We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
gpu的输出中存在很多-inf,但输入数据其实就都为0或者大于0.001
jt.Var([[[[-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4927946e-01 2.4003847e-01 3.7717146e-01 4.0253597e-01 4.0253597e-01 4.0253597e-01 4.0253597e-01 4.0253597e-01 4.0253597e-01 4.0253597e-01 4.0253597e-01 1.9055609e-01 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4927946e-01 2.4003847e-01 3.7717146e-01 4.0253597e-01 4.1456258e-01 4.1456258e-01 4.1456258e-01 4.1456258e-01 4.1456258e-01 4.1456258e-01 4.1456258e-01 4.1456258e-01 1.2646900e-01 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4927946e-01 2.4003847e-01 3.7717146e-01 4.0775770e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 2.8187984e-01 5.5362388e-02 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4927946e-01 2.4003847e-01 3.7717146e-01 4.0775770e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 2.8187984e-01 5.5362388e-02 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.8985461e-01 2.1769403e-01 4.0775770e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 2.8187984e-01 5.5362388e-02 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.8985461e-01 2.1769403e-01 4.0775770e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 2.8187984e-01 5.5362388e-02 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.8985461e-01 2.1769403e-01 4.0775770e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 5.0950021e-01 2.8187984e-01 5.5362388e-02 0.0000000e+00 0.0000000e+00 -3.4028235e+38]] [[-3.4028235e+38 4.3406930e-02 4.3406930e-02 4.3406930e-02 2.2493003e-01 3.4764841e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 1.4531037e-01 6.1729271e-02 6.1729271e-02 6.1729271e-02 4.3406930e-02 4.3406930e-02 -3.4028235e+38] [-3.4028235e+38 4.3406930e-02 4.3406930e-02 4.3406930e-02 2.2493003e-01 3.4764841e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 1.4531037e-01 8.6400174e-02 8.6400174e-02 6.1729271e-02 4.3406930e-02 4.3406930e-02 -3.4028235e+38] [-3.4028235e+38 4.3406930e-02 4.3406930e-02 4.3406930e-02 2.2493003e-01 3.4764841e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 4.3398163e-01 1.5092641e-01 1.5092641e-01 1.0883322e-01 6.1729271e-02 4.3406930e-02 4.3406930e-02 -3.4028235e+38] [-3.4028235e+38 4.3406930e-02 4.3406930e-02 4.3406930e-02 2.2493003e-01 3.4764841e-01 3.4764841e-01 3.4764841e-01 3.4764841e-01 3.4764841e-01 3.4764841e-01 3.4764841e-01 3.4764841e-01 3.2727769e-01 1.5092641e-01 1.5092641e-01 1.0883322e-01 8.6275078e-02 8.6275078e-02 4.3406930e-02 -3.4028235e+38] [-3.4028235e+38 4.3406930e-02 4.3406930e-02 4.3406930e-02 2.0389429e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.2727769e-01 1.5092641e-01 1.5092641e-01 1.0883322e-01 8.6275078e-02 8.6275078e-02 4.3406930e-02 -3.4028235e+38] [-3.4028235e+38 4.3406930e-02 4.3406930e-02 4.3406930e-02 1.5981312e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.2727769e-01 1.5092641e-01 1.5092641e-01 1.0883322e-01 8.6275078e-02 8.6275078e-02 4.3406930e-02 -3.4028235e+38] [-3.4028235e+38 4.3406930e-02 4.3406930e-02 4.3406930e-02 1.5981312e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.3969164e-01 3.2727769e-01 1.5092641e-01 1.5092641e-01 1.0883322e-01 8.6275078e-02 8.6275078e-02 4.3406930e-02 -3.4028235e+38]] [[-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3050182e-01 5.4462498e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0074594e-01 2.7227283e-01 1.5576500e-03 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3050182e-01 5.4462498e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0074594e-01 2.7227283e-01 1.5576500e-03 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3050182e-01 5.4462498e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0074594e-01 2.7227283e-01 7.9842404e-02 7.9842404e-02 