Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

test_fcn32 fails, but test_fcn8 and test_fcn16 complete #39

Open
bgr33r opened this issue Jul 25, 2017 · 0 comments
Open

test_fcn32 fails, but test_fcn8 and test_fcn16 complete #39

bgr33r opened this issue Jul 25, 2017 · 0 comments

Comments

@bgr33r
Copy link

bgr33r commented Jul 25, 2017

Hello,

I am testing the tensorflow-fcn implementation on a new PC, and I am unable to get test_fcn32 to complete, but able to get test_fcn8, and test_fcn16 to complete.

test_fcn32 fails after "Shape of pool5[1 12 16 512]". Do you have any advice for what may be going wrong? I wonder if it has to do with my GPU, but the GPU seems to be operating fine under fcn8 and fcn16. What do you think? Can you help?

Thanks!

2017-07-25 10:31:25.240324: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.240571: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.240779: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.241016: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.241228: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.241513: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.242272: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:25.242685: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-07-25 10:31:27.164173: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:940] Found device 0 with properties:
name: Quadro M1200
major: 5 minor: 0 memoryClockRate (GHz) 1.148
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.35GiB
2017-07-25 10:31:27.164414: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:961] DMA: 0
2017-07-25 10:31:27.164536: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:971] 0: Y
2017-07-25 10:31:27.164706: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro M1200, pci bus id: 0000:01:00.0)
npy file loaded
Layer name: conv1_1
Layer shape: (3, 3, 3, 64)
Layer name: conv1_2
Layer shape: (3, 3, 64, 64)
Layer name: conv2_1
Layer shape: (3, 3, 64, 128)
Layer name: conv2_2
Layer shape: (3, 3, 128, 128)
Layer name: conv3_1
Layer shape: (3, 3, 128, 256)
Layer name: conv3_2
Layer shape: (3, 3, 256, 256)
Layer name: conv3_3
Layer shape: (3, 3, 256, 256)
Layer name: conv4_1
Layer shape: (3, 3, 256, 512)
Layer name: conv4_2
Layer shape: (3, 3, 512, 512)
Layer name: conv4_3
Layer shape: (3, 3, 512, 512)
Layer name: conv5_1
Layer shape: (3, 3, 512, 512)
Layer name: conv5_2
Layer shape: (3, 3, 512, 512)
Layer name: conv5_3
Layer shape: (3, 3, 512, 512)
Layer name: fc6
Layer shape: [7, 7, 512, 4096]
Layer name: fc7
Layer shape: [1, 1, 4096, 4096]
Layer name: fc8
Layer shape: [1, 1, 4096, 1000]
Finished building Network.
Running the Network
2017-07-25 10:31:32.566719: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of input image: [1 368 489 3]
2017-07-25 10:31:33.329698: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool1[1 184 245 64]
2017-07-25 10:31:33.842707: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool2[1 92 123 128]
2017-07-25 10:31:34.442268: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool3[1 46 62 256]
2017-07-25 10:31:35.171996: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool4[1 23 31 512]
2017-07-25 10:31:35.372775: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\kernels\logging_ops.cc:79] Shape of pool5[1 12 16 512]
2017-07-25 10:31:38.214065: E c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_driver.cc:1068] failed to synchronize the stop event: CUDA_ERROR_LAUNCH_FAILED
2017-07-25 10:31:38.214361: E c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_timer.cc:54] Internal: error destroying CUDA event in context 0000022AC3660650: CUDA_ERROR_LAUNCH_FAILED
2017-07-25 10:31:38.214616: E c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_timer.cc:59] Internal: error destroying CUDA event in context 0000022AC3660650: CUDA_ERROR_LAUNCH_FAILED
2017-07-25 10:31:38.214852: F c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\stream_executor\cuda\cuda_dnn.cc:2479] failed to enqueue convolution on stream: CUDNN_STATUS_EXECUTION_FAILED

Process finished with exit code -1073740791 (0xC0000409)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant