-
Notifications
You must be signed in to change notification settings - Fork 53
/
config.py
69 lines (64 loc) · 2.46 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--max_length_cot", type=int, default=256,
help="maximum length of output tokens by model for reasoning extraction"
)
parser.add_argument(
"--max_length_direct", type=int, default=32,
help="maximum length of output tokens by model for answer extraction"
)
parser.add_argument(
"--limit_dataset_size", type=int, default=0,
help="whether to limit test dataset size. if 0, the dataset size is unlimited and we use all the samples in the dataset for testing."
)
parser.add_argument(
"--api_time_interval", type=float, default=2.0, help=""
)
parser.add_argument(
"--temperature", type=float, default=0, help=""
)
parser.add_argument(
'--dataset', default='gsm8k',
help="dataset",
choices=["SVAMP", "gsm8k", "AQuA", "MultiArith", "AddSub", "SingleEq", "CommonsenseQA", "coin_flip",
"last_letters", "FinQA", "TATQA", "ConvFinQA", "StrategyQA"]
)
parser.add_argument(
"--prompt_id", default='324', help='string'
)
parser.add_argument(
"--engine", default='text-davinci-003', help="text-davinci-002,text-davinci-003,code-davinci-002",
choices=["text-davinci-002", "text-davinci-003", "code-davinci-002"]
)
parser.add_argument(
"--test_start", default='0', help='string, number'
)
parser.add_argument(
"--test_end", default='full', help='string, number'
)
parser.add_argument(
"--datapath", default=None, type=str, help='file path'
)
parser.add_argument(
"--learning_type", default='zero_shot', type=str, help='zero shot or few shot',
choices=['zero_shot', 'few_shot']
)
parser.add_argument(
"--few_shot_num", default=1, type=int, help='sample number of few shot learning'
)
parser.add_argument(
"--domain", default='numeral', type=str, choices=['financial', 'numeral']
)
parser.add_argument(
"--SC", default=False, type=bool, help="self consistency"
)
parser.add_argument(
'--answer_extracting_prompt', default='Therefore,the answer is', type=str
)
parsed_args = parser.parse_args()
parsed_args.direct_answer_trigger_for_zeroshot = "Let's think step by step."
parsed_args.direct_answer_trigger_for_direct = "Therefore,the answer is"
return parsed_args
args = parse_arguments()