-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate_instruction_zh.py
245 lines (217 loc) · 10.7 KB
/
generate_instruction_zh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""
batch_selfinstruct_generate.py
run:
python -m generate_instruction generate_instruction_following_data \
--output_dir ./ \
--num_instructions_to_generate 10 \
--model_name="text-davinci-003" \
"""
import time
import json
import os
import random
import re
import string
from functools import partial
from multiprocessing import Pool
import numpy as np
import tqdm
from rouge_score import rouge_scorer
import utils_zh
import fire
import openai
# def encode_prompt(prompt_instructions):
# """Encode multiple prompt instructions into a single string."""
# prompt = open("./prompt.txt").read() + "\n"
#
# for idx, task_dict in enumerate(prompt_instructions):
# (instruction, input, output) = task_dict["instruction"], task_dict["input"], task_dict["output"]
# instruction = re.sub(r"\s+", " ", instruction).strip().rstrip(":")
# input = "<noinput>" if input.lower() == "" else input
# prompt += f"###\n"
# prompt += f"{idx + 1}. Instruction: {instruction}\n"
# prompt += f"{idx + 1}. Input:\n{input}\n"
# prompt += f"{idx + 1}. Output:\n{output}\n"
# prompt += f"###\n"
# prompt += f"{idx + 2}. Instruction:"
# return prompt
def encode_prompt(prompt_instructions):
"""Encode multiple prompt instructions into a single string."""
prompt = open("./prompt_cn.txt").read() + "\n"
for idx, task_dict in enumerate(prompt_instructions):
(instruction, input, output) = task_dict["instruction"], task_dict["input"], task_dict["output"]
instruction = re.sub(r"\s+", " ", instruction).strip().rstrip(":")
input = "<无输入>" if input.lower() == "" else input
prompt += f"###\n"
prompt += f"{idx + 1}. 指令: {instruction}\n"
prompt += f"{idx + 1}. 输入:\n{input}\n"
prompt += f"{idx + 1}. 输出:\n{output}\n"
prompt += f"###\n"
prompt += f"{idx + 2}. 指令:"
return prompt
def post_process_gpt3_response(num_prompt_instructions, response):
if response is None:
return []
try: # for gpt-3.5-turbo
raw_instructions = response["message"]["content"]
except:
try:
raw_instructions = response["text"] # for text-davinci-003
except:
print("ERROR parse!")
if '指令:' not in raw_instructions[0: 10] and '指令:' not in raw_instructions[0: 10]:
raw_instructions = f"{num_prompt_instructions + 1}. 指令:" + raw_instructions
raw_instructions = re.split("###", raw_instructions)
instructions = []
blacklist = ["图像", "图片", "照片", "文件", "图表", "图层", "曲线图", "折线图", "直线图", "柱形图", "饼状图", "链接", "http", 'OpenAI',
'chatgpt', 'gpt-3', 'gpt-3.5', 'gpt-4']
replace_empty_list = ['要求GPT模型能够', '要求GPT能够', '要求GPT模型', '让GPT模型', '使用GPT模型', '请向GPT模型', 'GPT模型应', 'GPT模型应该',
'请求GPT模型', '需要GPT模型回答', '请GPT模型'
, '请让GPT模型', '训练GPT模型', 'GPT模型需要', '要求GPT', '让GPT', '使用GPT', '请向GPT', 'GPT应', 'GPT应该', '请求GPT', '需要GPT回答',
'请GPT', '请让GPT'
, '训练GPT', 'GPT需要', '希望GPT模型能够', '希望GPT能够', '以便GPT模型能够', '以便GPT能够', '使得GPT模型能够', '使得GPT能够', '使GPT模型能够', '使GPT能够'
, '由GPT模型', '使GPT模型']
for idx, inst in enumerate(raw_instructions):
# if the decoding stops due to length, the last example is likely truncated so we discard it
if idx == len(raw_instructions) - 1 and response["finish_reason"] == "length":
