-
Notifications
You must be signed in to change notification settings - Fork 70
/
train_dtu.py
322 lines (276 loc) · 15.3 KB
/
train_dtu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import argparse
import os
import torch.nn as nn
import torch.nn.parallel
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.utils.data import DataLoader
import time
from typing import List
from datasets.dtu_yao import MVSDataset
from models import *
from utils import *
import sys
import datetime
cudnn.benchmark = True
parser = argparse.ArgumentParser(description="PatchmatchNet for high-resolution multi-view stereo")
parser.add_argument("--mode", default="train", help="train or val", choices=["train", "val"]) # done
parser.add_argument("--trainpath", help="train datapath") # done
parser.add_argument("--valpath", help="validation datapath") # not needed
parser.add_argument("--trainlist", help="train list") # done
parser.add_argument("--vallist", help="validation list") # done
parser.add_argument("--epochs", type=int, default=16, help="number of epochs to train") # done
parser.add_argument("--lr", type=float, default=0.001, help="learning rate") # done
parser.add_argument("--lrepochs", type=str, default="10,12,14:2",
help="epoch ids to downscale lr and the downscale rate") # done
parser.add_argument("--wd", type=float, default=0.0, help="weight decay") # done
parser.add_argument("--batch_size", type=int, default=12, help="train batch size") # done
parser.add_argument("--loadckpt", default=None, help="load a specific checkpoint") # done
parser.add_argument("--logdir", default="./checkpoints/debug", help="the directory to save checkpoints/logs") # done
parser.add_argument("--resume", action="store_true", help="continue to train the model") # done
parser.add_argument("--summary_freq", type=int, default=20, help="print and summary frequency") # done
parser.add_argument("--save_freq", type=int, default=1, help="save checkpoint frequency") # done
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed") # done
parser.add_argument("--parallel", action="store_true", default=False,
help="If set use DataParallel; this prevents TorchScript module export.") # done
parser.add_argument("--patchmatch_iteration", nargs="+", type=int, default=[1, 2, 2],
help="num of iteration of patchmatch on stages 1,2,3")
parser.add_argument("--patchmatch_num_sample", nargs="+", type=int, default=[8, 8, 16],
help="num of generated samples in local perturbation on stages 1,2,3")
parser.add_argument("--patchmatch_interval_scale", nargs="+", type=float, default=[0.005, 0.0125, 0.025],
help="normalized interval in inverse depth range to generate samples in local perturbation")
parser.add_argument("--patchmatch_range", nargs="+", type=int, default=[6, 4, 2],
help="fixed offset of sampling points for propogation of patchmatch on stages 1,2,3")
parser.add_argument("--propagate_neighbors", nargs="+", type=int, default=[0, 8, 16],
help="num of neighbors for adaptive propagation on stages 1,2,3")
parser.add_argument("--evaluate_neighbors", nargs="+", type=int, default=[9, 9, 9],
help="num of neighbors for adaptive matching cost aggregation of adaptive evaluation on stages 1,2,3")
# parse arguments and check
args = parser.parse_args()
if args.resume: # store_true means set the variable as "True"
assert args.mode == "train"
assert args.loadckpt is None
if args.valpath is None:
args.valpath = args.trainpath
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.mode == "train":
if not os.path.isdir(args.logdir):
os.mkdir(args.logdir)
current_time_str = str(datetime.datetime.now().strftime("%Y%m%d_%H%M%S"))
print("current time", current_time_str)
print("creating new summary file")
logger = SummaryWriter(args.logdir)
print("argv:", sys.argv[1:])
print_args(args)
# dataset, dataloader
train_dataset = MVSDataset(args.trainpath, args.trainlist, "train", 5, robust_train=True)
test_dataset = MVSDataset(args.valpath, args.vallist, "val", 5, robust_train=False)
TrainImgLoader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=8, drop_last=True)
TestImgLoader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=4, drop_last=False)
# model, optimizer
model = PatchmatchNet(
patchmatch_interval_scale=args.patchmatch_interval_scale,
propagation_range=args.patchmatch_range,
patchmatch_iteration=args.patchmatch_iteration,
patchmatch_num_sample=args.patchmatch_num_sample,
propagate_neighbors=args.propagate_neighbors,
evaluate_neighbors=args.evaluate_neighbors
)
if args.parallel and args.mode in ["train", "val"]:
model = nn.DataParallel(model)
model.cuda()
model_loss = patchmatchnet_loss
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=args.wd)
# load parameters
start_epoch = 0
if (args.mode == "train" and args.resume) or (args.mode == "test" and not args.loadckpt):
saved_models = [fn for fn in os.listdir(args.logdir) if fn.endswith(".ckpt")]
saved_models = sorted(saved_models, key=lambda x: int(x.split("_")[-1].split(".")[0]))
# use the latest checkpoint file
loadckpt = os.path.join(args.logdir, saved_models[-1])
print("resuming", loadckpt)
state_dict = torch.load(loadckpt)
model.load_state_dict(state_dict["model"])
optimizer.load_state_dict(state_dict["optimizer"])
start_epoch = state_dict["epoch"] + 1
elif args.loadckpt:
# load checkpoint file specified by args.loadckpt
print("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict["model"])
print("start at epoch {}".format(start_epoch))
print("Number of model parameters: {}".format(sum([p.data.nelement() for p in model.parameters()])))
# main function
def train():
milestones = [int(epoch_idx) for epoch_idx in args.lrepochs.split(":")[0].split(",")]
lr_gamma = 1 / float(args.lrepochs.split(":")[1])
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=lr_gamma,
last_epoch=start_epoch - 1)
for epoch_idx in range(start_epoch, args.epochs):
print("Epoch {}:".format(epoch_idx))
lr_scheduler.step()
global_step = len(TrainImgLoader) * epoch_idx
# training
for batch_idx, sample in enumerate(TrainImgLoader):
start_time = time.time()
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
do_summary = global_step % args.summary_freq == 0
do_summary_image = global_step % (50*args.summary_freq) == 0
loss, scalar_outputs, image_outputs = train_sample(sample, detailed_summary=do_summary)
if do_summary:
save_scalars(logger, "train", scalar_outputs, global_step)
if do_summary_image:
save_images(logger, "train", image_outputs, global_step)
del scalar_outputs, image_outputs
print(
"Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, time = {:.3f}".format(
epoch_idx, args.epochs, batch_idx, len(TrainImgLoader), loss, time.time() - start_time))
# checkpoint
if (epoch_idx + 1) % args.save_freq == 0:
torch.save({
"epoch": epoch_idx,
"model": model.state_dict(),
"optimizer": optimizer.state_dict()},
"{}/model_{:0>6}.ckpt".format(args.logdir, epoch_idx))
if not args.parallel:
model.eval()
sm = torch.jit.script(model)
sm.save(os.path.join(args.logdir, "module_{:0>6}.pt".format(epoch_idx)))
model.train()
# testing
avg_test_scalars = DictAverageMeter()
for batch_idx, sample in enumerate(TestImgLoader):
start_time = time.time()
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
do_summary = global_step % args.summary_freq == 0
# do_summary_test = global_step % (10*args.summary_freq) == 0
do_summary_image = global_step % (50*args.summary_freq) == 0
loss, scalar_outputs, image_outputs = test_sample(sample, detailed_summary=do_summary)
if do_summary:
save_scalars(logger, "test", scalar_outputs, global_step)
if do_summary_image:
save_images(logger, "test", image_outputs, global_step)
avg_test_scalars.update(scalar_outputs)
del scalar_outputs, image_outputs
print("Epoch {}/{}, Iter {}/{}, test loss = {:.3f}, time = {:3f}".format(
epoch_idx, args.epochs, batch_idx, len(TestImgLoader), loss, time.time() - start_time))
save_scalars(logger, "fulltest", avg_test_scalars.mean(), global_step)
print("avg_test_scalars:", avg_test_scalars.mean())
def test():
avg_test_scalars = DictAverageMeter()
for batch_idx, sample in enumerate(TestImgLoader):
start_time = time.time()
loss, scalar_outputs, _ = test_sample(sample, detailed_summary=False)
avg_test_scalars.update(scalar_outputs)
del scalar_outputs
print("Iter {}/{}, test loss = {:.3f}, time = {:3f}".format(
batch_idx, len(TestImgLoader), loss, time.time() - start_time))
if batch_idx % 100 == 0:
print("Iter {}/{}, test results = {}".format(batch_idx, len(TestImgLoader), avg_test_scalars.mean()))
print("final", avg_test_scalars)
def train_sample(sample, detailed_summary=False):
model.train()
optimizer.zero_grad()
sample_cuda = to_cuda(sample)
depth_gt = create_stage_images(sample_cuda["depth"])
mask = create_stage_images(sample_cuda["mask"])
_, _, depth_patchmatch = model(
sample_cuda["images"],
sample_cuda["intrinsics"],
sample_cuda["extrinsics"],
sample_cuda["depth_min"],
sample_cuda["depth_max"]
)
loss = model_loss(depth_patchmatch, depth_gt, mask)
loss.backward()
optimizer.step()
scalar_outputs = {"loss": loss}
image_outputs = {
"depth_gt_stage_0": depth_gt[0] * mask[0],
"depth_refined_stage_0": depth_patchmatch[0][-1] * mask[0],
"depth_patchmatch_stage_1": depth_patchmatch[1][-1] * mask[1],
"depth_patchmatch_stage_2": depth_patchmatch[2][-1] * mask[2],
"depth_patchmatch_stage_3": depth_patchmatch[3][-1] * mask[3],
"ref_img": sample["images"][0]
}
if detailed_summary:
image_outputs["errormap_refined_stage_0"] = (depth_patchmatch[0][-1] - depth_gt[0]).abs() * mask[0]
image_outputs["errormap_patchmatch_stage_1"] = (depth_patchmatch[1][-1] - depth_gt[1]).abs() * mask[1]
image_outputs["errormap_patchmatch_stage_2"] = (depth_patchmatch[2][-1] - depth_gt[2]).abs() * mask[2]
image_outputs["errormap_patchmatch_stage_3"] = (depth_patchmatch[3][-1] - depth_gt[3]).abs() * mask[3]
scalar_outputs["abs_depth_error_patchmatch_stage_3"] = absolute_depth_error_metrics(
depth_patchmatch[3][-1], depth_gt[3], mask[3] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_2"] = absolute_depth_error_metrics(
depth_patchmatch[2][-1], depth_gt[2], mask[2] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_1"] = absolute_depth_error_metrics(
depth_patchmatch[1][-1], depth_gt[1], mask[1] > 0.5)
scalar_outputs["abs_depth_error_refined_stage_0"] = absolute_depth_error_metrics(
depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5)
# threshold = 1mm
scalar_outputs["thres1mm_error"] = threshold_metrics(depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5, 1.0)
# threshold = 2mm
scalar_outputs["thres2mm_error"] = threshold_metrics(depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5, 2.0)
# threshold = 4mm
scalar_outputs["thres4mm_error"] = threshold_metrics(depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5, 4.0)
# threshold = 8mm
scalar_outputs["thres8mm_error"] = threshold_metrics(depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5, 8.0)
return tensor2float(loss), tensor2float(scalar_outputs), tensor2numpy(image_outputs)
@make_nograd_func
def test_sample(sample, detailed_summary=True):
model.eval()
sample_cuda = to_cuda(sample)
depth_gt = create_stage_images(sample_cuda["depth"])
mask = create_stage_images(sample_cuda["mask"])
_, _, depth_patchmatch = model(
sample_cuda["images"],
sample_cuda["intrinsics"],
sample_cuda["extrinsics"],
sample_cuda["depth_min"],
sample_cuda["depth_max"]
)
loss = model_loss(depth_patchmatch, depth_gt, mask)
scalar_outputs = {"loss": loss}
image_outputs = {
"depth_gt_stage_0": depth_gt[0] * mask[0],
"depth_refined_stage_0": depth_patchmatch[0][-1] * mask[0],
"depth_patchmatch_stage_1": depth_patchmatch[1][-1] * mask[1],
"depth_patchmatch_stage_2": depth_patchmatch[2][-1] * mask[2],
"depth_patchmatch_stage_3": depth_patchmatch[3][-1] * mask[3],
"ref_img": sample["images"][0]
}
if detailed_summary:
image_outputs["errormap_refined_stage_0"] = (depth_patchmatch[0][-1] - depth_gt[0]).abs() * mask[0]
image_outputs["errormap_patchmatch_stage_1"] = (depth_patchmatch[1][-1] - depth_gt[1]).abs() * mask[1]
image_outputs["errormap_patchmatch_stage_2"] = (depth_patchmatch[2][-1] - depth_gt[2]).abs() * mask[2]
image_outputs["errormap_patchmatch_stage_3"] = (depth_patchmatch[3][-1] - depth_gt[3]).abs() * mask[3]
scalar_outputs["abs_depth_error_patchmatch_stage_3"] = absolute_depth_error_metrics(
depth_patchmatch[3][-1], depth_gt[3], mask[3] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_2"] = absolute_depth_error_metrics(
depth_patchmatch[2][-1], depth_gt[2], mask[2] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_1"] = absolute_depth_error_metrics(
depth_patchmatch[1][-1], depth_gt[1], mask[1] > 0.5)
scalar_outputs["abs_depth_error_refined_stage_0"] = absolute_depth_error_metrics(
depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5)
# threshold = 1mm
scalar_outputs["thres1mm_error"] = threshold_metrics(depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5, 1.0)
# threshold = 2mm
scalar_outputs["thres2mm_error"] = threshold_metrics(depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5, 2.0)
# threshold = 4mm
scalar_outputs["thres4mm_error"] = threshold_metrics(depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5, 4.0)
# threshold = 8mm
scalar_outputs["thres8mm_error"] = threshold_metrics(depth_patchmatch[0][-1], depth_gt[0], mask[0] > 0.5, 8.0)
return tensor2float(loss), tensor2float(scalar_outputs), tensor2numpy(image_outputs)
def create_stage_images(image: torch.Tensor) -> List[torch.Tensor]:
return [
image,
F.interpolate(image, scale_factor=0.5, mode="nearest"),
F.interpolate(image, scale_factor=0.25, mode="nearest"),
F.interpolate(image, scale_factor=0.125, mode="nearest")
]
if __name__ == "__main__":
if args.mode == "train":
train()
elif args.mode == "val":
test()