-
Notifications
You must be signed in to change notification settings - Fork 2
/
sequence_overview.r
363 lines (238 loc) · 12.4 KB
/
sequence_overview.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
library(reshape2)
args <- commandArgs(trailingOnly = TRUE)
before.unique.file = args[1]
merged.file = args[2]
outputdir = args[3]
gene.classes = unlist(strsplit(args[4], ","))
hotspot.analysis.sum.file = args[5]
NToverview.file = paste(outputdir, "ntoverview.txt", sep="/")
NTsum.file = paste(outputdir, "ntsum.txt", sep="/")
main.html = "index.html"
empty.region.filter = args[6]
setwd(outputdir)
before.unique = read.table(before.unique.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
hotspot.analysis.sum = read.table(hotspot.analysis.sum.file, header=F, sep=",", fill=T, stringsAsFactors=F, quote="")
#before.unique = before.unique[!grepl("unmatched", before.unique$best_match),]
if(empty.region.filter == "leader"){
before.unique$seq_conc = paste(before.unique$FR1.IMGT.seq, before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
} else if(empty.region.filter == "FR1"){
before.unique$seq_conc = paste(before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
} else if(empty.region.filter == "CDR1"){
before.unique$seq_conc = paste(before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
} else if(empty.region.filter == "FR2"){
before.unique$seq_conc = paste(before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
}
IDs = before.unique[,c("Sequence.ID", "seq_conc", "best_match", "Functionality")]
IDs$best_match = as.character(IDs$best_match)
dat = data.frame(table(before.unique$seq_conc))
names(dat) = c("seq_conc", "Freq")
dat$seq_conc = factor(dat$seq_conc)
dat = dat[order(as.character(dat$seq_conc)),]
#writing html from R...
get.bg.color = function(val){
if(val %in% c("TRUE", "FALSE", "T", "F")){ #if its a logical value, give the background a green/red color
return(ifelse(val,"#eafaf1","#f9ebea"))
} else if (!is.na(as.numeric(val))) { #if its a numerical value, give it a grey tint if its >0
return(ifelse(val > 0,"#eaecee","white"))
} else {
return("white")
}
}
td = function(val) {
return(paste("<td bgcolor='", get.bg.color(val), "'>", val, "</td>", sep=""))
}
tr = function(val) {
return(paste(c("<tr>", sapply(val, td), "</tr>"), collapse=""))
}
make.link = function(id, clss, val) {
paste("<a href='", clss, "_", id, ".html'>", val, "</a>", sep="")
}
tbl = function(df) {
res = "<table border='1'>"
for(i in 1:nrow(df)){
res = paste(res, tr(df[i,]), sep="")
}
res = paste(res, "</table>")
}
cat("<center><img src=''> Please note that this tab is based on all sequences before filter unique sequences and the remove duplicates based on filters are applied. In this table only sequences occuring more than once are included. </center>", file=main.html, append=F)
cat("<table border='1' class='pure-table pure-table-striped'>", file=main.html, append=T)
if(empty.region.filter == "leader"){
cat("<caption>FR1+CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T)
} else if(empty.region.filter == "FR1"){
cat("<caption>CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T)
} else if(empty.region.filter == "CDR1"){
cat("<caption>FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T)
} else if(empty.region.filter == "FR2"){
cat("<caption>CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T)
}
cat("<tr>", file=main.html, append=T)
cat("<th>Sequence</th><th>Functionality</th><th>IGA1</th><th>IGA2</th><th>IGG1</th><th>IGG2</th><th>IGG3</th><th>IGG4</th><th>IGM</th><th>IGE</th><th>UN</th>", file=main.html, append=T)
cat("<th>total IGA</th><th>total IGG</th><th>total IGM</th><th>total IGE</th><th>number of subclasses</th><th>present in both IGA and IGG</th><th>present in IGA, IGG and IGM</th><th>present in IGA, IGG and IGE</th><th>present in IGA, IGG, IGM and IGE</th><th>IGA1+IGA2</th>", file=main.html, append=T)
