Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

jittor.nn.ConvTranspose3d 的 group参数没有实现 #592

Open
PhyllisJi opened this issue Sep 6, 2024 · 0 comments
Open

jittor.nn.ConvTranspose3d 的 group参数没有实现 #592

PhyllisJi opened this issue Sep 6, 2024 · 0 comments

Comments

@PhyllisJi
Copy link

Describe the bug

jittor.nn.ConvTranspose3d 的 group参数没有实现

Full Log

---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
Cell In[11], line 30
     26     y = m(x)
     27     return list(y.shape)
---> 30 go()

Cell In[11], line 25, in go()
     23 jittor.flags.use_cuda = 1
     24 x = jittor.randn([1, 1, 28, 28])
---> 25 m = lenet()
     26 y = m(x)
     27 return list(y.shape)

Cell In[11], line 13, in lenet.__init__(self)
     11 def __init__(self):
     12     super().__init__()
---> 13     self.conv1 = jittor.nn.ConvTranspose3d(in_channels=1, kernel_size=5, out_channels=6, groups=9)

File ~/miniconda3/envs/myconda/lib/python3.9/site-packages/jittor/nn.py:1442, in ConvTranspose3d.__init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, groups, bias, dilation)
   1440 self.dilation = dilation
   1441 self.group = groups
-> 1442 assert groups==1, "Group conv not supported yet."
   1444 self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)
   1445 self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)

AssertionError: Group conv not supported yet.

Minimal Reproduce

import os
os.environ["disable_lock"] = "1"
import jittor
import jittor.nn as nn
import jittor.optim as optim
import numpy as np
import copy


class lenet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = jittor.nn.ConvTranspose3d(in_channels=1, kernel_size=5, out_channels=6, groups=9)
    
    def execute(self, x):
        x = self.conv1(x)
        return x

def go():
    jittor.flags.use_cuda = 1
    x = jittor.randn([1, 1, 28, 28])
    m = lenet()
    y = m(x)
    return list(y.shape)

go()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant