forked from johnmyleswhite/MLNotes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
outline.rmd
146 lines (119 loc) · 2.02 KB
/
outline.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Norms:
* Absolute Value
* Euclidean Norm
* $L_{p}$ Norm
* Frobenius Norm
Bases:
* Standard Polynomial Basis
* Chebyshev Basis
* Fourier Basis
* Wavelet Basis
Regression:
* Linear Regression
* Generalized Additive Model
* kNN
* Decision Trees
* Random Forests
Classification:
* Naive Bayes
* Logistic Regression
* kNN
* Decision Trees
* Random Forests
Feature Construction:
* Autoencoders
* Deep Learning
Text Analysis:
* Bag of Words
* TF-IDF
* LDA
* LSA
* pLSA
* Federalist Papers Analysis
Dimensionality Reduction:
* PCA
* ICA
* NMF
Regularization:
* L2
* L1
* Spike-and-slab
Probability Distributions:
* Normal
* Gamma
* Poisson
* Dirichlet
* Beta
* Bernoulli
* Binomial
* Cauchy
* Student's t
* Snedecor's F
* Power law
* Log normal
* Multinomial
* Inverse Wishart
Hyperparameters:
* Bayesian Optimization hyperparameter tuning methods
* Sequential Model Based Optimization hyperparameter tuning methods
Hypothesis Testing:
* t-Test
* Wilcoxon test
Miscallaneous:
* Conditional random fields
* Support vector machines
* Maximum entropy
* Neural networks
* Ising models
* Boltzmann machines
* Restricted Boltzmann machines
* Perceptrons
* Boosting
* Discriminative models vs. generative models
* IID model
* Shannon information
* f-Divergence
* Entropy
* KL-Divergence
* Mixture model
* Hidden Markov model
* Latent Dirichlet allocation
* Mixed membership model
* Hierarchical model
* Alternating maximization
* EM Algorithm
* Semi-supervised learning
* Reinforcement learning
* Bandit algorithms
* PAC bounds
* Bayesian network
* Sentiment analysis
* Text regression
Backpropagation
Case-based reasoning
Rule-based reasoning
Gaussian process
Spline
Loess
Density estimation
KDE
Histogram
Vector quantization
MDL
Bagging
Bootstrap
Jackknife
Fisher's linear discriminant analysis
Basis regression
Polynomial regression
Reinforcement learning:
* Temporal difference learning
* Q-learning
* SARSA learning
Association rule learning
* Apriori algorithm
Clustering:
* k-Means
* dp-Means
* Hierarchical clustering
* Single-linkage clustering