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3050182e-01 5.4462498e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0567369e-01 7.0074594e-01 6.2061739e-01 5.5357701e-01 5.5357701e-01 1.2504171e-01 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3050182e-01 5.4462498e-01 8.1113821e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 8.2976043e-01 5.5357701e-01 5.5357701e-01 1.2504171e-01 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3050182e-01 4.7433880e-01 8.1113821e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 8.2976043e-01 5.5357701e-01 5.5357701e-01 1.2504171e-01 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 2.7469626e-01 8.1113821e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 9.1192883e-01 8.2976043e-01 5.5357701e-01 5.5357701e-01 1.2504171e-01 0.0000000e+00 -3.4028235e+38]] [[-3.4028235e+38 4.7009472e-02 4.7009472e-02 4.7009472e-02 2.7904010e-01 5.3507531e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.4222074e-01 5.2259576e-01 5.7960249e-02 5.0474759e-02 4.7009472e-02 4.7009472e-02 -3.4028235e+38] [-3.4028235e+38 4.7009472e-02 4.7009472e-02 4.7009472e-02 2.7904010e-01 5.3507531e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.4222074e-01 5.2259576e-01 1.1508992e-01 1.1508992e-01 4.7009472e-02 4.7009472e-02 -3.4028235e+38] [-3.4028235e+38 4.7009472e-02 4.7009472e-02 4.7009472e-02 2.7904010e-01 5.3507531e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 6.4222074e-01 5.2259576e-01 4.5839888e-01 4.5839888e-01 1.3897316e-01 4.7009472e-02 -3.4028235e+38] [-3.4028235e+38 4.7009472e-02 4.7009472e-02 4.7009472e-02 2.7904010e-01 5.3507531e-01 6.8248332e-01 6.8248332e-01 6.8248332e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 4.5839888e-01 1.3897316e-01 4.7009472e-02 -3.4028235e+38] [-3.4028235e+38 4.7009472e-02 4.7009472e-02 4.7009472e-02 2.7904010e-01 5.3507531e-01 7.5975591e-01 7.5975591e-01 7.5975591e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 4.5839888e-01 1.3897316e-01 4.7009472e-02 -3.4028235e+38] [-3.4028235e+38 4.7009472e-02 4.7009472e-02 4.7009472e-02 2.7904010e-01 3.2982445e-01 7.5975591e-01 7.5975591e-01 7.5975591e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 4.5839888e-01 1.3897316e-01 4.7009472e-02 -3.4028235e+38] [-3.4028235e+38 4.7009472e-02 4.7009472e-02 4.7009472e-02 9.3529552e-02 3.2982445e-01 7.5975591e-01 7.5975591e-01 7.5975591e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 8.2965738e-01 4.5839888e-01 1.3897316e-01 4.7009472e-02 -3.4028235e+38]] [[-3.4028235e+38 8.8191412e-02 8.8191412e-02 8.8191412e-02 4.2767075e-01 4.2767075e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 2.7990359e-01 2.7990359e-01 1.3443573e-01 8.8191412e-02 8.8191412e-02 8.8191412e-02 -3.4028235e+38] [-3.4028235e+38 8.8191412e-02 8.8191412e-02 8.8191412e-02 4.2767075e-01 4.2767075e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 2.7990359e-01 2.7990359e-01 1.3443573e-01 9.7128570e-02 9.7128570e-02 8.8191412e-02 -3.4028235e+38] [-3.4028235e+38 8.8191412e-02 8.8191412e-02 8.8191412e-02 4.2767075e-01 4.2767075e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 2.7990359e-01 2.7990359e-01 1.3443573e-01 1.1171624e-01 1.1171624e-01 8.8191412e-02 -3.4028235e+38] [-3.4028235e+38 8.8191412e-02 8.8191412e-02 8.8191412e-02 4.2767075e-01 4.2767075e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 2.7990359e-01 2.7990359e-01 2.2847664e-01 2.2847664e-01 2.2847664e-01 8.8191412e-02 -3.4028235e+38] [-3.4028235e+38 8.8191412e-02 8.8191412e-02 8.8191412e-02 4.2767075e-01 4.2767075e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 3.6671627e-01 3.6671627e-01 3.6671627e-01 2.2847664e-01 2.2847664e-01 8.8191412e-02 -3.4028235e+38] [-3.4028235e+38 8.8191412e-02 8.8191412e-02 8.8191412e-02 3.3895338e-01 4.0968794e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 