diff --git a/DESCRIPTION b/DESCRIPTION index a4c2531..ef1b5ff 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: nixtlar Title: A Software Development Kit for 'Nixtla''s 'TimeGPT' -Version: 0.5.2 +Version: 0.5.4 Authors@R: c( person("Mariana", "Menchero", email = "mariana@nixtla.io", role = c("aut", "cre"), comment = "First author and maintainer"), person("Nixtla", role = "cph", comment = "Copyright held by 'Nixtla'") diff --git a/NEWS.md b/NEWS.md index ad69407..c177449 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,7 @@ +# nixtlar 0.5.4 + +- Development version. See release notes [here](https://github.com/Nixtla/nixtlar/releases/tag/v0.5.4) + # nixtlar 0.5.3 - Development version. See release notes [here](https://github.com/Nixtla/nixtlar/releases/tag/v0.5.3) diff --git a/README.Rmd b/README.Rmd index f69d881..897c2e6 100644 --- a/README.Rmd +++ b/README.Rmd @@ -31,6 +31,28 @@ knitr::opts_chunk$set( [![License](https://img.shields.io/badge/License-Apache%202.0-blue)](https://www.apache.org/licenses/LICENSE-2.0) +## NEWS (28 Aug 2024): Parallel processing is now available in `nixtlar` + +The development version of `nixtlar` now supports parallel processing, making it suitable for handling large datasets with thousands of time series. To access this functionality, simply install the package from GitHub. + +```{r, eval=FALSE} +library(devtools) +devtools::install_github("Nixtla/nixtlar") +``` + +Configure the new `num_partitions` parameter in any of the `nixtlar` methods as follows: + +- `num_partitions=NULL`: This is the default setting, operating in sequential mode, equivalent to `num_partitions=1`. +- `num_partitions="auto"`: Automatically uses all available resources as determined by `future::availableCores()`. +- `num_partitions` can be set to any positive integer. If it exceeds the number of available resources determined by `future::availableCores()`, it will default to the maximum available cores. + +```{r, eval=FALSE} +nixtlar::nixtla_client_forecast(df, h=8, id_col="unique_id", num_partitions="auto") +``` + +Note that `df` must be an R data frame or a tsibble. See [data requierements](https://nixtla.github.io/nixtlar/articles/data-requirements.html) for more details. + + # TimeGPT-1 **The first foundation model for time series forecasting and anomaly detection** diff --git a/README.md b/README.md index 4f85ddc..261bdb5 100644 --- a/README.md +++ b/README.md @@ -14,6 +14,38 @@ status](https://www.r-pkg.org/badges/version/nixtlar)](https://CRAN.R-project.or [![License](https://img.shields.io/badge/License-Apache%202.0-blue)](https://www.apache.org/licenses/LICENSE-2.0) +## NEWS (28 Aug 2024): Parallel processing is now available in `nixtlar` + +The development version of `nixtlar` now supports parallel processing, +making it suitable for handling large datasets with thousands of time +series. To access this functionality, simply install the package from +GitHub. + +``` r +library(devtools) +devtools::install_github("Nixtla/nixtlar") +``` + +Configure the new `num_partitions` parameter in any of the `nixtlar` +methods as follows: + +- `num_partitions=NULL`: This is the default setting, operating in + sequential mode, equivalent to `num_partitions=1`. +- `num_partitions="auto"`: Automatically uses all available resources as + determined by `future::availableCores()`. +- `num_partitions` can be set to any positive integer. If it exceeds the + number of available resources determined by + `future::availableCores()`, it will default to the maximum available + cores. + +``` r +nixtlar::nixtla_client_forecast(df, h=8, id_col="unique_id", num_partitions="auto") +``` + +Note that `df` must be an R data frame or a tsibble. See [data +requierements](https://nixtla.github.io/nixtlar/articles/data-requirements.html) +for more details. + # TimeGPT-1 **The first foundation model for time series forecasting and anomaly @@ -67,7 +99,7 @@ Alternatively, you can install the development version of `nixtlar` from devtools::install_github("Nixtla/nixtlar") ``` -#### CRAN vs development version +#### CRAN (v0.5.2) vs development version (v0.5.3) Currently, the development version contains some features not yet available in CRAN. To learn more, please read the release notes @@ -77,6 +109,9 @@ available in CRAN. To learn more, please read the release notes ``` r library(nixtlar) +#> Registered S3 method overwritten by 'tsibble': +#> method from +#> as_tibble.grouped_df dplyr ``` 1. Set your API key. Get yours at @@ -239,10 +274,6 @@ arXiv preprint arXiv:2310.03589. Available at TimeGPT is closed source. However, this SDK is open source and available under the Apache 2.0 License, so feel free to contribute! -# Code of Conduct - -Please note that the nixtlar project is released with a [Contributor Code of Conduct](https://nixtla.github.io/nixtlar/CODE_OF_CONDUCT.html). By contributing to this project, you agree to abide by its terms. - # Get in Touch We welcome your input and contributions to the `nixtlar` package! @@ -255,5 +286,3 @@ We welcome your input and contributions to the `nixtlar` package! request](https://github.com/Nixtla/nixtlar/pulls) in our repository. Whether it is fixing a bug, adding a new feature, or improving the documentation, we appreciate your help in making `nixtlar` better. - -