-
Notifications
You must be signed in to change notification settings - Fork 1
/
infer.py
238 lines (193 loc) · 8.88 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import logging
import torch
import numpy as np
import sys
import os
import time
import torch.utils.data
import torch.backends.cudnn
import cv2
from tqdm import tqdm
import torch.nn.functional as F
from ptflops import get_model_complexity_info
from configs.defaults import _C as cfg
from utilities.infer_utils import parse_args, run_inference, setup_infer_model
from utilities.generic_utils import back_transform
from utilities.viz_utils import to_depth_color_map, city_seg_colors, label_colours_global
from utilities.energy_meter import EnergyMeter
def single_image_infer(args):
pass
def batched_inst_infer(args, device, tasks, model, dl_test):
colors = np.asarray(label_colours_global, dtype=np.uint8)
if args.dataset == 'uninet_cs':
seg_colors = city_seg_colors
else:
seg_colors = colors
start_time = time.time()
with torch.no_grad():
for idx, (image, original_image, image_name) in tqdm(
enumerate(dl_test), desc='Running inference on images',
total=len(dl_test)):
image = image.to(device)
predictions = model(image)
# batch size is 1..
original_image = original_image[0]
original_image = original_image.cpu().numpy()
original_image = np.asarray(original_image, dtype=np.uint8)
original_image = cv2.cvtColor(original_image, cv2.COLOR_RGB2BGR)
mask_size = original_image.shape[:2]
if 'segment' in predictions.keys():
segment = predictions['segment'][0]
segment = F.interpolate(segment[None], size=mask_size,
mode='nearest')
segment = torch.squeeze(segment)
segment = segment.argmax(0).cpu().numpy()
segment = np.array(segment, dtype=np.uint8)
segment = seg_colors[segment.copy()]
original_image = np.hstack((original_image, segment))
if 'sem_cont' in predictions.keys():
pred_sem_cont = predictions['sem_cont'][0]
# pred_sem_cont = torch.sigmoid(pred_sem_cont)
pred_sem_cont = F.interpolate(pred_sem_cont[None], size=mask_size,
mode='bilinear')
pred_sem_cont.gt_(0)
pred_sem_cont = pred_sem_cont.permute(0, 2, 3, 1).squeeze(0)
pred_sem_cont = pred_sem_cont.cpu().numpy()
if cfg.MISC.SEM_CONT_MULTICLASS:
sem_cont_map = np.zeros(pred_sem_cont.shape[:2])
for i in range(pred_sem_cont.shape[2]):
m = pred_sem_cont[:, :, i]
sem_cont_map[:, :] += (sem_cont_map == 0) * (m * (i + 1))
sem_cont_map = sem_cont_map - 1
sem_cont_map[sem_cont_map == -1] = cfg.NUM_CLASSES.SEGMENT
else:
sem_cont_map = pred_sem_cont[:, :, 0]
sem_cont_map = np.array(sem_cont_map, dtype=np.uint8)
sem_cont_map = seg_colors[sem_cont_map]
original_image = np.hstack((original_image, sem_cont_map))
if 'depth' in predictions.keys():
pred_depth = predictions['depth'][0, 0]
pred_depth = F.interpolate(pred_depth[None, None], size=mask_size,
mode='nearest')
pred_depth = torch.squeeze(pred_depth).cpu().numpy()
pred_depth = to_depth_color_map(
1 - pred_depth, depth_scale=cfg.DATALOADER.MAX_DEPTH)
pred_depth = cv2.cvtColor(pred_depth, cv2.COLOR_RGB2BGR)
original_image = np.hstack((original_image, pred_depth))
if 'sur_nor' in predictions.keys():
pred_sur_nor = predictions['sur_nor'][0]
norm = torch.norm(pred_sur_nor, p=2, dim=0).unsqueeze(
dim=0) + 1e-12
pred_sur_nor = pred_sur_nor.div(norm)
pred_sur_nor = F.interpolate(
pred_sur_nor[None], size=mask_size, mode='bilinear')[0]
pred_sur_nor = pred_sur_nor.permute(1, 2, 0)
pred_sur_nor = ((pred_sur_nor + 1) / 2) * 255.
