We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
jittor.nn.UpsamplingBilinear2d 导致不明原因的崩溃
Traceback (most recent call last): File "/home/moco_jt2/test.py", line 109, in <module> success, reason = train(x=None, x_t=x_t, y_t=y_t) File "/home/moco_jt2/test.py", line 79, in train output_g_np = output_g.fetch_sync() RuntimeError: [f 0829 08:01:23.001122 68 executor.cc:682] Execute fused operator(17/35) failed.[OP TYPE]: fused_op:( index, binary.add, binary.add, reindex, reindex, reindex,) [Input]: int32[1,1,1,1,], int32[1,1,1,1,], int32[1,1,1,1,], int32[1,1,1,1,], float32[1,1,4,4,], [Output]: float32[1,1,1,1,], float32[1,1,1,1,], float32[1,1,1,1,], [Async Backtrace]: not found, please set env JT_SYNC=1, trace_py_var=3 [Reason]: [f 0829 08:01:23.000890 68 op_compiler.cc:832] Check failed: member.size() <= var_num Something wrong... Could you please report this issue? ********** Async error was detected. To locate the async backtrace and get better error report, please rerun your code with two enviroment variables set: >>> export JT_SYNC=1 >>> export trace_py_var=3
import os os.environ["disable_lock"] = "1" import jittor import jittor.nn as nn import jittor.optim as optim import numpy as np import copy class lenet(nn.Module): def __init__(self): super().__init__() self.conv1_mutated = jittor.nn.MaxPool2d(kernel_size=5, return_indices=False, stride=6) self.relu1_mutated = jittor.nn.PReLU() self.pool1_mutated = jittor.nn.ELU() self.conv2_mutated = jittor.nn.UpsamplingBilinear2d(scale_factor=0.4710604663167929) self.tail_flatten = jittor.nn.Flatten() self.tail_fc = jittor.nn.Linear(in_features=1, out_features=10) def execute(self, x): x = self.conv1_mutated(x) x = self.relu1_mutated(x) x = self.pool1_mutated(x) x = self.conv2_mutated(x) x = self.tail_flatten(x) x = self.tail_fc(x) return x def go(): jittor.flags.use_cuda = 1 x = jittor.randn([1, 1, 28, 28]) m = lenet() y = m(x) return list(y.shape) def chebyshev_distance(A: np.ndarray, B: np.ndarray): if A is None or B is None: return 0.0 if A.shape != B.shape: return 9999999 else: return float(np.max(np.abs(A - B))) def train(x, x_t, y_t): flag = True jittor.flags.use_cuda = 0 m_c = lenet() opt_c = optim.SGD(m_c.parameters(), lr=0.01) jittor.flags.use_cuda = 1 m_g = copy.deepcopy(m_c) opt_g = optim.SGD(m_g.parameters(), lr=0.01) jittor.flags.use_cuda = 0 input_c = jittor.array(x_t).float32() input_c = input_c.arccosh() target_c = jittor.array(y_t) output_c = m_c(input_c) loss_c = nn.CrossEntropyLoss()(output_c, target_c) opt_c.backward(loss_c) jittor.flags.use_cuda = 1 input_g = jittor.array(x_t).float32() input_g = input_g.arccosh() target_g = jittor.array(y_t) output_g = m_g(input_g) loss_g = nn.CrossEntropyLoss()(output_g, target_g) opt_g.backward(loss_g) output_c_np = output_c.fetch_sync() output_g_np = output_g.fetch_sync() jittor.flags.use_cuda = 0 if chebyshev_distance(output_c_np, output_g_np) > 0.1: flag = False jittor.clean() return flag, 'Output diff too big' if abs(loss_c.item() - loss_g.item()) > 0.1: flag = False jittor.clean() return flag, 'Loss diff too big' for (param_c, param_g) in zip(m_c.parameters(), m_g.parameters()): weights_c = param_c weights_g = param_g distance = chebyshev_distance(weights_c, weights_g) if distance > 0.1: flag = False break if not flag: jittor.clean() return flag, 'Grad diff too big' jittor.clean() return flag, ''
A clear and concise description of what you expected to happen.
If you are submitting an issue for the first time, please refer to our guideline
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Describe the bug
jittor.nn.UpsamplingBilinear2d 导致不明原因的崩溃
Full Log
Minimal Reproduce
Expected behavior
A clear and concise description of what you expected to happen.
If you are submitting an issue for the first time, please refer to our guideline
The text was updated successfully, but these errors were encountered: