-
Notifications
You must be signed in to change notification settings - Fork 577
/
sqrt_decomposition.go
166 lines (154 loc) · 6.42 KB
/
sqrt_decomposition.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
package copypasta
import (
"math"
"slices"
)
/* 根号算法 根号分治 Sqrt Decomposition
一种技巧:组合两种算法从而降低复杂度 O(n^2) -> O(n√n)
常用于图论或者某些数组统计类题目
参考 Competitive Programmer’s Handbook Ch.27
王悦同《根号算法——不只是分块》
todo 暴力美学——浅谈根号分治 https://www.luogu.com.cn/blog/Amateur-threshold/pu-li-mei-xue-qian-tan-gen-hao-fen-zhi
题目花样很多,下面举个例子
有 n 个对象,每个对象有一个「关于其他对象的统计量」ci(一个数、一个集合的元素个数,等等)
为方便起见,假设 ∑ci 的数量级和 n 一样,下面用 n 表示 ∑ci
当 ci > √n 时,这样的对象不超过 √n 个,暴力枚举这些对象之间的关系(或者,该对象与其他所有对象的关系),时间复杂度为 O(n) 或 O(n√n)。此乃算法一
当 ci ≤ √n 时,这样的对象有 O(n) 个,由于统计量 ci 很小,暴力枚举当前对象的统计量,时间复杂度为 O(n√n)。此乃算法二
这样,以 √n 为界,我们将所有对象划分成了两组,并用两个不同的算法处理
这两种算法是看待同一个问题的两种不同方式,通过恰当地组合(平衡)这两个算法,复杂度由 O(n^2) 降至 O(n√n)
例子是 https://codeforces.com/problemset/problem/1806/E
注意:**枚举时要做到不重不漏**
- [1714. 数组中特殊等间距元素的和](https://leetcode.cn/problems/sum-of-special-evenly-spaced-elements-in-array/)(会员题)
可以从这题上手 https://www.luogu.com.cn/problem/P3396
同 https://codeforces.com/contest/103/problem/D 2100
https://www.luogu.com.cn/problem/T279521?contestId=65460
- https://www.luogu.com.cn/blog/cyffff/solution-JRKSJ-Eltaw
LCP16 https://leetcode.cn/problems/you-le-yuan-de-you-lan-ji-hua/
https://codeforces.com/problemset/problem/1921/F 1900
https://codeforces.com/problemset/problem/797/E 2000
https://codeforces.com/problemset/problem/1207/F 2100
https://codeforces.com/problemset/problem/1806/E 2200
https://codeforces.com/problemset/problem/1968/G2 2200 也可以直接记忆化
https://codeforces.com/problemset/problem/425/D 2300
https://codeforces.com/problemset/problem/677/D 2300
https://codeforces.com/problemset/problem/1468/M 2300 或四元环
https://codeforces.com/problemset/problem/342/E 2400
https://codeforces.com/problemset/problem/506/D 2400
https://codeforces.com/problemset/problem/786/C 2400 见下面的 floorDivide
https://codeforces.com/problemset/problem/1619/H 2400 大步+小步,有点分段打表的味道
https://codeforces.com/problemset/problem/1270/F 2600
https://codeforces.com/problemset/problem/1039/D 2800
https://codeforces.com/problemset/problem/1039/E 3400
https://atcoder.jp/contests/abc293/tasks/abc293_f 四次方根
https://atcoder.jp/contests/abc365/tasks/abc365_g
https://leetcode.com/discuss/interview-question/3517350/
- Given a list of pairs {L,R} & an array.
Find out the total number of pairs (i, j) where
(arr[i], arr[j]) should be equal to exactly one of the given Q pairs. And i < j.
自动 O(n√n)
https://codeforces.com/problemset/problem/1790/F 2100
随机+分块
https://codeforces.com/contest/1840/problem/G2 2500
*/
// TIPS: n 的整数分拆中,不同数字的个数至多有 O(√n) 种
/* 分散层叠算法 Fractional Cascading
https://en.wikipedia.org/wiki/Fractional_cascading
https://www.zhihu.com/question/33776070/answer/59405602
https://www.luogu.com.cn/blog/DPair2005/fen-san-ceng-die-suan-fa-xue-xi-bi-ji
https://www.luogu.com.cn/problem/P6466
*/
/*
分块数据结构
https://oi-wiki.org/ds/decompose/
https://oi-wiki.org/ds/block-array/
Unrolled linked list https://en.wikipedia.org/wiki/Unrolled_linked_list
【推荐】https://www.luogu.com.cn/blog/220037/Sqrt1
浅谈基础根号算法——分块 https://www.luogu.com.cn/blog/deco/qian-tan-ji-chu-gen-hao-suan-fa-fen-kuai
todo https://www.csie.ntu.edu.tw/~sprout/algo2018/ppt_pdf/root_methods.pdf
区间 rank 的 N 种解法 https://www.luogu.com.cn/blog/Peterprpr/HunterNoHorse
浅谈归约矩乘 https://www.luogu.com.cn/blog/Ynoi/qian-tan-gui-yue-ju-cheng
为什么有些题只能用根号科技?https://www.luogu.com.cn/blog/include-c/sqrt-tech
题目推荐 https://cp-algorithms.com/data_structures/sqrt_decomposition.html#toc-tgt-8
好题 https://codeforces.com/problemset/problem/91/E
todo 动态逆序对 https://www.luogu.com.cn/problem/P3157 https://www.luogu.com.cn/problem/UVA11990
https://cp-algorithms.com/sequences/rmq.html
todo https://www.luogu.com.cn/problem/P3396
https://codeforces.com/problemset/problem/1207/F
https://codeforces.com/contest/455/problem/D
https://codeforces.com/problemset/problem/13/E 2700
https://www.luogu.com.cn/problem/P3203 [HN10] 弹飞绵羊
*/
func _(a []int) {
// 下标从 0 开始
type block struct {
l, r int // [l,r]
origin, sorted []int
//lazyAdd int
}
n := len(a)
blockSize := int(math.Sqrt(float64(n))) // 建议设为常量,避免超时 【提示】大一点可能更快一些
//blockSize := int(math.Sqrt(float64(n) * math.Log2(float64(n+1))))
blocks := make([]block, (n-1)/blockSize+1)
for i, v := range a {
j := i / blockSize
if i%blockSize == 0 {
blocks[j] = block{l: i, origin: make([]int, 0, blockSize)}
}
blocks[j].origin = append(blocks[j].origin, v)
}
for i := range blocks {
b := &blocks[i]
b.r = b.l + len(b.origin) - 1
b.sorted = append([]int(nil), b.origin...)
slices.Sort(b.sorted)
}
sqrtOp := func(l, r int, v int) { // [l,r], starts at 0
for i := range blocks {
b := &blocks[i]
if b.r < l {
continue
}
if b.l > r {
break
}
if l <= b.l && b.r <= r {
// do op on full block
} else {
// do op on part block
bl := max(b.l, l)
br := min(b.r, r)
for j := bl - b.l; j <= br-b.l; j++ {
// do b.origin[j]...
}
}
}
}
_ = sqrtOp
}
// 如果 f(i) 的计算结果近似 n/i
// 可以对 [1,n] 值域分治,如果区间内的结果都相同,则不再分治
// 时间复杂度类似整除分块 O(f(n)√n)
// https://codeforces.com/problemset/problem/786/C
func floorDivide(n int, f func(int) int) []int {
ans := make([]int, n+1)
var solve func(int, int)
solve = func(l, r int) {
if l > r {
return
}
resL, resR := f(l), f(r)
if resL == resR {
for i := l; i <= r; i++ {
ans[i] = resL
}
return
}
ans[l] = resL
ans[r] = resR
mid := (l + r) / 2
solve(l+1, mid)
solve(mid+1, r-1)
}
solve(1, n)
return ans[1:]
}