You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am testing the tensorflow-fcn implementation on a new PC, and I am unable to get test_fcn32 to complete, but able to get test_fcn8, and test_fcn16 to complete.
test_fcn32 fails after "Shape of pool5[1 12 16 512]". Do you have any advice for what may be going wrong? I wonder if it has to do with my GPU, but the GPU seems to be operating fine under fcn8 and fcn16. What do you think? Can you help?
Thanks!
2017-07-25 10:31:25.240324: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.240571: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.240779: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.241016: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.241228: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.241513: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.242272: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.242685: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:27.164173: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:940] Found device 0 with properties:
name: Quadro M1200
major: 5 minor: 0 memoryClockRate (GHz) 1.148
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.35GiB
2017-07-25 10:31:27.164414: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:961] DMA: 0
2017-07-25 10:31:27.164536: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:971] 0: Y
2017-07-25 10:31:27.164706: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro M1200, pci bus id: 0000:01:00.0)
npy file loaded
Layer name: conv1_1
Layer shape: (3, 3, 3, 64)
Layer name: conv1_2
Layer shape: (3, 3, 64, 64)
Layer name: conv2_1
Layer shape: (3, 3, 64, 128)
Layer name: conv2_2
Layer shape: (3, 3, 128, 128)
Layer name: conv3_1
Layer shape: (3, 3, 128, 256)
Layer name: conv3_2
Layer shape: (3, 3, 256, 256)
Layer name: conv3_3
Layer shape: (3, 3, 256, 256)
Layer name: conv4_1
Layer shape: (3, 3, 256, 512)
Layer name: conv4_2
Layer shape: (3, 3, 512, 512)
Layer name: conv4_3
Layer shape: (3, 3, 512, 512)
Layer name: conv5_1
Layer shape: (3, 3, 512, 512)
Layer name: conv5_2
Layer shape: (3, 3, 512, 512)
Layer name: conv5_3
Layer shape: (3, 3, 512, 512)
Layer name: fc6
Layer shape: [7, 7, 512, 4096]
Layer name: fc7
Layer shape: [1, 1, 4096, 4096]
Layer name: fc8
Layer shape: [1, 1, 4096, 1000]
Finished building Network.
Running the Network
2017-07-25 10:31:32.566719: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of input image: [1 368 489 3]
2017-07-25 10:31:33.329698: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool1[1 184 245 64]
2017-07-25 10:31:33.842707: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool2[1 92 123 128]
2017-07-25 10:31:34.442268: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool3[1 46 62 256]
2017-07-25 10:31:35.171996: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool4[1 23 31 512]
2017-07-25 10:31:35.372775: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool5[1 12 16 512]
2017-07-25 10:31:38.214065: E c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_driver.cc:1068] failed to synchronize the stop event: CUDA_ERROR_LAUNCH_FAILED
2017-07-25 10:31:38.214361: E c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_timer.cc:54] Internal: error destroying CUDA event in context 0000022AC3660650: CUDA_ERROR_LAUNCH_FAILED
2017-07-25 10:31:38.214616: E c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_timer.cc:59] Internal: error destroying CUDA event in context 0000022AC3660650: CUDA_ERROR_LAUNCH_FAILED
2017-07-25 10:31:38.214852: F c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_dnn.cc:2479] failed to enqueue convolution on stream: CUDNN_STATUS_EXECUTION_FAILED
Process finished with exit code -1073740791 (0xC0000409)
The text was updated successfully, but these errors were encountered:
Hello,
I am testing the tensorflow-fcn implementation on a new PC, and I am unable to get test_fcn32 to complete, but able to get test_fcn8, and test_fcn16 to complete.
test_fcn32 fails after "Shape of pool5[1 12 16 512]". Do you have any advice for what may be going wrong? I wonder if it has to do with my GPU, but the GPU seems to be operating fine under fcn8 and fcn16. What do you think? Can you help?
Thanks!
2017-07-25 10:31:25.240324: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.240571: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.240779: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.241016: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.241228: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.241513: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.242272: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.242685: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:27.164173: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:940] Found device 0 with properties:
name: Quadro M1200
major: 5 minor: 0 memoryClockRate (GHz) 1.148
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.35GiB
2017-07-25 10:31:27.164414: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:961] DMA: 0
2017-07-25 10:31:27.164536: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:971] 0: Y
2017-07-25 10:31:27.164706: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro M1200, pci bus id: 0000:01:00.0)
npy file loaded
Layer name: conv1_1
Layer shape: (3, 3, 3, 64)
Layer name: conv1_2
Layer shape: (3, 3, 64, 64)
Layer name: conv2_1
Layer shape: (3, 3, 64, 128)
Layer name: conv2_2
Layer shape: (3, 3, 128, 128)
Layer name: conv3_1
Layer shape: (3, 3, 128, 256)
Layer name: conv3_2
Layer shape: (3, 3, 256, 256)
Layer name: conv3_3
Layer shape: (3, 3, 256, 256)
Layer name: conv4_1
Layer shape: (3, 3, 256, 512)
Layer name: conv4_2
Layer shape: (3, 3, 512, 512)
Layer name: conv4_3
Layer shape: (3, 3, 512, 512)
Layer name: conv5_1
Layer shape: (3, 3, 512, 512)
Layer name: conv5_2
Layer shape: (3, 3, 512, 512)
Layer name: conv5_3
Layer shape: (3, 3, 512, 512)
Layer name: fc6
Layer shape: [7, 7, 512, 4096]
Layer name: fc7
Layer shape: [1, 1, 4096, 4096]
Layer name: fc8
Layer shape: [1, 1, 4096, 1000]
Finished building Network.
Running the Network
2017-07-25 10:31:32.566719: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of input image: [1 368 489 3]
2017-07-25 10:31:33.329698: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool1[1 184 245 64]
2017-07-25 10:31:33.842707: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool2[1 92 123 128]
2017-07-25 10:31:34.442268: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool3[1 46 62 256]
2017-07-25 10:31:35.171996: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool4[1 23 31 512]
2017-07-25 10:31:35.372775: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool5[1 12 16 512]
2017-07-25 10:31:38.214065: E c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_driver.cc:1068] failed to synchronize the stop event: CUDA_ERROR_LAUNCH_FAILED
2017-07-25 10:31:38.214361: E c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_timer.cc:54] Internal: error destroying CUDA event in context 0000022AC3660650: CUDA_ERROR_LAUNCH_FAILED
2017-07-25 10:31:38.214616: E c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_timer.cc:59] Internal: error destroying CUDA event in context 0000022AC3660650: CUDA_ERROR_LAUNCH_FAILED
2017-07-25 10:31:38.214852: F c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_dnn.cc:2479] failed to enqueue convolution on stream: CUDNN_STATUS_EXECUTION_FAILED
Process finished with exit code -1073740791 (0xC0000409)
The text was updated successfully, but these errors were encountered: