPHMMhNDQUo0aNQnx8vN7aoYAghJRp5hYOQP7d0K9evUJaWhrevHmjt3boFBMhpMwyx3AAABcXF2zYsAEvX75Es2bN9NYOHUEQQsokcwsHjuPw8OFDxc9ubm56DQeAAoIQUgaZYzjIxxyuXr2q9/bkKCAIIWWKuYUDkF8mVCqVgjGGvLw8g7QJ0BgEIaQMMcdwAACxWIyVK1fiyZMnaNCggcHapSMIQkiZYG7hwHEczp07p/hZLBYbNBwACghCSBlgbuEgkUgQGhqKL774Avv27dN7e+pQQBBCTJq5hQMAWFpawtvbG2KxGF5eXgZpUxUBY4wZrfVyIj09HU5OTnj//j0cHR2N3R1Cyg1jhMPt27cV5TorV65slDEHIH9g+uXLl/D29uZ1ux8+fEC7du00+r6iIwhCiEky1pHD3bt3cf36ddy5c8fgYw579uxRlAgVCAS8h4O26ComQojJMeZpJflJFcaYwcKBMYYZM2YgMjISz58/x1dffaX3NjVBRxCEEJNi7DGHgn/BG+q0kkAgQOfOnWFjY4MOHToYpE1N0BEEIcRkGDscUlJSIYU98izswZBlsLYB4KOPPkK7du3g4uJi0HaLQ0cQhBCTYOxwSE5JReQDV6Q6jEKmyyik2H2K91kivbXJcRzWrVuH7OxsxTJTCgeAAoIQYgKMHQ6pqam49dwO8e+cFctlAjtEPvTQW7tz587F+vXrMWPGDL21UVp0iokQYlSGCofbt2/j7t27SssYY5DJZGCM4b1NcP43onzYQSDE+2wxjp84BQGkarfr6+sLX19frfszdOhQXL58GcOHD9f6tYZCAUEIMRpDHjlIJBJkZmaqfZ6JMgBLBkVCMAZAgpycDyhuqFoikejUn8aNG+Po0aOwsbHR6fW64jhO43XpFBMhxCgMfVpJJBLBzs4OdnZ2sLW1hbW1NcRiMaytrWFtbQ3HvFsQsFyAyQCWBwgEcMg5B5v/f17dQyTSbJyC4zgsXLgQiYmJimXGCAdtZoM1+yOIGzduIDw8HJcvX8a7d+9QrVo1fPLJJwgNDYWtra2xu0dIuWSMMQd/f3/4+/sXO31GFpeI4+cTIckTwhav8VE3fwD83Ky2bNky7N69G9evX8euXbsMOs4C5IeDVCrVaiDcrAPi/v37aNOmDerUqYNVq1bB1dUVUVFRmDdvHq5du4aDBw8au4uElDumMCCt7g5pW6s82HHXkJOTAytrawD+vLUdEhKC69ev46uvvjJaOFSsWBHazK5k1gHxxx9/ICcnB/v27UPNmjUBAJ07d8abN2+wYcMGpKWloUKFCkbuJSHlhymHg755eHgY9cihYsWKsLe3R0ZGhsavNesxCPm5QycnJ6Xlzs7OEAqFsLKyMka3CCmXzC0cOI7D7Nmzcfv2bcUyY4eDtsw6IEaOHAlnZ2d8/vnniIuLQ0ZGBo4cOYL169dj0qRJsLOzU/m63NxcpKenKz0IIeqZWzgAwKZNm3D8+HFMnTpV6WY4QyltOAB6OMUkk8mQk5NTJgZ4fXx8EB0djX79+ilOMQHAlClTsGrVKrWvW7RoEcLDww3QQ0LKvrIWDr6+vpBIJBpfnaTO6NGjcf/+fXz66adGuVqptOEA8FAPIicnB3/++SeOHj2KCxcu4N9//wVjDGKxGPXq1UPnzp0xbNgwNGrUqDTNlCgyMhKdOnXSaN0bN26gcePGeP78Obp164ZKlSph6tSpcHNzQ0xMDBYsWICBAwdi8+bNKl+fm5uL3Nxcxc/p6emoWrUq1YMgpJCyFg6lxRhTaqfwz4ZQUjhkZGTAz89Po+8rnQMiOzsbS5YswY8//oj379/Dz88PTZs2hbu7O6ytrZGamoq4uDhcvnwZ6enpaNOmDZYsWYLWrVvr0lyJ3rx5g6NHj2q0bv/+/eHi4oKhQ4ciIiICcXFxSqeTtm7dipCQEERGRiIwMLDE7VHBIEKKMrdw4DgOM2bMQJcuXdCnTx+9t6euDyUdOWgTEDqfYqpVqxbs7OzwzTffYNiwYahUqZLK9RhjiIiIwNatW9GpUyf8/PPPGDt2rK7NquXp6an1dm/evIl69eoVGWsICAgAkF84RJOAIIQoM7dwAIBDhw4hMjISMTExaNu2rcEn3uPrtFJBOgfEvHnzMHLkyBLfePk85507d0Z4eDhevnypa5O8q1y5Mu7evYsPHz4o/UKjo6MBwKi1YAkpq8wxHID8MxPPnj1Dhw4dykU4AGZek/rQoUPo27cvWrZsialTp8LV1RWXLl3CokWLUK1aNdy4cUOjS13pFBMh+cwtHCQSCSwtLQ0+zlCQtuGgzSkms77M9aOPPsLp06fh6OiIL7/8Er1798b27dsxYcIEREVF0X0QhGjB3MKB4zhMmzYNK1as0OruZL77oI8jBzneLnOVyWT4/fffMWLECL42aRCdOnXS+OonQohq5hYOAHDp0iWcO3cOly9fxsCBA+Htzc+cTZrSdzgAPJ5iys3Nha2trVYzBZYXdIqJmDNzDAe5vXv3omrVqmjZsqVB2y1NOOjtKqZ58+apfU7XOdEJIWWXuYUDx3GK+7wAYODAgXpvU1Uf9H3kIKdVQCxYsAD9+vVTmTrmeORAiDkzx3AIDQ1FXl4eVqxYoQgJQzJkOABaBkTDhg0xYsQI9OrVq8hzOTk52LZtG1/9IoSYMHMLBwCKG38ZY4iNjUX9+vUN0q6cocMB0DIgxo0bp/ZIQSQS4bvvvuOlU4QQ02WO4QAAfn5+WL16NWQymVmEA2Dm90HwhQapibkwt3DgOA4fPnww+I1vhfvAZzjQfRCEEN6ZYziEhoZizJgxSEpK0nt76vpgjCMHuVIHBJ1WIqT8M7dwAIDU1FQ8fvwYCQkJRpkiyNjhAPBwisnW1hZZWVl89adMolNMpDwzx3CQi4+Px5s3bxQTeBqKPsPBoKeYaAiDkPLL3MKB4zg8e/ZM8bOXl1e5CgdtlTogjDlJFSFEf8wxHKZPn46RI0fiwYMHem9PXR9MJRwAGqQmhKhgbuEA5M8G8f79e0XNeUMztXAA9FCTmhBStpljOACAnZ0d1q5di6dPn+q9RHJhphgOAI1BEEIKMLdw4DgOV69eVfxsb29P4VBAqQOibdu2fPSDEGJk5hYOEokEoaGhmDBhAk6ePKn39lQx5XAAeAiIU6dO8dEPQogRmVs4AIBQKISzszMsLS3h5ORkkDYLMvVwAGiqDV7QfRCkLDPHcJDLy8tDXFwcatWqZdB2jRkOb9++RdOmTfmvB1GQtncWVqtWTdemCCF6Ym7hwHEc/vnnHwQHB0MgEMDCwsKswiEzM1Or37POAeHj46NVQ1QvghDTYm7hIJPJEBoaiqioKMTHx2PChAl6b7MwY4eDUCiEu7u7xq/ROSC2bNlCN8kRUkaZWzgA+WMOLVq0wOXLl9G4cWODtFmQKYRDpUqVIJPJNH4djUHwgMYgSFlijuFQ0Nu3b1GpUiWDtmkq4WBvb6/V9xXvd1I/fvwY0dHRePLkCd+bJoSUkrmFA8dx2Lp1KyQSiWKZOYeDtngLiD179sDb2xt169ZFu3bt4OfnB29vb+zdu5evJgghpWBu4QAAc+bMwY8//oi5c+capL3CynI4ADwFxLFjxzB06FA4OTnhhx9+wK+//opFixbByckJQ4cOxfHjx/lohhCiI3MMBwDo168fHB0d0bdvX4O1KVfWwwHgaQyibdu2cHR0xNGjRyEU/i9zGGPo2bMnMjIycOHChdI2Y7JoDIKYMnMNB7mMjAw4ODgYtE1TDgeDj0HcvHkTEydOVAoHIH8q8IkTJ+LWrVt8NEMI0ZK5hQPHcVi2bBnS0tIUyygcdMdLQFhYWIDjOJXPSSSSIsFBCNE/cwsHAFi4cCF+//13TJkyxSgTiZancAB4CoiAgAAsWbIE2dnZSstzc3OxbNkytGzZko9mCCEaMsdwAIBRo0bBy8sLkydPNvjprPIWDgBPYxDnz59Hly5d4OLigkGDBsHDwwNv3rzB/v37kZKSgjNnzqBNmzZ89Nck0RgEMSXmGg5yEokEIpHIoG2WpXDQ5vuKl4JB7dq1w8mTJzFr1iysWbMGjDEIhUK0bNkSO3fuLNfhQIgpMbdw4DgO8+fPx4gRIxRzKlE48If3O6mzsrKQlpaGChUqwNbWls9Nmyw6giCmwNzCAQBWrlyJ7du3w9PTEwcPHoSVlZVB2pUri+Fg8COIgmxtbc0mGAgxFeYYDgAwZswY3LlzBxMmTKBw0APeAuKvv/7Cjh078OLFC+Tk5Cg9JxAI6FJXQvTEXMMBABwdHbF582YakNYTXq5iWrp0Kfr374+oqCiIRCJUrFhR6eHi4sJHM4SQQswtHDiOw/Tp0xEZGalYRuGgP7wcQaxduxYhISFYv369QT+ghJgzcwsHANi1axdOnz6NmJgYHDt2zOBjfuYUDgBPAZGSkoJPPvmEwoEQAzHHcACAjz/+GE+ePEGvXr0oHAyAl1NMbdu2xYMHD/jYFCGkBOYWDgWrUVpaWmLevHkGv/nWHMMB4CkgVq1ahTVr1uDQoUNqp9wghJSeuYUDx3GYOnUqNm3apPe2iuuDOYYDwNMpJl9fX3Tt2hX9+vWDQCAocpmrQCDA+/fv+WiKELNlbuEAABEREYiKikJMTAyCg4NRuXJlg7QrZ87hAPAUEDNmzMDPP/+Mxo0bo27duga/HpmQ8s4cwwEAgoKCkJCQgHr16lE4GAEvd1JXrFgR48ePx6JFi/joU5lDd1ITfTK3cOA4DkKhEJaWvN/Hq1Ufyms4GLweRF5eHrp168bHpgghBZhjOEyfPh3ffPMNpFKp3ttT14fyGg7a4iUgunfvjkuXLvGxKULI/zO3cACAe/fuITo6GhEREYiNjTVImwVROCjj5Rju22+/xZAhQ2BnZ4devXqpvHOa7qYmRHPmGA4A0KRJEyxduhS2trbw8/MzWLsAhYMqvIxByCvGFfdBKngtc3lDYxCET+YWDhzHIScnx6j/dswpHAw+m+vcuXONUhiEkPLGHMMhNDQUycnJ+OWXX4wSEuYUDtriJSDCwsL42AwhZs3cwgEAEhMTcefOHWRlZeHp06do0qSJQdqVo3AonvGuIyOEKJhjOABAtWrVsGHDBqSlpVE4mCAKCEKMzNzCgeM4JCUloUqVKgCgKBVqSBQOmuHlMtey7PLlywgKCoKDgwPs7e3RqVMnXLhwwdjdImbCHMMhNDQUI0eOxPPnz/Xenro+UDhoRucjiJcvX2q1frVq1XRtSm+uXLmCDh06oEWLFvjtt9/AGMOSJUvQpUsXREREoHXr1sbuIinHzC0cgPya9W/evEFGRgaSkpLg4+NjkHblKBy0o/NlrkKhUKsPlSle5tqjRw/cvHkTcXFxigkGMzIyUKNGDdSuXVvjIwm6zJVoyxzDQS4tLQ3Pnz+nMQcjMchlrlu2bCnzl7ZeuHABvXr1Upp91sHBAR06dMD+/fvx5s0beHp6GrGHpDwyt3DgOA6PHz9GgwYNAAAVKlRAhQoV9N5u4T5QOGhP54AYNWoUj90wDo7jIBaLiyyXL7tz547KgMjNzUVubq7i5/T0dP11kpQr5hgOoaGhuHTpElatWoU2bdrovU1VfaBw0I1ZD1LXq1cPly5dgkwmUyyTSqWIiYkBkF9KVZVFixbByclJ8ahatapB+kvKNnMLByB/dgX56WhjlCSmcCidchMQkZGREAgEGj1u3rwJAPjiiy/w+PFjTJ48Ga9fv8arV6/w2Wef4cWLFwD+N4VIYbNnz8b79+8Vj1evXhlqN0kZZY7hAAAikQhLly7Ftm3bqExoGcTbfRBPnjzB+vXr8eDBA2RnZys9JxAIcPr0ab6aUqlOnTrYuHGjRuvKr6gKCQlBUlISFixYgHXr1gEAWrdujdDQUCxevFhxnXZhYrFY5akpQlQxt3DgOA7nz59H586dAeSHRN26dfXebuE+UDiUHi+T9d29exetWrVClSpVEBsbC39/fyQnJ+P169eoWrUqatasiTNnzvDRX73Izc3FkydP4ODgAG9vb0yYMAE7duxAUlISbGxsSnw9XcVE1DG3cJBKpZg2bRqioqIwc+ZMfPzxx3pvszAKh+IZvGDQnDlzEBQUhHv37oExhs2bN+PVq1c4fPgwcnJysGDBAj6a0RuxWIwGDRrA29sbL1++xK5duzBu3DiNwoEQdcwtHADAwsICderUgVgsRo0aNQzSZkEUDvzi5QjCy8sLa9euRe/evWFpaYnLly+jefPmAIClS5fiyJEjOHv2bKk7y7e7d+9i3759aN68OcRiMW7duoUffvgBPj4+iIiI0PhNpiMIUpg5hoMcYwzx8fEGv3iDwkEzBj+CSEtLg4uLC4RCIUQiEdLS0hTPNW/eHNevX+ejGd5ZWVnhzJkzGDFiBHr16oVffvkFn332GSIjI03+TSamy9zCgeM47Ny5U3EzrEAgoHAoJ3gZpK5SpQqSk5MBAL6+voiKilLUqL59+7bJ/tJq165tkkc2pOwyt3BgjGHGjBmIjIxEXFwcvv76a723WRiFg/7wEhDt2rXDxYsX0bdvXwwbNgzfffcd3rx5AysrK2zbtg3Dhw/noxlCTJq5hQOQf7TQs2dPXL58GV27djVImwVROOgXL2MQT58+RUJCAtq3b4+8vDxMnToVO3bsgEAgQO/evfHTTz+V63PzNAZBzDEcCkpLS6PpM8oIbb6veAkIc0cBYd7MLRw4jsP69esREhICOzs7vbenrg8UDrox+CC1RCJBZmamyucyMzMhkUj4aIYQk2Nu4QAA4eHh2Lx5M6ZNmwZj/H1J4WA4vATEuHHjMHbsWJXPjR8/Hp9//jkfzRBiUswxHABg2LBhcHNzQ0hIiMFPZ1E4GBYvAREREYGPPvpI5XN9+vTR+zQbhBiauYYDkD/J5ZEjR2huJTPAS0C8fftWbd0EDw8PJCYm8tEMISbB3MKB4zjMnz8f8fHximWGnouMwsE4eAkIZ2dnxMbGqnwuNjYWDg4OfDRDiNGZWzgAwMqVK7Fv3z5MnjwZUqnUIG0WROFgPLwERKdOnbBo0SKkpqYqLU9NTcUPP/ygmNWRkLLMHMMByJ/12M/PD7Nnz4alJW8TQGuEwsG4eLnM9dGjRwgICIBIJMKQIUNQpUoVxMfHY8+ePZBIJLh8+TLq1KnDR39NEl3mWv6ZazjIyWQytfVR9IXCQT8MfplrnTp1cO7cOTRu3BgbN27Et99+i02bNqFx48Y4d+5cuQ4HUv6ZWzhwHIcZM2bgypUrimUUDuaJl+PF5ORkNGrUCKdPn0Z2drZi8j5ra2sAwPXr19G0aVM+miLEoMwtHABg27ZtOHnyJK5cuYKjR4/C1tZW523FxsZCIpFAJBLB19dXo9dQOJgOXgKiT58+iIiIgLW1NWxsbJTqKNy7dw9BQUFISkrioylCDMYcwwEARo4ciYcPH2LIkCGlCgcgPyBycnIUv7uSQoLCwbTwdpnrsGHDiiyPjY1Ft27dDF5ukJDSMrdwKDgUKRaLsWLFCl7vc8jLy1N7paMchYPp4SUgjh07hsjISEybNk2x7OXLl+jSpQsqV66Mo0eP8tEMIQZR1sMhNjYWDx48KPELWY7jOPz3v//F3r17tW6rOHkyIEPUEhmOH+ODQ19wQvdi+0DhYHp4OcXk5+eH/fv3IygoCD4+PhgyZAi6dOkCBwcHnDx5ku6DIGWGKYXD06dPtT5/D/zvtI61tbVGrzt27BjOnj2LmJgYBAYGws3NrTS7oXD+sTsyRTUAgQBgMqSKfJCWmYAKdpzSehQOpou3i5oDAwOxadMmjB49GitXroSlpSVOnToFFxcXvpogRK9MKRwEAoHWX/S6+s9//oOXL1+iZcuWWoVDbGys2qMUTuiBVJsBgPwASCAEWB7+iUmFI3deaV3GGIRCoeJKqQYNGsDf31+nfdEGhUPJdA6IwjfFAUBwcDC++OIL7NixAydOnICVlZViPQoKYspMLRz0TSKRwMLCAkKhEAKBAFOmTNFpGzk5OUWWywTW+OASrOIVAkjzmMrXFN6uvlE4aEbngHB1dVX7QWaMoXnz5krL5PVqCTE1phgOMhnwgdVAjoUYjL3ntU2O4xAaGopKlSph9uzZWt/jID9yUDftRp6oKpjABih8C65ACBH3pMj6Bb9HLC0tIRKJtOqPtigcNKdzQMydO9cod3QSwidTDIc8GXDkqhv+RVXAQoZ0CHHlyXsE1Ernpd1r167h3LlzsLKywtChQ1GzZk2tXq/uyOF/ZP+/LwwF52kQ59yASPKyyNoFr6Bq2LChXk8vUThoR+eACAsL47EbhBiescLh9u3buHPnDmQyGRhjRf7QymC+SIJX/g+C/L/ur8Q6ITH2OESCDLXb9fX1ha+vLxgDiptAp3Xr1pg/fz7c3Ny0DgcAEIlEiptgVbHCv8iVpUMmsIdAKASYDALZB1hnnYe1tXWRMYfC29YXCgftGXbmLUJMhDGPHHJzc5GVlaX2+RwLa8CC5V/9U0AWJ4KYqf/LPTtHil3HpLh6pyMAhqqur9FdxiAUCsBxHPLy8hQ3sfbu3Vvn/suDqDhZuSm48lyA+LccBJJkWGdGwkYsRIcOHehqpTKEAoKUa9HR0cjNzYVYLEbr1q0BGP+0kkQigVgsVnuKNo+lI6PgLUqMAQIZ7KyyYSlQ/5f71QduuBfHwFj+/rxIqobT0TIEBuQhNDQU2dnZ+Omnn5RmOtAXW3EeAuu8xYlnJxR3UlerVpPCoYzROSAaNGiA+fPno1+/fhqt/+bNGyxatAiVK1fGrFmzdG2WEK1ER0cjIyMDDg4OaN26tdHDITU1FZ6envD19S3mIg/gwoMM3H7x//cPCRi6NXoHQVaVYm9+e/zCutCpJQHOX3mP108OISYmBnl5efjtt99QrVo1pddpckRQWpaWlmjWrBmFQxmjc0AMHjwYI0aMQIUKFTBs2DB07NgRTZs2VVzdlJ2djadPn+LSpUs4ePAg/v77bwQEBOCzzz7js/+EaMwUwkGTS1kFAqBdvXdIfXECWZwI9laZqFW5Ax48KH5wWAApAKsCSxgEkMLZ2RnDhg2DVCqFu7t7kW1oelmpLhPvyQmFQgqHMqhUVzGNGzcOq1atwqZNm7B48WIIBAIIBAKIRCJwXP7dkowxtG/fHn/++Sf69+/PW8cJ0VZZCIeCrATvIGM5itNKJQ0OV/d4iYfxfvjf9aUCVPeIh7W1NWrXrq32dZoODGt74x7HcYorlAw9XTiFAz9KNQbh6emJxYsXY8GCBYiJiUF0dDQSEhKQnZ0NV1dX+Pn5oWPHjvDy8uKrv4ToRCaTlalwUEWTU0FX78pwIuItEhJeISHuL3w1ago8PAw/1b58+gxDBwNA4cAnXgapRSIR2rVrh3bt2vGxOUJ4J5PJynQ4aKp5AyHi7p/D6f3rkJGRgfj4/vDw8NB7uwUVnFvJ399fcVrKECgc+EVXMZFyKy8vDzKZDED+3bplLRx8fX11+nJ1dHTEqFGjkJmZWWRGA30rPPGeIeZUkqNw4B8FBCmX5APS1vausKlQDZCqv++Ab3wdOWgzEMxxHF68eIFatWoBAJycnFCpUiWd2tUVzcpa/lBAkHJHHg7PkwTwa/OxYnlSVhbcbLP12raxakhPnz4d169fx5o1a/jfvlSIO/EV8d62LyBKhZX0qso+UDiUPxQQpFyRh0NiShY+sCpKzyVl2cLeioONpX4mjjRWmdC8vDzk5ORAKpUiNzeX323LgFP3vfAuUwwmqgBYeuE9qwFO+i+sLPNP31E4lF8UEKRMio6ORnR0dJHlMpkMMpkMFb3qw7tBlSLPR0RdwrvEojOKFqRLPQJj1pC2sbHBTz/9hNjYWDRs2BAnTpzQ+LXF1XQAAImFF9LtC1wiKxBCJnDE8bOXIJY8BFC0noOcvus6UDjoHwUEKZNyc3ORkaF+4rr01ESVy9+nJCIzM7PYbWtbj8BYp5WuXbummD7ExsYGDRs2BKDd4HZJM7NKrWRFFzIGTsrAjFjXgcLBMEoVEM+ePYONjY3SZXQrVqxQWsfR0RFjx44tTTOEFCEWi5VK2cqPHOQ3a+blpCHpxS24eTdSrPP22TUwSQbs7OyK3bY2Vw0Zq9hPaGgozp07h/nz5xeZeE+bwe2Sbr6TCVLByXLABFb/XxVOBkAGW0EihGKx2llZ5dvWBwoHw9E5IK5du4YWLVpg9+7dGDBgAID8c6GhoaFK6wkEAvj6+qJjx46l6ighBbVu3VqjuZUOHtsHWNqASTLRt1dnIMCHtz4Y67SShYUFKlWqBCsrq1LXj9bk5ruUD29x4YknMrJFEMg+wCH7FDq1a0RjDmZA59scN27ciDZt2ijCoaDDhw/j2bNniIuLQ//+/bF9+/ZSdZIQVTSZWynzXQL+fXEbWe9Vn3LSlTHHHIRCIWbPno0//vgDLVu21Ht7Fe1z8VGT53BJXw3b5F9gKX1F4WAmdA6IM2fO4JNPPlH5nKenJ7y9veHj44MBAwbg4sWLOneQEFXKysR7fOE4Dn/99ZfS3Ea6FPspDfle0sR75kPnU0zx8fGoW7eu0jKBQIBGjRrB1tZWsczT0xPx8fG695CQQswtHBhj+Oqrr3D27Fm8fPkSU6ZM0XubhdHEe+apVO80K1TXUCgU4saNG/Dz81Msk5dVJIQP5hYOQP4fXu3bt4e1tbVBTikVRhPvmS+d3/HKlSvj3r17Ja537949VK5cWddmCFEwx3CQGzhwIA4fPmzwgCh4ExwdOZgfnd/xwMBAbNiwAVKpVO06UqkUGzZsoCuYSKmZWzhwHIeNGzcq3Rld2iuWdOkD3SFt3nQOiC+//BIPHz7EoEGD8O+//xZ5/u3btxg0aBAePXqEL7/8slSdJObN3MIBAL755husWbMGc+bMMUh7hakKhwYNGqBp06Zo0KCBXtumcDAdOg9S+/v7Y/Xq1Zg0aRKOHz+O5s2bw9vbGwDw4sULXL16FVKpFGvWrFHc4UmItkobDg0aNNC5HoExTysNGjQIly9fxuDBgw3Wppy6IwdDTN1N4WBaBKyUI8gXLlzAwoULERkZiezs/JkybWxs0LlzZ8yePRtt2rThpaOmLD09HU5OTnj//j0cHR2N3Z1ywxyPHArKyspSuiLQEOi0UvmnzfdVqQNCTiaTITk5GQDg6upqlCsejIUCgn/mFg4cx2HlypUICQkx+FhDwT5QOJR/2nxf8fYtLhQK4e7uDnd3d7MKB8I/cwsHAFi8eDF27tyJL774QlEFz5AoHIgq9E1OTIo5hgMAjB49Gj4+Ppg6darB/8CicCDq0HTfxGSYazgAgJeXF/bu3QtLy+L/ScbGxioG3bWZtVUdCgdSnHJ3BJGRkYEZM2age/fucHNzg0AgQFhYmNr1r1+/jq5du8Le3h7Ozs7o378/4uLiDNdhAsD8woHjOHz99de4f/++YllJ4QDkB8SjR4+KLfKjTR8oHEhxyl1ApKSkYMOGDcjNzUXfvn2LXffhw4fo2LEjOI7D7t27sWXLFjx+/Bjt27dHUlKSYTpMzC4cAGD9+vU4evQovvzyS97LhGqCwoFowiCnmJKSkgx2ZYa3tzfS0tIgEAiQnJyMTZs2qV137ty5EIvFOHLkiGI0v1mzZqhVqxaWLVuGxYsXG6TP5swcwwEAQkJCcPfuXYSEhEAsFhusXYDCgWhOb0cQjDEcO3YMAwYMQNWqVfXVTBHyimIlkUqlOHLkCAYMGKB0qZe3tzc6deqEAwcO6LObBOYXDgWvKLezs8Mvv/yit7mVYmNj8eDBgyKnoigciDZ4P4J4+vQptmzZgu3bt+PNmzdgjBnlJqOSPH36FNnZ2SrvDvX398c///yDnJwcleUYc3NzlU4LpKen67Wv5ZG5hQPHcZg5cyZ69OiBoKAgANBbu4wBj55/QK4UsBEkKgazKRyItngJiJycHOzZswebN2/GuXPnwBhDy5YtFadwQkJC+GiGVykpKQAAFxeXIs+5uLiAMYa0tDR4enoWeX7RokUIDw/Xex/LK3MLBwDYt28fIiIicPnyZbRs2RLOzs46bYcBkBXzzzZPJsD5p17Iqphfq+WDLAcpmW/gIEqncCBaK9UppitXruCzzz6Dh4cHRo4cicePHyM0NBT3799HdHQ0xo8fr/M/BACIjIxUnDIq6XHz5k2d2ijuC0Ldc7Nnz8b79+8Vj1evXunUtjkyx3AAgMGDB2PQoEFYsWKFzv8m7r+ywwuMxlvriYjHIKR9KBoUj95WxL8f7P63QGCFi3FVIJFQOBDtlWqyvnv37kEkEqF3794YPXo0evbsyetNPnXq1MHGjRs1WrdatWpabbtixYoA/nckUVBqaioEAoHaf8hisdjgA4vlgbmFg1QqhYWFBQQCASwsLPD111/rvK34FDHO3quYf/5IAEiYE/act0RV7IIA/7vzOtupNyCuCMj3TyBEjtQK5y7EwEKgfmr+Bg0a8D4ZH4VD2adzQNy9exdCoRBTp07F1KlT4e7uzme/AOSXKx07dizv2wWAmjVrwsbGBnfu3Cny3J07d+Dr66ty/IHoxtzCgeM4hIaGok6dOpg4cWKJbcbGxhZ7b0MqWgBwBQT//3sTCJEHB3zItYaIpSrWk9mkAQX/dmEMYLnIznqP4nogkUhK3iktUDiUDzr/ub9q1So0bNgQixcvhpeXF/r27YuDBw8WW0DIlFhaWqJPnz7Yv38/MjIyFMtfvnyJiIgI9O/f34i9K1/MLRwA4Pz584iKisKvv/6qUU12iUSCnJwctY88STbAivZdyDjln99fBKTv/z8YZAAYbD+cgb2dHeyKeegyHbo6FA7lR6lnc7169So2b96MP//8E+np6XB1dcXw4cMxatQoNGzYEAcPHkT//v2Rl5fHV59LdPz4cWRmZiIjIwMhISEYNGiQYl794OBgxRTKDx8+REBAAJo2bYpZs2YhJycHc+fORWpqKm7evKnxvRs0m6t65hgOcjt37kSNGjU0upS1pCMIKWzxGgMgY2Lg/48F7ASxcEdEkXWZwArZQh8woRWspK8RMry3zvugLQoH02eU6b4LX8kEAE2aNEHdunXxxx9/GDQgfHx88OLFC5XPPXv2DD4+Poqfr127hpkzZyI6OhqWlpbo3Lkzli1bhpo1a2rcHgWEauYWDhzHQSAQ8PrXeEEZ2RY4ePY9JHlWsLFIxuDulVF4yE9+Keu5c+eQnZ0NOzs7fPLJJ3rpT2EUDmWDUQKioKdPn2Lz5s349ddfkZCQAIFAYNCAMDQKiKLMMRymT58OCwsLLF26VG8hceLECcX9OT169CjSB/mlrHFxcYpJ/agSHClIm+8rvUy1UbNmTSxcuBALFizAsWPHsGXLFn00Q0yUuYUDADx69AgxMTEQCASIjY1F3bp1DdKuXOGb4AwRCnIUDuWXXudiEgqF6N27N3r3Ntw5UGJc5hgOANCwYUOsWrUKFhYWRg8HQ6JwKN+oHgThjbmFA8dxyMrKUtwvY4z66xQORJ/K3XTfxDjMMRxCQ0Mxbtw4pKWl6b09dX2gcCD6RAFBSs3cwgHIn8L+/v37ePnyJZ4/f26QNgujcCD6RqeYSKmYYzgAQJUqVbBp0yYkJSWhSZMmBmtXjjFG4UD0jgKC6MzcwoHjOCQmJirm/fLx8VG6p8YQfHx8wHEcnJycKByI3lFAEJ2YYziEhobizp072LBhA2rVqqX3NlX1oVq1anTkQAxG54AQCoVa/cMszzfKmRtzCwcgf6aA5ORkZGVlGWVQmgakiTHoHBBz585V+se5detWfPjwAX369IGHhwfevHmDI0eOwM7OziQLBhHdmGM4AICjoyN++eUXPH361OBjDhQOxFh0DoiwsDDF/y9fvhweHh44deqU0ocoIyMDXbt2VUyOR8o2cwsHjuNw7949RSA4OjpSOBCzwstlrmvXrsWMGTOKfIgcHBwwY8YMrF27lo9miBGZYzhMnz4d48aNQ2RkpN7bU9cHCgdiTLwExOvXr2FpqfpgxNLSEomJiXw0Q4zE3MIByB9js7W1hYWFBWxsbAzSZkEUDsQU8DKba5MmTeDk5IR//vlHaRZLjuPQtWtXZGRk4MaNG6VtxmSV59lczTEcCrYfGxsLPz8/g7ZL4UD0yeCzuS5YsAB9+/ZFjRo10L9/f3h4eCAxMRH79+9HYmIi/vrrLz6aIQZmbuHAcRwiIiIQFBQEIP/ol8KBmDNeAqJXr144ceIEvv76a6xZswYymQwCgQAtWrTA1q1b0bVrVz6aIQZkbuGQl5eH0NBQREVFISEhAaNHj9Z7m4VROBBTw9uNcl26dEGXLl0U14lXqFCBrl4qo8wtHADAwsIC/v7+iImJQb169QzSZkEUDsQU8VpR7v3797h06RKSk5MRHByMChUq8LVpk1aexiDMMRwKSkhIQOXKlQ3aJoUDMSRtvq94m811/vz5qFy5Mnr27IkRI0bg2bNnAPKPLH744Qe+miF6ZG7hwHEcfvvtN0ilUsUyCgdC/oe3+yDCw8MxZswYHD16FAUPSnr37o2jR4/y0QzRI3MLBwCYPXs2li9fjnnz5hmkvcIoHIip42UM4ueff8a0adOwZMmSInMu1apVC0+ePOGjGaIn5hgOANCnTx/ExMSgV69eBmtTjsKBlAW8BERcXJzi0sDCHBwc8O7dOz6aIXpgruEAAB07dsSxY8cMPm5E4UDKCl5OMTk5OeHt27cqn3v+/Dnc3d35aIbwzNzCgeM4rFq1Cunp6YplFA6EqMdLQHTp0gVLlixBZmamYplAIIBUKsW6devUHl0Q4zG3cADyL6TYtm0bpk6dCh4v3tMYhQMpa3g5xTRv3jwEBASgXr166NevHwQCAX7++WfcuHEDL1++xO7du/lohvDEHMMBAEaMGIGrV69i/PjxBj+dReFAyiLe7oN48OABpk6dijNnzkAqlcLCwgKdOnXCjz/+iLp16/LRhMkqS/dBmGs4yHEcBysrK4O3SeFATIXB74OIiopC1apVceLECWRkZCA+Ph7p6ek4efIkqlatiqioKD6aIaVkbuHAcRzCwsLw/PlzxTIKB0I0x0tAdOrUCffv3wcAiMViVK5cWTFF8qNHj9CpUyc+miGlYG7hAAA//fQT/vrrL0yePBkSicQgbRZE4UDKOl7GIIo7SyWRSCAU8nbDNtGBOYYDAIwZMwa3bt3C5MmTlaahNwQKB1Ie6BwQ6enpSvc3JCYm4uXLl0rrZGdnY/v27fDw8NC5g6R0zDUcAKBChQr49ddfaUCaEB3pHBArV65UTFEgEAjQr18/lesxxjBnzhxdmyGlYG7hwHEc5syZg379+qFt27YAQOFASCnoHBDdu3eHvb09GGOYMWMGvvjiC1SrVk1pHbFYjIYNGyIwMLDUHSXaMbdwAIAdO3bg1KlTuHz5Mo4ePQoHBweDtCtH4UDKG50DonXr1mjdujWA/A/nuHHjDD4TJlHNHMMBAIYPH45Hjx6hX79+FA6E8IDXehDmypTugzC3cJDJZEa/CILCgZQlRqkHQYzP3MKB4zj897//xe+//673torrA4UDKa94Kzn65MkTrF+/Hg8ePEB2drbScwKBAKdPn+arKaKCuYUDAPzzzz+IiorC5cuX0a1bN1SqVMkg7cpROJDyjpeAuHv3Llq1aoUqVaogNjYW/v7+SE5OxuvXr1G1alXUrFmTj2aIGuYYDgAQHByM+Ph4NG7cmMKBED3gZQzio48+gkgkwq5du2BlZYWrV6+iadOmOHr0KEJCQnDgwAG0adOGj/6aJGOOQZhbOMhvvDTkfhZG4UDKMoOPQVy/fh0jR45UDBbKZDIAQK9evRAaGorZs2fz0QwpxNzCgeM4TJ8+HeHh4UUqFxoKhQMxJ7wERFpaGlxcXCAUCiESiZCWlqZ4rnnz5rh+/TofzZACzC0cAOD27du4cOEC/v77b8TFxRmkzYIoHIi54WUMokqVKkhOTgYA+Pr6IioqCt26dQOQ/4+aPtD8MsdwAPL/2Fi0aBGcnJxQq1Ytg7ULUDgQ88RLQLRr1w4XL15E3759MWzYMHz33Xd48+YNrKyssG3bNgwfPpyPZgjMLxw4joNEIoGdnR2A/Dv4DY3CgZgrXgLi66+/RkJCAgBg5syZSExMxI4dOyAQCDB48GAsXbqUj2bMnjmGw/Tp05Geno41a9YY5QuSwoGYM7qTmgeGuIrJ3MIBAOLi4jBy5EhwHIcNGzagUaNGBmlXjsKBlEfafF/pfARReGrvkhSeyI9ozhzDAQBq1KiB9evXIyMjg8KBECPQOSB8fHy0+rIw1mWJZV15DIfY2FhIJBKIRCL4+voqPcdxHFJTUxU1ROrVq8dLm9qgcCAkn84BsWXLFqMUnTcn5TEcgPyAyMnJgbW1tVJAcByH0NBQPH78GJs2bYKXlxdvbWqKwoGQ/9E5IEaNGsVjN0hh5TUcivPhwwe8evUKaWlpePPmjcEDgsKBEGXlbjbXjIwMzJgxA927d4ebmxsEAgHCwsJUrnv+/HmMHTsWzZo1g1gshkAgwPPnzw3aX1XMMRwAwMXFBRs2bMDatWsREBBgsHYBCgdCVCl3AZGSkoINGzYgNzcXffv2LXbd06dP49SpU6hWrZrJzBVV3sPh8bM8nLvTBOfudcC1x3WRkpaLhw8fKp53c3NDs2bNeG+3OBQOhKjGS0DIJ08r7mEo3t7eSEtLw9mzZ7Fo0aJi1/3222/x/PlzHDhwAL169TJQD9Ur7+GQ8FaGdb/nICPLDhKpGP+muSB8xQuMGhWCK1eu8N6eJigcCFGPlxvl5s6dW+QLJSkpCSdPnkReXh5GjBjBRzMa0eaLzdiVyAoqD+EQGxuL2NhYtc8/jq8Gmawq5H+XMAgByyoQWXsiJiYGKSkpKl/n6+tb5GonPlA4EFI8XgJC3Tl+juMQFBQEd3d3PpoxGbm5ucjNzVX8nJ6eXqrtlYdwAPKn4s7JyVH7fJ5UqnJ5v3794OVlr/a1EolE5z6pQ+FASMn0+ie0lZUVvvjiC6xYsUKfzRicfMI4+aNq1ao6b8vUwyE2NhYPHjwo9shATiQSwdraWu2jaqU0CAQMgOz/X8HgbJ+OurVdi32dSCTidb8pHAjRDG8lR9WxsbHBmzdvdHptZGQkOnXqpNG6N27cQOPGjXVqR1uzZ8/GtGnTFD+np6frFBKmHg6A+nsWVCnpVJBEIkHUuZV4x7WGi6sPPN04fDGmBmytPUu1L9qgcCBEc3oNiKSkJCxduhR16tTR6fV16tTBxo0bNVrXkFN5iMViiMXiUm2jLIQD3ywtLeFdxQIXd07FJ598gno168HW2nDlaCkcCNEOLwFRvXr1Il8yubm5+PfffyEUCnHo0CGdtuvp6YmxY8fy0UWTYo7hAORfQDBt2jS4u7vDwcHBYO0CFA6E6IKXgAgMDCzyRWNtbQ0fHx8MGTIEPj4+fDRTLpSlcHidbIknGUGQ5NnANi8FWTkC2FprN/kvx3E4dOgQ+vfvD6FQCIFAADc3t2IHs/lG4UCIbngJiG3btvGxGd4cP34cmZmZyMjIAADcv38fe/fuBQAEBwfD1tYWQP4psLNnzwIA7ty5o3itm5sb3NzcEBgYyGu/ylI4pKRb4M8zTsiTMQBCpEtssTtShhHd30HTq4MZY5gxYwYiIyPx7NkzfPXVV6XfES1ROBCiO17qQUgkEnAcp6j6VVBmZiasrKx4vxKlOD4+Pnjx4oXK5549e6Y4oiluEDwwMBCRkZEatafJ/OqmGA7F3bfwNqcB3ub4o/CFbrUcjsDG4p3atgoPVB8+fBgLFy7EqlWr0LJlS0W76mZz5ROFAyFFGaQeREFjx44Fx3HYuXNnkefGjx8PGxsbbNq0iY+mNKLpfEodO3aEIeolmWI4AMXftyBVc88Cl8tBIFR/eqjwPQt9+vRB27Zt4eLiolimz1CQo3AgpPR4uQ8iMjISH330kcrn+vTpg9OnT/PRTJlkquEAFH/fQkWbBAhQ8J4FGayFKXC0yS72ngUAWLt2LbKzsxXtFAwHQ6BwIIQfvBxBvH37Fp6eqq9l9/DwQGJiIh/NlDmmHA5AyfctJCRnYH8EBy7PBnaiFHza2wG24qBi2501axZOnDiB+/fvY/Xq1QavGULhQAh/eDmCcHZ2VnsuOzY21uCXNJoCUw8HTVR2lcLX4SRqWO+Ct9152IpLPh03dOhQuLi44NNPP6VwIKSM4yUgOnXqhEWLFiE1NVVpeWpqKn744Qd07tyZj2bKjPIQDrpq3Lgxjh49qhiQNhQKB0L4x9tkfQEBAahVqxaGDBmCKlWqID4+Hnv27IFEIkF4eDgfzZQJ5hYOHMdh2bJlCAkJUdSRtrGx0Xu7hftA4UAI/3gJiDp16uDcuXOYNm0aNm7ciLy8PFhYWCAwMBArVqzQeaqNssbcwgEAli1bht27d+P69evYtWuXQfcZoHAgRJ94m4upUaNGOH36NLKzs5GWlgYXFxfFVS3mIjk5GVKptFyFg6+vr+KeBVVCQkJw/fp1fPXVVxQOhJQzvNwoZ+7kN55cvnwZHh4e5SYcNCU/YjQkCgdCdGOQG+Vevnyp1fqGnG3VWOSlVw3FWGMOc+fOxdChQxXTq1M4EFI+6RwQPj4+Wn0h5eXl6doUUcFYRw6bN2/GiRMncPnyZRw9epQGpAkpx3QOiC1bthjldAZRDoc3b95AKpXqfV4juVGjRuH+/fsYPnw4hQMh5ZzOATFq1Cgeu0E0VfjI4enTpxpXfNMVY0zxx4CNjQ1Wr16tl3aKQ+FAiOHptSY14ZexxhymTp2Kw4cP672t4vpA4UCI4fF2meuTJ0+wfv16PHjwQGmiNiC/kpg5T9jHB2ONORw6dAiRkZGIiYkpMiurIVA4EGI8vATE3bt30apVK1SpUgWxsbHw9/dHcnIyXr9+japVq6JmTcPVHS6P1IWDjAFZrApyhEJYsPd6abt///549uwZOnToQOFAiJnh5T6Ijz76CCKRCLt27YKVlRWuXr2Kpk2b4ujRowgJCcGBAwfQpk0bPvprkuTXFV+9elXtrLa6UhcOeTLg6FU3xKfIb0aUoXvjVPh6ZqvfmIYkEgksLS2NehEChQMh+qHNfRC8jEFcv34dI0eOhPD/a1HKZPk1BHr16oXQ0FDMnj2bj2bMTnGnle69tEd8irjA2gKcvu0CSV7pvtQ5jsP06dOxYsUKgxRTUtcHCgdCjI+XU0zyqTWEQiFEIhHS0tIUzzVv3hzz5s3joxmzcvPmTdy5c0fpCqKCklkbAI4A5DepCZAnE+D4yYuwEqg/3VRSDYiYmBhERUVBLBZj4MCB8Pb2Lt2OaInCgRDTwUtAVKlSBcnJyQDyv4CioqLQrVs3AMDt27fpH5uWpFIp0tPT1ZYDBQBYpAAWQkCeHYwByIOUS4EMqsuFAkVLghbWvn17fPvtt/Dy8qJwIMTM8RIQ7dq1w8WLF9G3b18MGzYM3333Hd68eQMrKyts27YNw4cP56MZsyA/rSSTyYqd7FDMnoCDL3JQ+f+XMLgLzsLW2hLFva2qJt3jOA6MMYjF+aesBgwYUJpd0AmFAyGmh5eA+Prrr5GQkAAAmDlzJhITE7Fjxw4IBAIMHjwYS5cu5aOZcq/gmEO9evVQv379YteXyfLw19/HkSOxhL0oDR/1bA2gtlZtyscc8vLysHLlSkVIGBKFAyGmiZeAqFmzpuJSVgsLC/z000/46aef+Ni02dDlPgehELAVxEMoy4GVQLep1ePi4nDlyhUwxvDkyRM0aNBA7bqxsbGKqb/5umubwoEQ06XzVUxpaWkYMGAAjhw5onadI0eOYMCAAUhJSdG1GbNgzCm7/fz8sHr1avz444/FhgOQHxCPHj1SW39cWxQOhJg2nQNi06ZNuHXrFnr06KF2nR49euDOnTtYs2aNrs2Ue8aaPqNg/fCAgAC0atVK7+0W7gOFAyGmTeeA+PPPPzFu3DhYWqo/S2VpaYlx48bh0KFDujZTrhkrHEJDQzFmzBgkJSXpvT11faBwIMT06RwQjx8/RvPmzUtcr2nTpnj8+LGuzZRbfIWDr68v6tSpo/GYQGpqKh4/foyEhAStij5xEgGy8tyRyyqiNPfPUTgQUnboPEgtr0FQEpFIVOK19+aGzyMHbQeLPTw8sGnTJrx58wbNmjXT6DVv31niwIUKyOaCAQDvuXhI8wBLLQvJUTgQUrbofATh6emJ+/fvl7jevXv34OHhoWsz5Y6xTivFxcUpfvby8kJAQIDGrz8S44wc7n8flUxZFVx7Yqd1HygcCClbdD6CCAwMxNq1azFmzBi1RxISiQTr1q1Dp06ddO5geWLMMYcbN25g/fr1qFevXpF1YmNj1V6ZJGOWSM8peqPjnUepSHseobbdglN6UDgQUjbpfAQxdepUPHz4EP369VPcJFdQQkIC+vbti0ePHmHq1Kml6mR5YKxLWSUSCd6/fw+O45CRkaF2nZycHJWP3JwPEIADUHDggUEgS1f7mpycHMVpRQoHQsounY8g/P39sWbNGkycOBHVq1dHs2bNUL16dQDAs2fPcO3aNchkMqxbtw4NGzbkrcNlkTHvc7Czs8PatWsRGxuLRo0aqVxHJBIVO62HpzQaCZIOAGQABLBAFipZ34dlMTfniUQiCgdCyrhS14OIjo7GwoULERERgaysLACAra0tunTpgtmzZxv8+npjKK4ehLFOK926dUurcYaSJKZZ4tT555BJs1HR+hV69excYh8oHAgxPdrUgyj1VButW7fG4cOHIZPJFDO6urq6KmpDmDNjhINEIsH06dNx8eJFLFy4EEFBQbxs16OCFK6iu8jJy4FFCdN6UDgQUj7wVpNaKBTC3d2dr82VecY6rSQUClGhQgVYWlrC2dnZIG0WROFASPnBW0CQ/zHmmIOFhQW+++47fPrpp6hVq5bB2gUoHAgpb+g8EM+MNeZw9OhRRYlQCwsLCgdCSKnREQSPjBEOMpkMoaGhiIqKQnx8PCZMmKC3tnx9fRXTfRdE4UBI+UQBwaP09HTY2toafMyhRYsWuHz5Mho3bqzXtlRN60HhQEj5RQHBo6ysLLi5uRl0zAEAhg8fjm7duqFSpUoGbZfCgZDyjcYgeCQUCg025rB161alSRApHAghfKMjiDLo66+/xj///INHjx7hhx9+MHj7FA6EmAc6giiD+vXrB0dHR/Tr18/gbVM4EGI+6AiiDGrTpg2OHTtm8C9JCgdCzAsdQZQBHMdh2bJlSEtLUyyjcCCE6BsFRBmwcOFC/P7775gyZQpKObeiTigcCDFPFBBlwKhRo+Dl5YXJkycb/BJaCgdCzBeNQZQBPj4+OHDggEY1wPlE4UCIeaMjCBPEcRy+/fZbPHnyRLGMwoEQYmgUECZo7dq1OHz4MKZMmQKO4wzePoUDIQQohwGRkZGBGTNmoHv37oppL8LCwoqsl5eXhxUrVqBHjx7w8vKCra0t6tati1mzZuHdu3cG73dBISEhaNasGcLCwmBlZWXQtikcCCFy5S4gUlJSsGHDBuTm5qJv375q18vOzkZYWBi8vb2xatUqHDt2DOPGjcOGDRvQtm1bZGdnG67TgNLVSY6Ojti0aRNatmxp0D5QOBBCCip3g9Te3t5IS0uDQCBAcnIyNm3apHI9GxsbPHv2DBUrVlQs69ixI6pVq4ZBgwZh3759GD58uEH6zHEcZs2ahT59+qBTp04AQFcrEUKMrtwdQQgEAo2+XC0sLJTCQa5FixYAgFevXvHeN3V27dqFM2fO4Ntvv0V6errB2pWjcCCEqFLujiBK68yZMwCA+vXrq10nNzcXubm5ip9L+6X+8ccfIzY2FsHBwXB0dCzVtrRF4UAIUafcHUGUxuvXrzFr1iw0b94cvXv3VrveokWL4OTkpHhUrVpV67by8vIU/29paYnw8HAacyCEmBSTDojIyEjFKaOSHjdv3ixVW6mpqQgODgZjDLt27YJQqP5XM3v2bLx//17x0PZ0FMdxmDp1qtrxEUOgcCCElMSkTzHVqVMHGzdu1GjdatWq6dxOWloaunXrhtevX+PMmTOoUaNGseuLxWKIxWKd24uIiEBUVBRiYmIQHByMypUr67wtXVA4EEI0YdIB4enpibFjx+q1jbS0NHTt2hXPnj3D6dOn4e/vr9f2ACAoKAgJCQmoV68ehQMhxGSZdEDomzwc4uLi8M8//6BJkyZ6a4vjOAiFQlha5v/KR48erbe2iusDhQMhRFPlMiCOHz+OzMxMZGRkAADu37+PvXv3AgCCg4Nha2uL7OxsBAUF4caNG1i1ahWkUikuXbqk2Iabmxtq1qzJS384jkNoaChsbGzw/fffK0LCkCgcCCHaEjBjFBjQMx8fH7x48ULlc8+ePYOPjw+eP3+O6tWrq93GyJEjsW3bNo3aS09Ph5OTEw4dOqRyLOTmzZsYO3YsLCwssH37dvj5+Wm0Xb5QOBBC5OTfV+/fvy/xsvpyeQTx/PnzEtfx8fExWPGdxo0bY9myZbCxsaFwIISUGeUyIEwBx3HIyclRJHTHjh2N0gcKB0KIrkz6PoiyiuM4TJ8+HZ999plRps6Q94HCgRBSGhQQepCYmIi7d+/i6dOnePr0qcHbp3AghPCBTjHpQbVq1bBhwwakpaXp9dJZVSgcCCF8oYDg0du3bxVXMdWqVcvg7VM4EEL4RKeYeDRjxgyNrqDSBwoHQgjf6AiCB/LLZTMyMvDy5Uu4uroatH2O45CXlwcXFxcwxhQ3CBpCVlYWBAIB3N3dIZPJjDYoTwjRjPzfqCaX+ZfLG+UMLT4+XqcpvwkhxFhevXoFLy+vYtehgOCBTCZDQkICHBwctC4Vmp6ejqpVq+LVq1cGLxZkTLTf5rPf5rjPgOnut/wsQ+XKlYstawDQKSZeCIXCEpO4JI6Ojib1ITIU2m/zYY77DJjmfjs5OWm0Hg1SE0IIUYkCghBCiEoUEEYmFovx3XfflapCXVlE+20++22O+wyUj/2mQWpCCCEq0REEIYQQlSggCCGEqEQBQQghRCUKCCPJyMjAjBkz0L17d7i5uUEgECAsLKzIenl5eVixYgV69OgBLy8v2Nraom7dupg1axbevXtn8H6Xlqb7DQDnz5/H2LFj0axZM4jFYggEAqPNdVVa2uw3AFy/fh1du3aFvb09nJ2d0b9/f8TFxRmuw3p2+fJlBAUFwcHBAfb29ujUqRMuXLhg7G7p3Y0bN9C3b19UrlwZtra28PPzw7x585CVlWXsrqlEAWEkKSkp2LBhA3Jzc9G3b1+162VnZyMsLAze3t5YtWoVjh07hnHjxmHDhg1o27YtsrOzDddpHmi63wBw+vRpnDp1CtWqVUObNm0M00E90Wa/Hz58iI4dO4LjOOzevRtbtmzB48eP0b59eyQlJRmmw3p05coVdOjQAdnZ2fjtt9/w22+/IScnB126dEF0dLSxu6c39+/fR5s2bfD8+XOsWrUKR44cwdChQzFv3jx8/PHHxu6eaowYhUwmYzKZjDHGWFJSEgPAvvvuuyLrSaVSlpycXGT5nj17GAD222+/6burvNJ0vxljLC8vT/H/S5cuZQDYs2fPDNBL/mmz34MGDWKurq7s/fv3imXPnz9nIpGIzZgxwxDd1augoCBWqVIllpmZqViWnp7OXF1dWZs2bYzYM/36+uuvGQAWGxurtHz8+PEMAEtNTTVSz9SjIwgjEQgEGs3bZGFhgYoVKxZZ3qJFCwD5E26VJZruN4AS54kpSzTdb6lUiiNHjmDAgAFK0zN4e3ujU6dOOHDggD67aRAXLlxAx44dYWtrq1jm4OCADh064OLFi3jz5o0Re6c/IpEIQNFpLpydnSEUCmFlZWWMbhWr/PwLNDNnzpwBANSvX9/IPSF8evr0KbKzs+Hv71/kOX9/f8TGxiInJ8cIPeMPx3Eqbx6TL7tz546hu2QQI0eOhLOzMz7//HPExcUhIyMDR44cwfr16zFp0iTY2dkZu4tF0GR9ZdDr168xa9YsNG/eHL179zZ2dwiPUlJSAAAuLi5FnpPX+0hLS4Onp6ehu8abevXq4dKlS5DJZIqjRKlUipiYGAD/+x2UNz4+PoiOjka/fv1Qs2ZNxfIpU6Zg1apVxutYMegIggeRkZGKUwglPW7evFmqtlJTUxEcHAzGGHbt2mXU0zCG3G9TYoj9Lu50lLZTyuuTLr+LL774Ao8fP8bkyZPx+vVrvHr1Cp999hlevHgBoGycWtRlv58/f44+ffqgYsWK2Lt3L86ePYslS5Zg27ZtGDt2rHF3SA06guBBnTp1sHHjRo3Wldes1kVaWhq6deuG169f48yZM6hRo4bO2+KDofbb1Ohzv+XjTar+ik5NTYVAIICzs7NW29QnXX4XISEhSEpKwoIFC7Bu3ToAQOvWrREaGorFixejSpUqeusvX3TZ71mzZiE9PR03b95UnE7q0KEDXF1dERISghEjRiAwMFBvfdYFBQQPPD099f4XQFpaGrp27Ypnz57h9OnTKs9RG5oh9tsU6XO/a9asCRsbG5Xn4e/cuQNfX19YW1vrpW1d6Pq7mDlzJv773//iyZMncHBwgLe3NyZMmAA7Ozs0a9ZMDz3lly77ffPmTdSrV6/IWENAQAAA4O7duyYXEKZ/LEcU4RAXF4eTJ0+iSZMmxu4S0RNLS0v06dMH+/fvV6ot/vLlS0RERKB///5G7B2/xGIxGjRoAG9vb7x8+RK7du3CuHHjYGNjY+yu6UXlypVx7949fPjwQWm5/N6P0hYd0wc6gjCi48ePIzMzU/FFcP/+fezduxcAEBwcDFtbW2RnZyMoKAg3btzAqlWrIJVKcenSJcU23NzclAa8ygJN9hsAkpKScPbsWQD/u7Ll+PHjcHNzg5ubm8n9tVUSTfc7PDwcAQEB6N27N2bNmoWcnBzMnTsXrq6umD59utH6z5e7d+9i3759aN68OcRiMW7duoUffvgBtWrVwvz5843dPb3573//i759+6Jbt26YOnUqXF1dcenSJSxatAj16tVDz549jd3Foox9I4Y58/b2ZgBUPuQ3hD179kztOgDYyJEjjboPutBkvxljLCIiQu16gYGBRuu/rjTdb8YYu3r1KuvSpQuztbVljo6OrG/fvkVusCqrHj16xDp06MBcXFyYlZUV8/X1Zd988w378OGDsbumd2fOnGHdu3dnHh4ezMbGhtWuXZtNnz5d5c2wpoDqQRBCCFGJxiAIIYSoRAFBCCFEJQoIQgghKlFAEEIIUYkCghBCiEoUEIQQQlSigCCEEKISBQQhhBCVKCAIIYSoRAFBCCFEJQoIQgjRk3Xr1qFp06YQiUQICwszdne0RgFBCCF64unpifDwcPTt29fYXdEJTfdNCCF6Ig+GgwcPGrcjOqIjiDJo27ZtxdbAjYyMNHYXiyXv//Pnz43dFbUuXryIsLAwvHv3Tudt6LKfP/30EwQCARo0aKBTm7dv38aYMWMUlelsbGxQq1YtTJgwAVevXtV4O/PmzUO9evUgk8kAAGFhYRAIBEhOTtapX7owlc+JPvuxefNmVKlSBZmZmbxvmw8UEGXY1q1bER0dXeTRtGlTY3etWL169UJ0dDQ8PT2N3RW1Ll68iPDw8FIFhC62bNkCgUCAe/fuISYmRqvXrl+/Hs2aNUNMTAy+/PJLHDlyBEePHsV///tf3Lt3DwEBAXj69GmJ20lISMCSJUswb948CIX0FaFPI0eOhJ2dHZYsWWLsrqhEp5jKsAYNGqB58+bG7obGsrKyYGtrq6gIR5RdvXoVt27dwowZM7Bq1Sps3rwZLVu21Oi1Fy5cwMSJE9GrVy/s3bsXVlZWiuc6d+6MSZMmYc+ePRqV8/zxxx/h7Oxcrsqb8q1Lly64cOGCyue++uorjSvjWVpaYsKECZg/fz5mzpypqCpoKujPg3IqJycHTZo0ga+vL96/f69YnpiYCA8PD3Ts2BF5eXkA/nf64MaNG+jfvz8cHR3h5OSE4cOHIykpSWm7T548wSeffAJ3d3eIxWLUrVsXa9asKdK+fJvXr1/HwIEDUaFCBUVp1MKH7PJ1b9++jUGDBsHJyQkuLi6YNm0apFIpHj16hB49esDBwQE+Pj4q/9rStl/37t3Dxx9/DCcnJ1SqVAkhISGK31NYWBi++uorAED16tWLnLqLjY3F6NGjUatWLdja2qJKlSro06ePoiyqrjZv3gwLCwtMnToVvXv3xp9//omsrCyNXrtw4UJYWFhg/fr1SuFQ0KBBg1C5cuVit8NxHDZv3oxPPvmkxKOHhw8fokaNGmjZsiX+/fdfpeUff/wxKlWqBLFYjGrVqmHEiBHIzc0FwN/vj4/Pzfnz59GlSxc4ODjA1tYWbdq0wdGjR0ts+/Tp08jJyVH50LZs6rBhw5Ceno4///xTq9cZAgVEGZaXlwepVKr0kH/pW1tbY/fu3fj3338REhICAJDJZBg2bBgYY9i5cycsLCyUttevXz/4+vpi7969CAsLw19//YWgoCBIJBIA+TWUAwICcPfuXSxfvhxHjhxBr169MGXKFISHh6vsY//+/eHr64s9e/bgl19+KXZ/Bg8ejEaNGmHfvn0YN24cVq5cialTp6Jv377o1asXDhw4gM6dO2PmzJnYv3+/4nW69GvAgAGoXbs29u3bh1mzZuGPP/7A1KlTAQBjx47FF198AQDYv39/kVN3CQkJqFixIn744QecOHECa9asgaWlJVq2bIlHjx4Vu4/qZGdnY+fOnejZsyc8PDwwevRoZGRkYM+ePSW+Ni8vDxEREWjevHmpT9vFxMQgJSUFnTp1Kna9s2fPok2bNvD390dERATc3d0BALdu3UJAQAAuXbqEefPm4fjx41i0aBFyc3PBcRwA/n9/un5uzp49i86dO+P9+/fYvHkzdu7cCQcHB/Tp0we7du3Suh+qSKVS5OTkKP6tyv+/IA8PD/j5+WkUTAZn5JKnRAdbt25VW9vYwsJCad1du3YxAGzVqlVs7ty5TCgUspMnTyqt89133zEAbOrUqUrLd+zYwQCw33//nTHGWFBQEPPy8mLv379XWm/y5MnM2tqapaamFtnm3Llz1fZfXodZvu7y5cuV1mvcuDEDwPbv369YJpFImJubG+vfv79imS79WrJkidK6EydOZNbW1kwmkzHGGFu6dKnKWtGqSKVSxnEcq1WrltLvsPB+FufXX39lANi+ffsU2/Tw8GDt27cv8bWJiYkMABs6dKjKvkkkEsVDvn/qLF68mAFgiYmJSsvlv7ekpCT222+/MSsrKzZlyhSWl5entF7nzp2Zs7Mz+/fff0vsd8E+6vL7K+3nplWrVszd3Z1lZGQo9aVBgwbMy8tL8bvS5n1U18eCj61btxZZb9iwYaxSpUpab1/f6AiiDPv1119x5coVpUfhgc3Bgwfj888/x1dffYUFCxZgzpw56Natm8rtDRs2rMhrLS0tERERgZycHJw+fRr9+vWDra2t0lFLcHAwcnJycOnSpSLbHDBggMb707t3b6Wf69atC4FAgJ49eyqWWVpawtfXFy9evAAAnfv10UcfKf3s7++PnJwcpVMl6kilUixcuBD16tWDlZUVLC0tYWVlhSdPnuDBgwca729Bmzdvhqurq+J3YGFhgU8//RTnzp3DkydPdNomADRr1gwikUjxWL58ebHrJyQkQCAQwNXVVeXz33//PUaNGoUffvgBP/74o9JpqKysLJw9exaDBw8udoyJ79+fLp+bzMxMxMTEYODAgbC3t1esJ/+9x8fH63w0WFBYWBgYY0qPUaNGFVnP3d0d//77L6RSaanb5BMFRBlWt25dNG/eXOnRrFmzIuuFhIRAIpHA0tISU6ZMUbs9Dw8PpZ8tLS1RsWJFpKSkICUlBVKpFKtXr1b6whGJRAgODgYAlZdAanPKw8XFRelnKysr2NrawtrausjynJwcANC5XxUrVlT6WSwWA8g/1VOSadOm4dtvv0Xfvn1x+PBhxMTE4MqVK2jUqJFGry8sNjYWUVFRGDZsmNL4wejRowHkX9lUHFdXV9jY2Ci+/Ar6448/cOXKFRw6dEijvmRnZ0MkEhU5/Sj3+++/o0qVKhg6dGiR59LS0pCXlwcvL69i2+D796fL5yYtLQ2MMZWfT/k4TUpKitZ90ZW1tTUYY4r+mQq6iqmcy8zMxKefforatWvj7du3GDt2rNqbdhITE1GlShXFz1KpFCkpKahYsSIqVKig+Otq0qRJKl9fvXr1IssEAgE/O6KGrv0qjd9//x0jRozAwoULlZYnJyfD2dlZ6+1t2bJF5V+WdevWRcuWLbF9+3YsWLBA7Ze2hYUFOnfujJMnT+LNmzdKX3r16tUDAI2v4Xd1dQXHccjMzISdnV2R50+cOIEhQ4agffv2OH36NLy9vRXPubi4wMLCAvHx8cW2wffvTxcVKlSAUCjEmzdvijyXkJAAAGqPovQhNTUVYrFY6WjGFNARRDn32Wef4eXLl9i/fz82b96MQ4cOYeXKlSrX3bFjh9LPu3fvhlQqRceOHWFra4tOnTrhxo0b8Pf3L3Lk0rx58yJ/lRuCvvpV3BGFQCBQPC939OhRvH79Wut28vLysH37djRp0gSNGzcu8vzo0aPx5s0bHD9+vNjtzJ49G3l5efjss88UFxXows/PDwDU3i/h7e2Nc+fOQSwWo3379kqnv2xsbBAYGIg9e/YUe0Mdn78/XdnZ2aFly5bYv3+/0nssk8nw+++/w8vLC7Vr1zZYf+Li4hRhbkroCKIMu3v3rspzljVr1oSbmxs2bdqE33//HVu3bkX9+vVRv359TJ48GTNnzkTbtm3RokULpdft378flpaW6NatG+7du4dvv/0WjRo1wuDBgwHkXx/frl07tG/fHp9//jl8fHyQkZGB2NhYHD58GGfOnDHIfhemj341bNhQse2RI0dCJBKhTp06cHBwQO/evbFt2zb4+fnB398f165dw9KlS0s8taLK8ePHkZCQgI4dO+Kvv/4q8rz8NMnmzZuLnGsvqG3btlizZg2++OILNG3aFOPHj0f9+vUVfyXv27cPAODo6Fhsfzp27AgAuHTpEvz9/VWu4+npibNnzyIoKAgdOnTAP//8o7jze8WKFWjXrh1atmyJWbNmwdfXF2/fvsWhQ4ewfv163n9/pbFo0SJ069YNnTp1QmhoKKysrLB27VrcvXsXO3fu1PvRr5xMJsPly5cxZswYg7SnFSMOkBMdFXcVEwC2ceNGdvv2bWZjY8NGjhyp9NqcnBzWrFkz5uPjw9LS0hhj/7vS4tq1a6xPnz7M3t6eOTg4sI8//pi9fftW6fXPnj1jISEhrEqVKkwkEjE3NzfWpk0btmDBAqX1Cl71oq7/ha9iKrzuyJEjmZ2dXZHXBwYGsvr16/PaL1VXqsyePZtVrlyZCYVCBoBFREQwxhhLS0tjY8aMYe7u7szW1pa1a9eOnTt3jgUGBrLAwMBit1lY3759i30v5Q9LS8siVxapcvPmTTZ69GhWvXp1JhaLmbW1NfP19WUjRoxgp0+fLvH1jDHWvn17FhwcrLRM1e/t3bt3rG3btszFxYVduXJFsfz+/fts0KBBrGLFiszKyopVq1aNjRo1iuXk5PD6++Pjc3Pu3DnWuXNnZmdnx2xsbFirVq3Y4cOHldYpzVVMmjh9+rTi35+pETDGmEGSiJissLAwhIeHIykpyaDnXYlp2rdvH4YMGYIXL14ojUkR/fj0008RFxen9s5sY6IxCEKIkv79+yMgIACLFi0ydlfKvadPn2LXrl1YvHixsbuiEgUEIUSJQCDAxo0bUblyZcVsrkQ/Xr58iZ9//hnt2rUzdldUolNMhBBCVKIjCEIIISpRQBBCCFGJAoIQQohKFBCEEEJUooAghBCiEgUEIYQQlSggCCGEqEQBQQghRCUKCEIIISpRQBBCCFGJAoIQQohK/wcWgQNbGDNHYgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2750,7 +4581,11 @@ } ], "source": [ - "cinnabar_plotting.plot_DGs(fe.graph, figsize=5, shift=shift)" + "data = femap.read_csv('cinnabar_input.csv')\n", + "exp_DG_sum = sum([data['Experimental'][i].DG for i in data['Experimental'].keys()])\n", + "shift = exp_DG_sum / len(data['Experimental'].keys())\n", + "\n", + "cinnabar_plotting.plot_DGs(fe.to_legacy_graph(), figsize=5, shift=shift.m)" ] } ], @@ -2770,7 +4605,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/docs/user_guide.rst b/docs/user_guide.rst index 9a098e08..81554dbf 100644 --- a/docs/user_guide.rst +++ b/docs/user_guide.rst @@ -12,27 +12,23 @@ It assumes that you already have a user identity on the target ``alchemiscale`` Installation ************ -Create a conda environment on your workstation:: +Clone alchemiscale from Github, and switch to the latest release tag:: - $ conda env create openforcefield/alchemiscale-client - -You can also use ``mamba`` instead of conda above if you prefer a faster solver and have it installed, e.g. via `mambaforge`_. - -If this doesn’t work, clone alchemiscale from Github, and install from there:: - - $ git clone https://github.com/openforcefield/alchemiscale.git + $ git clone https://github.com/OpenFreeEnergy/alchemiscale.git $ cd alchemiscale - $ git checkout v0.4.0 + $ git checkout v0.5.1 - $ conda env create -f devtools/conda-envs/alchemiscale-client.yml +Create a conda environment using, e.g. `micromamba`_:: + + $ micromamba create -f devtools/conda-envs/alchemiscale-client.yml Once installed, activate the environment:: - $ conda activate alchemiscale-client + $ micromamba activate alchemiscale-client You may wish to install other packages into this environment, such as jupyterlab. -.. _mambaforge: https://github.com/conda-forge/miniforge#mambaforge +.. _micromamba: https://github.com/mamba-org/micromamba-releases Installing on ARM-based Macs diff --git a/pyproject.toml b/pyproject.toml index 87551cec..50660982 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -24,7 +24,7 @@ requires-python = ">= 3.9" dynamic = ["version"] [project.urls] -Homepage = "https://github.com/openforcefield/alchemiscale" +Homepage = "https://github.com/OpenFreeEnergy/alchemiscale" [project.optional-dependencies] test = [