7.6685077e-01 3.6671627e-01 3.6671627e-01 3.6671627e-01 2.2847664e-01 2.2847664e-01 8.8191412e-02 -3.4028235e+38] [-3.4028235e+38 8.8191412e-02 8.8191412e-02 8.8191412e-02 1.5337470e-01 4.0968794e-01 5.7877833e-01 5.7877833e-01 5.7877833e-01 5.7877833e-01 5.7877833e-01 5.7877833e-01 5.7877833e-01 5.7877833e-01 3.6671627e-01 3.6671627e-01 3.6671627e-01 2.2847664e-01 2.2847664e-01 8.8191412e-02 -3.4028235e+38]] [[-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 1.1870350e-02 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38] [-3.4028235e+38 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.4028235e+38]]]], dtype=float32) Compiling Operators(1/1) used: 3.94s eta: 0s jt.Var([[[[ -inf 0. 0. 0. 0.14927946 0.24003847 0.37717146 0.40253597 0.40253597 0.40253597 0.40253597 0.40253597 0.40253597 0.40253597 0.40253597 0.1905561 0. 0. 0. 0. -inf] [ -inf 0. 0. 0. 0.14927946 0.24003847 0.37717146 0.40253597 0.41456258 0.41456258 0.41456258 0.41456258 0.41456258 0.41456258 0.41456258 0.41456258 0.126469 0. 0. 0. -inf] [ -inf 0. 0. 0. 0.14927946 0.24003847 0.37717146 0.4077577 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.28187984 0.05536239 0. 0. -inf] [ -inf 0. 0. 0. 0.14927946 0.24003847 0.37717146 0.4077577 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.28187984 0.05536239 0. 0. -inf] [ -inf 0. 0. 0. 0. 0.1898546 0.21769403 0.4077577 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.28187984 0.05536239 0. 0. -inf] [ -inf 0. 0. 0. 0. 0.1898546 0.21769403 0.4077577 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.28187984 0.05536239 0. 0. -inf] [ -inf 0. 0. 0. 0. 0.1898546 0.21769403 0.4077577 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.5095002 0.28187984 0.05536239 0. 0. -inf]] [[ -inf 0.04340693 0.04340693 0.04340693 0.22493003 0.3476484 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.14531037 0.06172927 0.06172927 0.06172927 0.04340693 0.04340693 -inf] [ -inf 0.04340693 0.04340693 0.04340693 0.22493003 0.3476484 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.14531037 0.08640017 0.08640017 0.06172927 0.04340693 0.04340693 -inf] [ -inf 0.04340693 0.04340693 0.04340693 0.22493003 0.3476484 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.43398163 0.15092641 0.15092641 0.10883322 0.06172927 0.04340693 0.04340693 -inf] [ -inf 0.04340693 0.04340693 0.04340693 0.22493003 0.3476484 0.3476484 0.3476484 0.3476484 0.3476484 0.3476484 0.3476484 0.3476484 0.3272777 0.15092641 0.15092641 0.10883322 0.08627508 0.08627508 0.04340693 -inf] [ -inf 0.04340693 0.04340693 0.04340693 0.20389429 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.3272777 0.15092641 0.15092641 0.10883322 0.08627508 0.08627508 0.04340693 -inf] [ -inf 0.04340693 0.04340693 0.04340693 0.15981312 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.3272777 0.15092641 0.15092641 0.10883322 0.08627508 0.08627508 0.04340693 -inf] [ -inf 0.04340693 0.04340693 0.04340693 0.15981312 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.33969164 0.3272777 0.15092641 0.15092641 0.10883322 0.08627508 0.08627508 0.04340693 -inf]] [[ -inf 0. 0. 0. 0.13050182 0.544625 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.70074594 0.27227283 0.00155765 0. 0. 0. -inf] [ -inf 0. 0. 0. 0.13050182 0.544625 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.70074594 0.27227283 0.00155765 0. 0. 0. -inf] [ -inf 0. 0. 0. 0.13050182 0.544625 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.70074594 0.27227283 0.0798424 0.0798424 0. 0. -inf] [ -inf 0. 0. 0. 0.13050182 0.544625 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.7056737 0.70074594 0.6206174 0.553577 0.553577 0.12504171 0. -inf] [ -inf 0. 0. 0. 0.13050182 0.544625 0.8111382 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.82976043 0.553577 0.553577 0.12504171 0. -inf] [ -inf 0. 