continue
# filter based on keywords that are not suitable for language models.
if any(find_word_in_string(word, inst) for word in blacklist):
continue
intruction_pattern = re.compile(
r"(?<=(?:" + '|'.join(['指令:', '指令:']) + "))[\s\S]*?(?=" + '|'.join(['输入:', '输入:']) + ")")
input_pattern = re.compile(
r"(?<=(?:" + '|'.join(['输入:', '输入:']) + "))[\s\S]*?(?=" + '|'.join(['输出:', '输出:']) + ")")
output_pattern = re.compile(r"(?<=(?:" + '|'.join(['输出:', '输出:']) + "))[\s\S]*?(?=$)")
intruction_match = intruction_pattern.search(inst)
input_match = input_pattern.search(inst)
output_match = output_pattern.search(inst)
if intruction_match and input_match and output_match:
inst = re.sub(r'\d+\.$', '', intruction_match.group().strip()).strip('\n')
input = re.sub(r'\d+\.$', '', input_match.group().strip()).strip('\n')
input = "" if "无输入" in input else input
output = output_match.group().strip().strip('\n')
if '指令:' in output and '输入:' in output and '输出:' in output: # 返回若没有以###号区分,取第一条数据
output_pattern_new = re.compile(r"(?<=(?:" + "))[\s\S]*?(?=" + '|'.join(['指令:', '指令:']) + ")")
output_match_new = output_pattern_new.search(output)
if output_match_new:
output = re.sub(r'\d+\.$', '', output_match_new.group().strip()).strip('\n')
# 去掉不合理的instruction
if len(inst) <= 3:
continue
for item in replace_empty_list:
inst = inst.replace(item, "")
if "GPT" in inst or 'GPT' in input:
continue
if len(input) == 0: # input无输入
instructions.append({"instruction": inst, "input": input, "output": output})
else:
if '示例' in inst or '例子' in inst: # inst里给例子
if len(inst) < 150:
instructions.append({"instruction": inst, "input": input, "output": output})
else: # 没给例子
if len(inst) < 100:
instructions.append({"instruction": inst, "input": input, "output": output})
return instructions
def find_word_in_string(w, s):
return w in s
def generate_instruction_following_data(
output_dir="./",
seed_tasks_path="./seed_tasks_zh.jsonl",
num_instructions_to_generate=1000,
# model_name="text-davinci-003",
model_name="gpt-3.5-turbo",
api="chat",
# api="completion",
num_prompt_instructions=3,
request_batch_size=1,
temperature=1.0,
top_p=1.0,
num_cpus=16,
):
seed_tasks = [json.loads(l) for l in open(seed_tasks_path, "r")]
seed_instruction_data = [
{"instruction": t["instruction"], "input": t["instances"][0]["input"], "output": t["instances"][0]["output"]}
for t in seed_tasks
]
print(f"Loaded {len(seed_instruction_data)} human-written seed instructions")
os.makedirs(output_dir, exist_ok=True)
request_idx = 0
# load the LM-generated instructions
machine_instruction_data = []
if os.path.exists(os.path.join(output_dir, "regen.json")):
machine_instruction_data = utils.jload(os.path.join(output_dir, "regen.json"))
print(f"Loaded {len(machine_instruction_data)} machine-generated instructions")
# similarities = {}
scorer = rouge_scorer.RougeScorer(["rougeL"], use_stemmer=False)
# now let's generate new instructions!
progress_bar = tqdm.tqdm(total=num_instructions_to_generate)
if machine_instruction_data:
progress_bar.update(len(machine_instruction_data))
# first we tokenize all the seed instructions and generated machine instructions
all_instructions = [d["instruction"] for d in seed_instruction_data] + [
d["instruction"] for d in machine_instruction_data
]
all_instruction_tokens = [scorer._tokenizer.tokenize(inst) for inst in all_instructions]
while len(machine_instruction_data) < num_instructions_to_generate:
request_idx += 1
batch_inputs = []
for _ in range(request_batch_size):
# only sampling from the seed tasks
prompt_instructions = random.sample(seed_instruction_data, num_prompt_instructions)
prompt = encode_prompt(prompt_instructions)
batch_inputs.append(prompt)
decoding_args = utils.OpenAIDecodingArguments(
temperature=temperature,
n=1,
max_tokens=1024, # hard-code to maximize the length. the requests will be automatically adjusted
top_p=top_p,
stop=["\n20", "20.", "20."],
)
request_start = time.time()
results = utils.openai_completion(
api=api,
prompts=batch_inputs,
model_name=model_name,
batch_size=request_batch_size,
decoding_args=decoding_args,
logit_bias={"50256": -100}, # prevent the <|endoftext|> token from being generated
)
request_duration = time.time() - request_start
process_start = time.time()
instruction_data = []
for result in results:
new_instructions = post_process_gpt3_response(num_prompt_instructions, result)
instruction_data += new_instructions
total = len(instruction_data)
keep = 0
for instruction_data_entry in instruction_data:
# computing similarity with the pre-tokenzied instructions
new_instruction_tokens = scorer._tokenizer.tokenize(instruction_data_entry["instruction"])
with Pool(num_cpus) as p:
rouge_scores = p.map(
partial(rouge_scorer._score_lcs, new_instruction_tokens),
all_instruction_tokens,
)
rouge_scores = [score.fmeasure for score in rouge_scores]
most_similar_instructions = {
all_instructions[i]: rouge_scores[i] for i in np.argsort(rouge_scores)[-10:][::-1]
}
if max(rouge_scores) > 0.7:
continue
else:
keep += 1
instruction_data_entry["most_similar_instructions"] = most_similar_instructions
instruction_data_entry["avg_similarity_score"] = float(np.mean(rouge_scores))
machine_instruction_data.append(instruction_data_entry)
all_instructions.append(instruction_data_entry["instruction"])
all_instruction_tokens.append(new_instruction_tokens)
progress_bar.update(1)
process_duration = time.time() - process_start
print(f"Request {request_idx} took {request_duration:.2f}s, processing took {process_duration:.2f}s")
print(f"Generated {total} instructions, kept {keep} instructions")
utils.jdump(machine_instruction_data, os.path.join(output_dir, "regen.json"))
def main(task, **kwargs):
globals()[task](**kwargs)
if __name__ == "__main__":
fire.Fire(main)