pred_sur_nor = torch.squeeze(pred_sur_nor).cpu().numpy()
pred_sur_nor = np.asarray(pred_sur_nor, dtype=np.uint8)
original_image = np.hstack((original_image, pred_sur_nor))
if 'ae' in predictions.keys():
recon_img = predictions['ae']['reconst']
recon_img = F.interpolate(
recon_img, size=mask_size, mode='bilinear')
recon_img = back_transform(recon_img, cfg, scale=255)
recon_img = recon_img.permute(0, 2, 3, 1).cpu().numpy()[0]
recon_img = np.asarray(recon_img, dtype=np.uint8)
recon_img = cv2.cvtColor(recon_img, cv2.COLOR_RGB2BGR)
original_image = np.hstack((original_image, recon_img))
if args.test_it > 0:
cv2.imwrite(os.path.join(args.save_path, '%03d' % idx + '.png'),
original_image)
if idx > args.test_it:
break
else:
cv2.namedWindow('viz', 0)
cv2.imshow('viz', original_image)
if cv2.waitKey(0) == ord('n'):
continue
if cv2.waitKey(0) == ord('q'):
break
if args.test_it > 0:
total_time = time.time() - start_time
logging.info(f'Turnaround time: {args.test_it / total_time}')
def get_inference_fps(model, data_loader, device, tasks, test_it=501):
run_time = []
data_sampler = iter(data_loader)
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
with torch.no_grad():
for i in range(test_it):
try:
images = next(data_sampler)[0]
except StopIteration:
batch_iterator = iter(data_loader)
images = next(batch_iterator)[0]
images = images.to(device)
# device=None uses current device...
torch.cuda.synchronize(device=None)
start.record()
predictions = model(images)
run_inference(predictions, cfg, tasks)
end.record()
torch.cuda.synchronize(device=None)
run_time.append(start.elapsed_time(end))
run_time = run_time[1:]
avg_run_time = np.mean(run_time)
return 1000 / avg_run_time
def get_inference_fps_mmdet(model, data_loader, device, tasks):
# https://github.com/open-mmlab/mmdetection/blob/d40e19b09b19dd3dd55627ecf0f8d2f0796a1a03/tools/benchmark.py
# the first several iterations may be very slow so skip them
num_warmup = 5
pure_inf_time = 0
fps = 0
for i, loaded in enumerate(data_loader):
images = loaded[0]
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
images = images.to(device)
predictions = model(images)
run_inference(predictions, cfg, tasks)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= num_warmup:
pure_inf_time += elapsed
fps = (i + 1 - num_warmup) / pure_inf_time
# using 1500 as test set only contains 1525 images..
if (i + 1) == 1500:
pure_inf_time += elapsed
fps = (i + 1 - num_warmup) / pure_inf_time
break
return fps
def measure_fps(args, device, tasks, model, dl_test):
fps = get_inference_fps(
model, dl_test, device, tasks, test_it=501)
# fps = get_inference_fps_mmdet(model, dl_test, device, tasks)
logging.info(f'Measured FPS: {fps}')
def get_model_info(args, device, tasks, model, dl_test):
macs, params = get_model_complexity_info(
model, (3, ) + tuple(cfg.INPUT.IMAGE_SIZE), print_per_layer_stat=True)
print(macs)
print(params)
def measure_energy(args, device, tasks, model, dl_test, test_it=501):
run_time = [0] * test_it
images = torch.randn(1, 3, *cfg.INPUT.IMAGE_SIZE).cuda()
with EnergyMeter() as em:
for i in range(test_it):
start = time.perf_counter()
with torch.no_grad():
output = model(images)
torch.cuda.synchronize() # wait for mm to finish
run_time[i] = time.perf_counter() - start
torch.cuda.synchronize()
print(f"Total energy used check: {int(em.energy)} J")
print(f'Average energy used: {em.energy / test_it} J')
def main():
logging.getLogger().setLevel(logging.INFO)
args = parse_args()
model, tasks, dl_test, device = setup_infer_model(args, cfg)
getattr(infer_module, args.function_name)(
args, device, tasks, model, dl_test)
if __name__ == "__main__":
infer_module = sys.modules[__name__]
main()