0. 0. 0.13050182 0.4743388 0.8111382 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.82976043 0.553577 0.553577 0.12504171 0. -inf] [ -inf 0. 0. 0. 0. 0.27469626 0.8111382 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.91192883 0.82976043 0.553577 0.553577 0.12504171 0. -inf]] [[ -inf 0.04700947 0.04700947 0.04700947 0.2790401 0.5350753 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.64222074 0.52259576 0.05796025 0.05047476 0.04700947 0.04700947 -inf] [ -inf 0.04700947 0.04700947 0.04700947 0.2790401 0.5350753 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.64222074 0.52259576 0.11508992 0.11508992 0.04700947 0.04700947 -inf] [ -inf 0.04700947 0.04700947 0.04700947 0.2790401 0.5350753 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.6824833 0.64222074 0.52259576 0.45839888 0.45839888 0.13897316 0.04700947 -inf] [ -inf 0.04700947 0.04700947 0.04700947 0.2790401 0.5350753 0.6824833 0.6824833 0.6824833 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.45839888 0.13897316 0.04700947 -inf] [ -inf 0.04700947 0.04700947 0.04700947 0.2790401 0.5350753 0.7597559 0.7597559 0.7597559 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.45839888 0.13897316 0.04700947 -inf] [ -inf 0.04700947 0.04700947 0.04700947 0.2790401 0.32982445 0.7597559 0.7597559 0.7597559 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.45839888 0.13897316 0.04700947 -inf] [ -inf 0.04700947 0.04700947 0.04700947 0.09352955 0.32982445 0.7597559 0.7597559 0.7597559 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.8296574 0.45839888 0.13897316 0.04700947 -inf]] [[ -inf 0.08819141 0.08819141 0.08819141 0.42767075 0.42767075 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.2799036 0.2799036 0.13443573 0.08819141 0.08819141 0.08819141 -inf] [ -inf 0.08819141 0.08819141 0.08819141 0.42767075 0.42767075 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.2799036 0.2799036 0.13443573 0.09712857 0.09712857 0.08819141 -inf] [ -inf 0.08819141 0.08819141 0.08819141 0.42767075 0.42767075 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.2799036 0.2799036 0.13443573 0.11171624 0.11171624 0.08819141 -inf] [ -inf 0.08819141 0.08819141 0.08819141 0.42767075 0.42767075 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.2799036 0.2799036 0.22847664 0.22847664 0.22847664 0.08819141 -inf] [ -inf 0.08819141 0.08819141 0.08819141 0.42767075 0.42767075 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.36671627 0.36671627 0.36671627 0.22847664 0.22847664 0.08819141 -inf] [ -inf 0.08819141 0.08819141 0.08819141 0.33895338 0.40968794 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.76685077 0.36671627 0.36671627 0.36671627 0.22847664 0.22847664 0.08819141 -inf] [ -inf 0.08819141 0.08819141 0.08819141 0.1533747 0.40968794 0.5787783 0.5787783 0.5787783 0.5787783 0.5787783 0.5787783 0.5787783 0.5787783 0.36671627 0.36671627 0.36671627 0.22847664 0.22847664 0.08819141 -inf]] [[ -inf 0. 0. 0. 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0. 0. 0. 0. 0. 0. 0. 0. -inf] [ -inf 0. 0. 0. 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0. 0. 0. 0. 0. 0. 0. 0. -inf] [ -inf 0. 0. 0. 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0. 0. 0. 0. 0. 0. 0. 0. -inf] [ -inf 0. 0. 0. 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0. 0. 0. 0. 0. 0. 0. 0. -inf] [ -inf 0. 0. 0. 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0. 0. 0. 0. 0. 0. 0. 0. -inf] [ -inf 0. 0. 0. 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0.01187035 0. 0. 0. 0. 0. 0. 0. 0. -inf] [ -inf 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -inf]]]], dtype=float32)
