-
Notifications
You must be signed in to change notification settings - Fork 346
/
sample_cublasLt_LtSgemm.cu
111 lines (100 loc) · 5.9 KB
/
sample_cublasLt_LtSgemm.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/*
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cublasLt.h>
#include "sample_cublasLt_LtSgemm.h"
#include "helpers.h"
/// Sample wrapper executing single precision gemm with cublasLtMatmul, nearly a drop-in replacement for cublasSgemm,
/// with addition of the workspace to support split-K algorithms
///
/// pointer mode is always host, to change it configure the appropriate matmul descriptor attribute
/// matmul is not using cublas handle's configuration of math mode, here tensor ops are implicitly allowed; to change
/// this configure appropriate attribute in the preference handle
void LtSgemm(cublasLtHandle_t ltHandle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const float *alpha, /* host pointer */
const float *A,
int lda,
const float *B,
int ldb,
const float *beta, /* host pointer */
float *C,
int ldc,
void *workspace,
size_t workspaceSize) {
cublasLtMatmulDesc_t operationDesc = NULL;
cublasLtMatrixLayout_t Adesc = NULL, Bdesc = NULL, Cdesc = NULL;
cublasLtMatmulPreference_t preference = NULL;
int returnedResults = 0;
cublasLtMatmulHeuristicResult_t heuristicResult = {};
// create operation desciriptor; see cublasLtMatmulDescAttributes_t for details about defaults; here we just need to
// set the transforms for A and B
checkCublasStatus(cublasLtMatmulDescCreate(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F));
checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa)));
checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transb)));
// create matrix descriptors, we are good with the details here so no need to set any extra attributes
checkCublasStatus(cublasLtMatrixLayoutCreate(&Adesc, CUDA_R_32F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda));
checkCublasStatus(cublasLtMatrixLayoutCreate(&Bdesc, CUDA_R_32F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb));
checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_32F, m, n, ldc));
// create preference handle; here we could use extra attributes to disable tensor ops or to make sure algo selected
// will work with badly aligned A, B, C; here for simplicity we just assume A,B,C are always well aligned (e.g.
// directly come from cudaMalloc)
checkCublasStatus(cublasLtMatmulPreferenceCreate(&preference));
checkCublasStatus(cublasLtMatmulPreferenceSetAttribute(preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize)));
// we just need the best available heuristic to try and run matmul. There is no guarantee this will work, e.g. if A
// is badly aligned, you can request more (e.g. 32) algos and try to run them one by one until something works
checkCublasStatus(cublasLtMatmulAlgoGetHeuristic(ltHandle, operationDesc, Adesc, Bdesc, Cdesc, Cdesc, preference, 1, &heuristicResult, &returnedResults));
if (returnedResults == 0) {
checkCublasStatus(CUBLAS_STATUS_NOT_SUPPORTED);
}
checkCublasStatus(cublasLtMatmul(ltHandle,
operationDesc,
alpha,
A,
Adesc,
B,
Bdesc,
beta,
C,
Cdesc,
C,
Cdesc,
&heuristicResult.algo,
workspace,
workspaceSize,
0));
// descriptors are no longer needed as all GPU work was already enqueued
if (preference) checkCublasStatus(cublasLtMatmulPreferenceDestroy(preference));
if (Cdesc) checkCublasStatus(cublasLtMatrixLayoutDestroy(Cdesc));
if (Bdesc) checkCublasStatus(cublasLtMatrixLayoutDestroy(Bdesc));
if (Adesc) checkCublasStatus(cublasLtMatrixLayoutDestroy(Adesc));
if (operationDesc) checkCublasStatus(cublasLtMatmulDescDestroy(operationDesc));
}