-
Notifications
You must be signed in to change notification settings - Fork 1
/
nmitral.mod
144 lines (105 loc) · 2.93 KB
/
nmitral.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
COMMENT
na.mod
Sodium channel, Hodgkin-Huxley style kinetics.
qi is not well constrained by the data, since there are no points
between -80 and -55. So this was fixed at 5 while the thi1,thi2,Rg,Rd
were optimized using a simplex least square proc
voltage dependencies are shifted approximately +5mV from the best
fit to give higher threshold
use with kd.mod
Author: Upinder S. Bhalla, California Institute of Technology
J. of Neurophysiology, V69, N6, 1993
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX na
USEION na READ ena WRITE ina
RANGE m, h, gna, gbar, vshift
GLOBAL thm1, thm2, qm1, qm2, thi1, thi2, qi, qinf, thinf
GLOBAL minf, hinf, mtau, htau, ina
GLOBAL Am1, Am2, Rd, Rg
GLOBAL q10, temp, tadj, vmin, vmax
}
PARAMETER {
gbar = 258.272 (pS/um2) : 0.12 mho/cm2
vshift = 0 (mV) : voltage shift (affects all)
thm1 = -60.3833 (mV) : v 1/2 for act (-42)
thm2 = -11.8432 (mV) : v 1/2 for act (-15)
Am1 = 0.242621 (/ms) : open (v)
Am2 = 0.819229 (/ms) : close (v)
qm1 = 3.51809 (mV) : act slope
qm2 = 3.9834 (mV) : act slope
thi1 = -29.1689 (mV) : v 1/2 for inact
thi2 = -28.4483 (mV) : v 1/2 for inact
qi = 5.63879 (mV) : inact tau slope
thinf = -38.1801 (mV) : inact inf slope
qinf = 3.73406 (mV) : inact inf slope
Rg = 0.00422366 (/ms) : inact (v)
Rd = 0.0802232 (/ms) : inact recov (v)
temp = 35 (degC) : original temp
q10 = 2.3 : temperature sensitivity
v (mV)
dt (ms)
celsius (degC)
vmin = -120 (mV)
vmax = 100 (mV)
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ina (mA/cm2)
gna (pS/um2)
ena (mV)
minf hinf
mtau (ms) htau (ms)
tadj
}
STATE { m h }
INITIAL {
trates(v+vshift)
m = minf
h = hinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gna = gbar*m*m*m*h
ina = (1e-4) * gna * (v - ena)
}
DERIVATIVE states { :Computes state variables m, h, and n
trates(v+vshift) : at the current v and dt.
m' = (minf - m)/mtau
h' = (hinf - h)/htau
}
PROCEDURE trates(v (mV)) {
TABLE minf, mtau , hinf, htau
DEPEND dt, celsius, temp, Am1, Am2, Rd, Rg, thm1, thm2, thi1, thi2, qm1, qm2, qi, qinf, thinf
FROM vmin TO vmax WITH 199
UNITSOFF
rates(v): not consistently executed from here if usetable == 1
UNITSON
}
UNITSOFF
PROCEDURE rates(vm) {
LOCAL a, b
a = trap0(vm,thm1,Am1,qm1)
b = trap0(-vm,-thm2,Am2,qm2)
mtau = 1/(a+b)
minf = a*mtau
:"h" inactivation
a = trap0(vm,thi1,Rd,qi)
b = trap0(-vm,-thi2,Rg,qi)
htau = 1/(a+b)
hinf = 1/(1+exp((vm-thinf)/qinf))
}
FUNCTION trap0(v,th,a,q) {
if (fabs(v-th) > 1e-6) {
trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
} else {
trap0 = a * q
}
}
UNITSON