import jittor import numpy as np import copy import random seed = 42 random.seed(seed) np.random.seed(seed) jittor.seed(seed) def chebyshev_distance(A: np.ndarray, B: np.ndarray): if A is None or B is None: return 0.0 if A.shape != B.shape: return 9999999 else: return float(np.max(np.abs(A - B))) # data = np.load('./maxpool2d_input_2.npz')['inp'] data = [ [ [ [0., 0., 0., 0., 0., 0.15685005, 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.2040826, 0.3494063, 0.40253597, 0., 0., 0., 0., 0.], [0., 0., 0., 0.14927946, 0.24003847, 0.37717146, 0.07421438, 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.17000304, 0.04403594, 0.04129967, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.02591759, 0., 0.09126398, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.05346677, 0., 0.12202908, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.08989008, 0., 0.1905561, 0., 0., 0., 0.], [0., 0., 0., 0., 0.01642773, 0.21769403, 0., 0.41456258, 0.126469, 0., 0., 0.], [0., 0., 0., 0., 0.13199194, 0.17417265, 0.4077577, 0.5095002, 0.28187984, 0.05536239, 0., 0.], [0., 0., 0., 0., 0.1898546, 0.12335719, 0.34951448, 0.15104438, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] ], [ [0.04340693, 0.04340693, 0.04340693, 0.04340693, 0.09511481, 0.18995853, 0.14531037, 0.01903103, 0.0065299, 0.04340693, 0.04340693, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.09891686, 0.26693964, 0.43398163, 0., 0., 0.00160573, 0.04340693, 0.04340693, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.22493003, 0.3476484, 0.09090321, 0., 0., 0.05481253, 0.04340693, 0.04340693, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.20389429, 0.04783146, 0., 0., 0., 0.04340693, 0.04340693, 0.04340693, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.0726514, 0., 0.12019433, 0., 0., 0.04340693, 0.04340693, 0.04340693, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.0153887, 0.01219215, 0.17619793, 0., 0., 0.04340693, 0.04340693, 0.04340693, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.04340693, 0.11530609, 0.20969972, 0.00198663, 0., 0.0522819, 0.06172927, 0.03638273, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.04340693, 0.29556984, 0.24648133, 0., 0.06053366, 0.08640017, 0., 0., 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.06469841, 0.33969164, 0.3272777, 0., 0.15092641, 0.10883322, 0., 0.02563027, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.11939006, 0.19932903, 0.12497775, 0., 0., 0., 0., 0.08627508, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0.15981312, 0.17869246, 0.10284844, 0., 0., 0., 0., 0.04070441, 0.04340693], [0.04340693, 0.04340693, 0.04340693, 0., 0., 0., 0., 0., 0.02189272, 0.04340693, 0.04340693, 0.04340693] ], [ [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.07220851, 0.1880362, 0.43907446, 0.27227283, 0.00155765, 0., 0., 0.], [0., 0., 0., 0.05905887, 0.544625, 0.66681546, 0.6857215, 0.18234831, 0., 0., 0., 0.], [0., 0., 0., 0.13050182, 0.4743388, 0.7056737, 0.70074594, 0.06390604, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.17869282, 0.52951497, 0.03458298, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.11606291, 0.40798056, 0.00117774, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.12643212, 0.37192938, 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.22793597, 0.33495057, 0., 0., 0.0798424, 0., 0.], [0., 0., 0., 0., 0.13454145, 0.35454372, 0.4550567, 0.6206174, 0.43545264, 0.553577, 0.12504171, 0.], [0., 0., 0., 0., 0.27469626, 0.8111382, 0.91192883, 0.82976043, 0.49622396, 0.11247639, 0., 0.], [0., 0., 0., 0., 0.18815821, 0.28644323, 0.2716272, 0.10448416, 0., 0., 0., 0.] ], [ [0.04700947, 0.04700947, 0.04700947, 0.04700947, 0.08651208, 0., 0., 0.04228427, 0.04592258, 0.04700947, 0.04700947, 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.08941668, 0., 0., 0.16602537, 0.52259576, 0.05796025, 0.04700947, 0.04700947, 