cat("<th>IGG1+IGG2</th><th>IGG1+IGG3</th><th>IGG1+IGG4</th><th>IGG2+IGG3</th><th>IGG2+IGG4</th><th>IGG3+IGG4</th>", file=main.html, append=T)
cat("<th>IGG1+IGG2+IGG3</th><th>IGG2+IGG3+IGG4</th><th>IGG1+IGG2+IGG4</th><th>IGG1+IGG3+IGG4</th><th>IGG1+IGG2+IGG3+IGG4</th>", file=main.html, append=T)
cat("</tr>", file=main.html, append=T)
single.sequences=0 #sequence only found once, skipped
in.multiple=0 #same sequence across multiple subclasses
multiple.in.one=0 #same sequence multiple times in one subclass
unmatched=0 #all of the sequences are unmatched
some.unmatched=0 #one or more sequences in a clone are unmatched
matched=0 #should be the same als matched sequences
sequence.id.page="by_id.html"
for(i in 1:nrow(dat)){
ca1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA1", IDs$best_match),]
ca2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA2", IDs$best_match),]
cg1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG1", IDs$best_match),]
cg2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG2", IDs$best_match),]
cg3 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG3", IDs$best_match),]
cg4 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG4", IDs$best_match),]
cm = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGM", IDs$best_match),]
ce = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGE", IDs$best_match),]
un = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^unmatched", IDs$best_match),]
allc = rbind(ca1, ca2, cg1, cg2, cg3, cg4, cm, ce, un)
ca1.n = nrow(ca1)
ca2.n = nrow(ca2)
cg1.n = nrow(cg1)
cg2.n = nrow(cg2)
cg3.n = nrow(cg3)
cg4.n = nrow(cg4)
cm.n = nrow(cm)
ce.n = nrow(ce)
un.n = nrow(un)
classes = c(ca1.n, ca2.n, cg1.n, cg2.n, cg3.n, cg4.n, cm.n, ce.n, un.n)
classes.sum = sum(classes)
if(classes.sum == 1){
single.sequences = single.sequences + 1
next
}
if(un.n == classes.sum){
unmatched = unmatched + 1
next
}
classes.no.un = classes[-length(classes)]
in.classes = sum(classes.no.un > 0)
matched = matched + in.classes #count in how many subclasses the sequence occurs.
if(any(classes == classes.sum)){
multiple.in.one = multiple.in.one + 1
} else if (un.n > 0) {
some.unmatched = some.unmatched + 1
} else {
in.multiple = in.multiple + 1
}
id = as.numeric(dat[i,"seq_conc"])
functionality = paste(unique(allc[,"Functionality"]), collapse=",")
by.id.row = c()
if(ca1.n > 0){
cat(tbl(ca1), file=paste("IGA1_", id, ".html", sep=""))
}
if(ca2.n > 0){
cat(tbl(ca2), file=paste("IGA2_", id, ".html", sep=""))
}
if(cg1.n > 0){
cat(tbl(cg1), file=paste("IGG1_", id, ".html", sep=""))
}
if(cg2.n > 0){
cat(tbl(cg2), file=paste("IGG2_", id, ".html", sep=""))
}
if(cg3.n > 0){
cat(tbl(cg3), file=paste("IGG3_", id, ".html", sep=""))
}
if(cg4.n > 0){
cat(tbl(cg4), file=paste("IGG4_", id, ".html", sep=""))
}
if(cm.n > 0){
cat(tbl(cm), file=paste("IGM_", id, ".html", sep=""))
}
if(ce.n > 0){
cat(tbl(ce), file=paste("IGE_", id, ".html", sep=""))
}
if(un.n > 0){
cat(tbl(un), file=paste("un_", id, ".html", sep=""))
}
ca1.html = make.link(id, "IGA1", ca1.n)
ca2.html = make.link(id, "IGA2", ca2.n)
cg1.html = make.link(id, "IGG1", cg1.n)
cg2.html = make.link(id, "IGG2", cg2.n)
cg3.html = make.link(id, "IGG3", cg3.n)
cg4.html = make.link(id, "IGG4", cg4.n)
cm.html = make.link(id, "IGM", cm.n)
ce.html = make.link(id, "IGE", ce.n)
un.html = make.link(id, "un", un.n)
#extra columns
ca.n = ca1.n + ca2.n
cg.n = cg1.n + cg2.n + cg3.n + cg4.n
#in.classes
in.ca.cg = (ca.n > 0 & cg.n > 0)
in.ca.cg.cm = (ca.n > 0 & cg.n > 0 & cm.n > 0)
in.ca.cg.ce = (ca.n > 0 & cg.n > 0 & ce.n > 0)
in.ca.cg.cm.ce = (ca.n > 0 & cg.n > 0 & cm.n > 0 & ce.n > 0)
in.ca1.ca2 = (ca1.n > 0 & ca2.n > 0)
in.cg1.cg2 = (cg1.n > 0 & cg2.n > 0)
in.cg1.cg3 = (cg1.n > 0 & cg3.n > 0)
in.cg1.cg4 = (cg1.n > 0 & cg4.n > 0)
in.cg2.cg3 = (cg2.n > 0 & cg3.n > 0)
in.cg2.cg4 = (cg2.n > 0 & cg4.n > 0)
in.cg3.cg4 = (cg3.n > 0 & cg4.n > 0)
in.cg1.cg2.cg3 = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0)
in.cg2.cg3.cg4 = (cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
in.cg1.cg2.cg4 = (cg1.n > 0 & cg2.n > 0 & cg4.n > 0)
in.cg1.cg3.cg4 = (cg1.n > 0 & cg3.n > 0 & cg4.n > 0)
in.cg.all = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
#rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html)
rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, ce.html, un.html)
rw = c(rw, ca.n, cg.n, cm.n, ce.n, in.classes, in.ca.cg, in.ca.cg.cm, in.ca.cg.ce, in.ca.cg.cm.ce, in.ca1.ca2, in.cg1.cg2, in.cg1.cg3, in.cg1.cg4, in.cg2.cg3, in.cg2.cg4, in.cg3.cg4, in.cg1.cg2.cg3, in.cg2.cg3.cg4, in.cg1.cg2.cg4, in.cg1.cg3.cg4, in.cg.all)
cat(tr(rw), file=main.html, append=T)
for(i in 1:nrow(allc)){ #generate html by id
html = make.link(id, allc[i,"best_match"], allc[i,"Sequence.ID"])
cat(paste(html, "<br />"), file=sequence.id.page, append=T)
}
}
cat("</table>", file=main.html, append=T)
print(paste("Single sequences:", single.sequences))
print(paste("Sequences in multiple subclasses:", in.multiple))
print(paste("Multiple sequences in one subclass:", multiple.in.one))
print(paste("Matched with unmatched:", some.unmatched))
print(paste("Count that should match 'matched' sequences:", matched))
#ACGT overview
#NToverview = merged[!grepl("^unmatched", merged$best_match),]
NToverview = merged
if(empty.region.filter == "leader"){
NToverview$seq = paste(NToverview$FR1.IMGT.seq, NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
} else if(empty.region.filter == "FR1"){
NToverview$seq = paste(NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
} else if(empty.region.filter == "CDR1"){
NToverview$seq = paste(NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
} else if(empty.region.filter == "FR2"){
NToverview$seq = paste(NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
}
NToverview$A = nchar(gsub("[^Aa]", "", NToverview$seq))
NToverview$C = nchar(gsub("[^Cc]", "", NToverview$seq))
NToverview$G = nchar(gsub("[^Gg]", "", NToverview$seq))
NToverview$T = nchar(gsub("[^Tt]", "", NToverview$seq))
#Nsum = data.frame(Sequence.ID="-", best_match="Sum", seq="-", A = sum(NToverview$A), C = sum(NToverview$C), G = sum(NToverview$G), T = sum(NToverview$T))
#NToverview = rbind(NToverview, NTsum)
NTresult = data.frame(nt=c("A", "C", "T", "G"))
for(clazz in gene.classes){
print(paste("class:", clazz))
NToverview.sub = NToverview[grepl(paste("^", clazz, sep=""), NToverview$best_match),]
print(paste("nrow:", nrow(NToverview.sub)))
new.col.x = c(sum(NToverview.sub$A), sum(NToverview.sub$C), sum(NToverview.sub$T), sum(NToverview.sub$G))
new.col.y = sum(new.col.x)
new.col.z = round(new.col.x / new.col.y * 100, 2)
tmp = names(NTresult)
NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
names(NTresult) = c(tmp, paste(clazz, c("x", "y", "z"), sep=""))
}
NToverview.tmp = NToverview[,c("Sequence.ID", "best_match", "seq", "A", "C", "G", "T")]
names(NToverview.tmp) = c("Sequence.ID", "best_match", "Sequence of the analysed region", "A", "C", "G", "T")
write.table(NToverview.tmp, NToverview.file, quote=F, sep="\t", row.names=F, col.names=T)
NToverview = NToverview[!grepl("unmatched", NToverview$best_match),]
new.col.x = c(sum(NToverview$A), sum(NToverview$C), sum(NToverview$T), sum(NToverview$G))
new.col.y = sum(new.col.x)
new.col.z = round(new.col.x / new.col.y * 100, 2)
tmp = names(NTresult)
NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
names(NTresult) = c(tmp, paste("all", c("x", "y", "z"), sep=""))
names(hotspot.analysis.sum) = names(NTresult)
hotspot.analysis.sum = rbind(hotspot.analysis.sum, NTresult)
write.table(hotspot.analysis.sum, hotspot.analysis.sum.file, quote=F, sep=",", row.names=F, col.names=F, na="0")