This repository has been archived by the owner on Jul 5, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 878
/
train.py
339 lines (255 loc) · 13.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from __future__ import print_function
import os,time,cv2, sys, math
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
import time, datetime
import argparse
import random
import os, sys
import subprocess
# use 'Agg' on matplotlib so that plots could be generated even without Xserver
# running
import matplotlib
matplotlib.use('Agg')
from utils import utils, helpers
from builders import model_builder
import matplotlib.pyplot as plt
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser()
parser.add_argument('--num_epochs', type=int, default=300, help='Number of epochs to train for')
parser.add_argument('--epoch_start_i', type=int, default=0, help='Start counting epochs from this number')
parser.add_argument('--checkpoint_step', type=int, default=5, help='How often to save checkpoints (epochs)')
parser.add_argument('--validation_step', type=int, default=1, help='How often to perform validation (epochs)')
parser.add_argument('--image', type=str, default=None, help='The image you want to predict on. Only valid in "predict" mode.')
parser.add_argument('--continue_training', type=str2bool, default=False, help='Whether to continue training from a checkpoint')
parser.add_argument('--dataset', type=str, default="CamVid", help='Dataset you are using.')
parser.add_argument('--crop_height', type=int, default=512, help='Height of cropped input image to network')
parser.add_argument('--crop_width', type=int, default=512, help='Width of cropped input image to network')
parser.add_argument('--batch_size', type=int, default=1, help='Number of images in each batch')
parser.add_argument('--num_val_images', type=int, default=20, help='The number of images to used for validations')
parser.add_argument('--h_flip', type=str2bool, default=False, help='Whether to randomly flip the image horizontally for data augmentation')
parser.add_argument('--v_flip', type=str2bool, default=False, help='Whether to randomly flip the image vertically for data augmentation')
parser.add_argument('--brightness', type=float, default=None, help='Whether to randomly change the image brightness for data augmentation. Specifies the max bightness change as a factor between 0.0 and 1.0. For example, 0.1 represents a max brightness change of 10%% (+-).')
parser.add_argument('--rotation', type=float, default=None, help='Whether to randomly rotate the image for data augmentation. Specifies the max rotation angle in degrees.')
parser.add_argument('--model', type=str, default="FC-DenseNet56", help='The model you are using. See model_builder.py for supported models')
parser.add_argument('--frontend', type=str, default="ResNet101", help='The frontend you are using. See frontend_builder.py for supported models')
args = parser.parse_args()
def data_augmentation(input_image, output_image):
# Data augmentation
input_image, output_image = utils.random_crop(input_image, output_image, args.crop_height, args.crop_width)
if args.h_flip and random.randint(0,1):
input_image = cv2.flip(input_image, 1)
output_image = cv2.flip(output_image, 1)
if args.v_flip and random.randint(0,1):
input_image = cv2.flip(input_image, 0)
output_image = cv2.flip(output_image, 0)
if args.brightness:
factor = 1.0 + random.uniform(-1.0*args.brightness, args.brightness)
table = np.array([((i / 255.0) * factor) * 255 for i in np.arange(0, 256)]).astype(np.uint8)
input_image = cv2.LUT(input_image, table)
if args.rotation:
angle = random.uniform(-1*args.rotation, args.rotation)
if args.rotation:
M = cv2.getRotationMatrix2D((input_image.shape[1]//2, input_image.shape[0]//2), angle, 1.0)
input_image = cv2.warpAffine(input_image, M, (input_image.shape[1], input_image.shape[0]), flags=cv2.INTER_NEAREST)
output_image = cv2.warpAffine(output_image, M, (output_image.shape[1], output_image.shape[0]), flags=cv2.INTER_NEAREST)
return input_image, output_image
# Get the names of the classes so we can record the evaluation results
class_names_list, label_values = helpers.get_label_info(os.path.join(args.dataset, "class_dict.csv"))
class_names_string = ""
for class_name in class_names_list:
if not class_name == class_names_list[-1]:
class_names_string = class_names_string + class_name + ", "
else:
class_names_string = class_names_string + class_name
num_classes = len(label_values)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess=tf.Session(config=config)
# Compute your softmax cross entropy loss
net_input = tf.placeholder(tf.float32,shape=[None,None,None,3])
net_output = tf.placeholder(tf.float32,shape=[None,None,None,num_classes])
network, init_fn = model_builder.build_model(model_name=args.model, frontend=args.frontend, net_input=net_input, num_classes=num_classes, crop_width=args.crop_width, crop_height=args.crop_height, is_training=True)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=network, labels=net_output))
opt = tf.train.RMSPropOptimizer(learning_rate=0.0001, decay=0.995).minimize(loss, var_list=[var for var in tf.trainable_variables()])
saver=tf.train.Saver(max_to_keep=1000)
sess.run(tf.global_variables_initializer())
utils.count_params()
# If a pre-trained ResNet is required, load the weights.
# This must be done AFTER the variables are initialized with sess.run(tf.global_variables_initializer())
if init_fn is not None:
init_fn(sess)
# Load a previous checkpoint if desired
model_checkpoint_name = "checkpoints/latest_model_" + args.model + "_" + args.dataset + ".ckpt"
if args.continue_training:
print('Loaded latest model checkpoint')
saver.restore(sess, model_checkpoint_name)
# Load the data
print("Loading the data ...")
train_input_names,train_output_names, val_input_names, val_output_names, test_input_names, test_output_names = utils.prepare_data(dataset_dir=args.dataset)
print("\n***** Begin training *****")
print("Dataset -->", args.dataset)
print("Model -->", args.model)
print("Crop Height -->", args.crop_height)
print("Crop Width -->", args.crop_width)
print("Num Epochs -->", args.num_epochs)
print("Batch Size -->", args.batch_size)
print("Num Classes -->", num_classes)
print("Data Augmentation:")
print("\tVertical Flip -->", args.v_flip)
print("\tHorizontal Flip -->", args.h_flip)
print("\tBrightness Alteration -->", args.brightness)
print("\tRotation -->", args.rotation)
print("")
avg_loss_per_epoch = []
avg_scores_per_epoch = []
avg_iou_per_epoch = []
# Which validation images do we want
val_indices = []
num_vals = min(args.num_val_images, len(val_input_names))
# Set random seed to make sure models are validated on the same validation images.
# So you can compare the results of different models more intuitively.
random.seed(16)
val_indices=random.sample(range(0,len(val_input_names)),num_vals)
# Do the training here
for epoch in range(args.epoch_start_i, args.num_epochs):
current_losses = []
cnt=0
# Equivalent to shuffling
id_list = np.random.permutation(len(train_input_names))
num_iters = int(np.floor(len(id_list) / args.batch_size))
st = time.time()
epoch_st=time.time()
for i in range(num_iters):
# st=time.time()
input_image_batch = []
output_image_batch = []
# Collect a batch of images
for j in range(args.batch_size):
index = i*args.batch_size + j
id = id_list[index]
input_image = utils.load_image(train_input_names[id])
output_image = utils.load_image(train_output_names[id])
with tf.device('/cpu:0'):
input_image, output_image = data_augmentation(input_image, output_image)
# Prep the data. Make sure the labels are in one-hot format
input_image = np.float32(input_image) / 255.0
output_image = np.float32(helpers.one_hot_it(label=output_image, label_values=label_values))
input_image_batch.append(np.expand_dims(input_image, axis=0))
output_image_batch.append(np.expand_dims(output_image, axis=0))
if args.batch_size == 1:
input_image_batch = input_image_batch[0]
output_image_batch = output_image_batch[0]
else:
input_image_batch = np.squeeze(np.stack(input_image_batch, axis=1))
output_image_batch = np.squeeze(np.stack(output_image_batch, axis=1))
# Do the training
_,current=sess.run([opt,loss],feed_dict={net_input:input_image_batch,net_output:output_image_batch})
current_losses.append(current)
cnt = cnt + args.batch_size
if cnt % 20 == 0:
string_print = "Epoch = %d Count = %d Current_Loss = %.4f Time = %.2f"%(epoch,cnt,current,time.time()-st)
utils.LOG(string_print)
st = time.time()
mean_loss = np.mean(current_losses)
avg_loss_per_epoch.append(mean_loss)
# Create directories if needed
if not os.path.isdir("%s/%04d"%("checkpoints",epoch)):
os.makedirs("%s/%04d"%("checkpoints",epoch))
# Save latest checkpoint to same file name
print("Saving latest checkpoint")
saver.save(sess,model_checkpoint_name)
if val_indices != 0 and epoch % args.checkpoint_step == 0:
print("Saving checkpoint for this epoch")
saver.save(sess,"%s/%04d/model.ckpt"%("checkpoints",epoch))
if epoch % args.validation_step == 0:
print("Performing validation")
target=open("%s/%04d/val_scores.csv"%("checkpoints",epoch),'w')
target.write("val_name, avg_accuracy, precision, recall, f1 score, mean iou, %s\n" % (class_names_string))
scores_list = []
class_scores_list = []
precision_list = []
recall_list = []
f1_list = []
iou_list = []
# Do the validation on a small set of validation images
for ind in val_indices:
input_image = np.expand_dims(np.float32(utils.load_image(val_input_names[ind])[:args.crop_height, :args.crop_width]),axis=0)/255.0
gt = utils.load_image(val_output_names[ind])[:args.crop_height, :args.crop_width]
gt = helpers.reverse_one_hot(helpers.one_hot_it(gt, label_values))
# st = time.time()
output_image = sess.run(network,feed_dict={net_input:input_image})
output_image = np.array(output_image[0,:,:,:])
output_image = helpers.reverse_one_hot(output_image)
out_vis_image = helpers.colour_code_segmentation(output_image, label_values)
accuracy, class_accuracies, prec, rec, f1, iou = utils.evaluate_segmentation(pred=output_image, label=gt, num_classes=num_classes)
file_name = utils.filepath_to_name(val_input_names[ind])
target.write("%s, %f, %f, %f, %f, %f"%(file_name, accuracy, prec, rec, f1, iou))
for item in class_accuracies:
target.write(", %f"%(item))
target.write("\n")
scores_list.append(accuracy)
class_scores_list.append(class_accuracies)
precision_list.append(prec)
recall_list.append(rec)
f1_list.append(f1)
iou_list.append(iou)
gt = helpers.colour_code_segmentation(gt, label_values)
file_name = os.path.basename(val_input_names[ind])
file_name = os.path.splitext(file_name)[0]
cv2.imwrite("%s/%04d/%s_pred.png"%("checkpoints",epoch, file_name),cv2.cvtColor(np.uint8(out_vis_image), cv2.COLOR_RGB2BGR))
cv2.imwrite("%s/%04d/%s_gt.png"%("checkpoints",epoch, file_name),cv2.cvtColor(np.uint8(gt), cv2.COLOR_RGB2BGR))
target.close()
avg_score = np.mean(scores_list)
class_avg_scores = np.mean(class_scores_list, axis=0)
avg_scores_per_epoch.append(avg_score)
avg_precision = np.mean(precision_list)
avg_recall = np.mean(recall_list)
avg_f1 = np.mean(f1_list)
avg_iou = np.mean(iou_list)
avg_iou_per_epoch.append(avg_iou)
print("\nAverage validation accuracy for epoch # %04d = %f"% (epoch, avg_score))
print("Average per class validation accuracies for epoch # %04d:"% (epoch))
for index, item in enumerate(class_avg_scores):
print("%s = %f" % (class_names_list[index], item))
print("Validation precision = ", avg_precision)
print("Validation recall = ", avg_recall)
print("Validation F1 score = ", avg_f1)
print("Validation IoU score = ", avg_iou)
epoch_time=time.time()-epoch_st
remain_time=epoch_time*(args.num_epochs-1-epoch)
m, s = divmod(remain_time, 60)
h, m = divmod(m, 60)
if s!=0:
train_time="Remaining training time = %d hours %d minutes %d seconds\n"%(h,m,s)
else:
train_time="Remaining training time : Training completed.\n"
utils.LOG(train_time)
scores_list = []
fig1, ax1 = plt.subplots(figsize=(11, 8))
ax1.plot(range(epoch+1), avg_scores_per_epoch)
ax1.set_title("Average validation accuracy vs epochs")
ax1.set_xlabel("Epoch")
ax1.set_ylabel("Avg. val. accuracy")
plt.savefig('accuracy_vs_epochs.png')
plt.clf()
fig2, ax2 = plt.subplots(figsize=(11, 8))
ax2.plot(range(epoch+1), avg_loss_per_epoch)
ax2.set_title("Average loss vs epochs")
ax2.set_xlabel("Epoch")
ax2.set_ylabel("Current loss")
plt.savefig('loss_vs_epochs.png')
plt.clf()
fig3, ax3 = plt.subplots(figsize=(11, 8))
ax3.plot(range(epoch+1), avg_iou_per_epoch)
ax3.set_title("Average IoU vs epochs")
ax3.set_xlabel("Epoch")
ax3.set_ylabel("Current IoU")
plt.savefig('iou_vs_epochs.png')