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0., 0., 0.47727212, 0.64222074, 0.33341566, 0.0247089, 0.04700947, 0.04700947, 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.02086113, 0.5350753, 0.6824833, 0.5170374, 0.18436384, 0.04700947, 0.04700947, 0.04700947, 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.2790401, 0.2999647, 0.28442162, 0.35599712, 0.17063603, 0.04700947, 0.04700947, 0.04700947, 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.06666827, 0.08049754, 0.18446739, 0.47047907, 0.15492289, 0.04700947, 0.04700947, 0.04700947, 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.04700947, 0.06533378, 0.15004528, 0.4852689, 0.04199514, 0.03486224, 0.05047476, 0.04680244, 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.04700947, 0.10049464, 0.1440804, 0.4347712, 0.04229088, 0., 0.11508992, 0., 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.06327525, 0., 0.28503057, 0.3503591, 0.05242874, 0.23865211, 0.45839888, 0.13897316, 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.01270876, 0.04840504, 0.53035474, 0.46597266, 0.6395123, 0.8296574, 0.19922033, 0., 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.07608382, 0.32982445, 0.7597559, 0.67719126, 0.45816907, 0.18187274, 0., 0.04072466, 0.04700947], [0.04700947, 0.04700947, 0.04700947, 0.09352955, 0.21165699, 0.24615076, 0.01711456, 0., 0.00277855, 0.04700947, 0.04700947, 0.04700947] ], [ [0.08819141, 0.08819141, 0.08819141, 0.08819141, 0.08842978, 0.06145801, 0., 0., 0.08704833, 0.08819141, 0.08819141, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.08844731, 0.09901631, 0.17924073, 0., 0., 0.06749697, 0.08819141, 0.08819141, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.11146501, 0.20169947, 0.02148412, 0., 0.05455584, 0.13443573, 0.08819141, 0.08819141, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.42767075, 0.15973106, 0.29937133, 0.01271471, 0.18290591, 0.08819141, 0.08819141, 0.08819141, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.33895338, 0.17126837, 0.76685077, 0., 0.15206587, 0.08819141, 0.08819141, 0.08819141, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.1017458, 0.08857994, 0.56584215, 0., 0.18455982, 0.08819141, 0.08819141, 0.08819141, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.08819141, 0.11446189, 0.5787783, 0., 0.2799036, 0.06322102, 0.07392699, 0.08797368, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.08819141, 0.17532063, 0.56458676, 0., 0.1815764, 0.10056813, 0., 0.09712857, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.08828957, 0.170097, 0.34632617, 0., 0.18686679, 0.02133245, 0., 0.11171624, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.1533747, 0.3009949, 0.07615723, 0.1458463, 0.18052286, 0.01083277, 0.1594953, 0.22847664, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.13598761, 0.40968794, 0.25677565, 0.3280553, 0.31480962, 0.36671627, 0.21937025, 0.09177419, 0.08819141], [0.08819141, 0.08819141, 0.08819141, 0.10308773, 0.30095595, 0.33695114, 0.32765555, 0.20539683, 0.11546265, 0.08819141, 0.08819141, 0.08819141] ], [ [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0.01187035, 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] ] ] ] jittor.flags.use_cuda = 0 input_c = jittor.array(data).float32() pool_cpu = jittor.nn.MaxPool2d(kernel_size=8, stride=1, ceil_mode=False, return_indices=False, padding=(1, 8)) output_c = pool_cpu(input_c) jittor.flags.use_cuda = 1 input_g = jittor.array(data).float32() pool_gpu = copy.deepcopy(pool_cpu) output_g = pool_gpu(input_g) print(output_c) print(output_g)
输出无异常值
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Full Log
gpu的输出中存在很多-inf,但输入数据其实就都为0或者大于0.001
Minimal Reproduce
Expected behavior
输出无异常值
The text was updated successfully, but these errors were encountered: