forked from Nishant2907/Godseye
-
Notifications
You must be signed in to change notification settings - Fork 0
/
videoCode[test2].py
110 lines (82 loc) · 3.48 KB
/
videoCode[test2].py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# THIS IS THE FIRST ATTEMPT WRITE CODE WHICH WILL BE USING WEBCAM
import face_recognition
from cv2 import cv2
import numpy as np
import math
import os
# FOR CHECKING THE ACCURACY
def face_distance_to_conf(face_distance, face_match_threshold=0.4718):
if face_distance > face_match_threshold:
range = (1.0 - face_match_threshold)
linear_val = (1.0 - face_distance) / (range * 2.0)
return linear_val
else:
range = face_match_threshold
linear_val = 1.0 - (face_distance / (range * 2.0))
return linear_val + ((1.0 - linear_val) * math.pow((linear_val - 0.5) * 2, 0.2))
video_capture = cv2.VideoCapture(0)
ankit_image = face_recognition.load_image_file("assets/nishant_cropped.jpg")
ankit_face_encoding = face_recognition.face_encodings(ankit_image)[0]
known_face_encodings = []
known_face_names = []
allName = []
allEncode = []
allPath = os.listdir("testAssets")
for i in range(len(allPath)):
allName.append(allPath[i].split(".")[0])
temp = allName
img = face_recognition.load_image_file("testAssets/" + allPath[i])
allEncode.append(face_recognition.face_encodings(img))
known_face_names = allName
known_face_encodings = allEncode
print(known_face_names)
print(temp)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
#taking an frame from an the camera
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
#to check the accuracy of the face recognized
print((face_distance_to_conf(face_distances))*100)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 255, 0), cv2.FILLED)
font = cv2.FONT_ITALIC
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (0, 0, 0), 2)
# Display the resulting image
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()